
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.2, May 2025

55

Text to Sign Language Translator –Two Implementations

Durgadevi Yenuganti
Southeast Missouri State

University, Cape Girardeau,
Missouri, USA

Nikhitha Kasha

Southeast Missouri State
University, Cape Girardeau,

Missouri, USA

Pavan Subhash
Chandrabose Nara

Southeast Missouri State University
Cape Girardeau, Missouri, USA

Suhair Amer
Southeast Missouri State

University, Cape Girardeau,

 Missouri, USA

ABSTRACT
This paper presents a comparative analysis of the projects of

two students projects focused on developing text-to-American

Sign Language (ASL) finger spelling translation systems.

Both projects successfully convert English text into

corresponding ASL hand shape images, but they differ in their

technological approaches and implementation complexities.

Project 1 utilizes PHP for a simpler implementation, while

Project 2 employs Python and Flask for a more robust and

scalable solution. The comparison highlights the diverse

approaches and technologies that can be employed for sign

language translation, emphasizing the importance of user-

centered design and evaluation in developing accessible

technologies for the Deaf community. The evaluations of both

projects, while differing in methodology, reveal positive user

experiences and identify areas for improvement, such as

handling special characters and incorporating additional

features. The students completed the development in one

month as an end of semester project.

Keywords
Sign Language Translation, Finger spelling, American Sign

Language (ASL), PHP, Python, Flask, User Interface,

Evaluation, Accessibility, Assistive Technology

1. INTRODUCTION
Communication is a fundamental human need, yet it presents

a significant challenge for those who are deaf or hard of

hearing. Sign language serves as the primary means of

communication for many individuals within the Deaf

community, with American Sign Language (ASL) being the

most prevalent in the United States and parts of Canada [1].

Bridging the communication gap between sign language and

spoken/written language is crucial for fostering inclusivity and

accessibility for all.

The development of technology has opened new possibilities

for facilitating communication between sign language and

spoken/written language users. Sign language translation

systems, which aim to convert sign language to

spoken/written language or vice versa, have garnered

increasing attention in recent years [2]. These systems have

the potential to break down communication barriers and

empower deaf or hard-of-hearing individuals to interact more

seamlessly with the hearing world.

Various approaches have been explored in the development of

sign language translation systems, including rule-based

systems, statistical machine translation (SMT), and neural

machine translation (NMT) [2, 3]. Rule-based systems rely on

predefined grammatical rules and dictionaries to map between

sign language and spoken/written language [4]. SMT systems

learn statistical relationships between the two languages from

large parallel corpora [3]. NMT systems leverage deep

learning models, such as recurrent neural networks (RNNs)

and transformers, to learn complex mappings between sign

language and spoken/written language [2]. Despite the

advancements in technology, sign language translation

remains a challenging task due to the linguistic complexity of

sign languages, the scarcity of parallel data for training, and

the variability in signing styles across individuals and regions

[5, 6]. Sign languages involve a combination of hand shapes,

facial expressions, and body movements, making it difficult to

capture and translate accurately [7]. The limited availability of

parallel data for training translation models further hinders

progress in this area [3]. Additionally, variations in signing

styles and regional dialects pose challenges for developing

systems that generalize well [6].

This paper summarizes the experience of two students

developing a text-to-sign language translation system that

focuses on finger spelling. The project was completed in one

month as an end of semester project. Finger spelling is a

method of representing letters of the alphabet using hand

shapes, and it is often used in sign language to spell out words

or names that do not have a corresponding sign [1]. By

focusing on finger spelling, the availability of resources for

individual letter representations in ASL can be leveraged and

allows the creation of a system that is relatively simple to

implement and deploy.

The systems provide a user-friendly interface for inputting

English text and generating corresponding ASL finger

spelling images. This tool can be valuable for educational

purposes, for facilitating basic communication between deaf

and hearing individuals, and as a foundation for developing

more comprehensive sign language translation systems in the

future.

2. BACKGROUND
Sign language is a visual language that uses hand shapes,

facial expressions, and body movements to convey meaning.

American Sign Language (ASL) is the primary language used

by many deaf individuals in the United States and parts of

Anglophone Canada [1]. ASL is a complex language with its

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.2, May 2025

56

own grammar and syntax, which differs significantly from

spoken English [8]. Developing effective tools for ASL

translation is crucial for enhancing communication

accessibility for the Deaf community.

Efforts to improve communication between Deaf and hearing

individuals have led to the development of sign language

translation systems, which aim to bridge the communication

gap by converting sign language into spoken or written

language or vice versa. These systems can be broadly

classified into two categories:

 Sign Language Recognition: These systems analyze

sign language input, typically captured via video, and

translate it into spoken or written language [2].

 Sign Language Generation: These systems take

spoken or writ-ten language as input and generate sign

language output, often in the form of animations or

videos [9].

Various methodologies have been employed in the

development of sign language translation systems:

 Rule-based Systems: These systems use predefined

grammatical rules and dictionaries to map between sign

language and spoken/written language [4].

 Statistical Machine Translation (SMT): SMT

systems learn statistical relationships between sign

language and spoken/written language from large parallel

corpora [3].

 Neural Machine Translation (NMT): NMT systems

utilize deep learning models, such as recurrent neural

networks (RNNs) and transformers, to learn complex

mappings between sign language and spoken/written

language [2].

Despite significant advancements, sign language translation

remains a challenging task due to several factors:

 Linguistic Complexity: ASL involves complex

grammatical structures, visual elements, and hand

shapes, which are difficult to capture and translate [8].

 Data Scarcity: There is limited parallel data

available for training sign language translation systems

compared to spoken languages [3].

 Variability: Sign language can vary significantly

across individuals, regions, and dialects, making it

difficult to develop systems that generalize well [6].

Previous research has focused on a variety of approaches to

overcoming these challenges, such as:

 Zhou et al. (2021) introduced a sign back-translation

approach to improve sign language translation using

monolingual data. This approach aids in reducing the

dependence on parallel data, which is scarce in the field

[3].

 Camgoz et al. (2020) proposed Sign

Language Transformers, a joint end-to-end model for

sign language recognition and translation, advancing the

use of transformer-based architectures in sign language

translation [2].

 Bagus et al. (2019) developed an English-to-sign-

language translation system specifically for Android,

aiming to make ASL translation more accessible through

mobile technology [10].

The work presented in this paper focuses on a simple yet

effective approach to sign language translation. It focuses on

translating English text into ASL finger spelling, an approach

that avoids the complexity of full sentence level translation by

utilizing letter-based representations. This method allows for

easier data acquisition and implementation, providing a

practical tool for communication between Deaf and hearing

individuals. By leveraging existing resources for ASL finger

spelling, an accessible solution is provided for educational

purposes and basic communication needs.

3. COMPARING PROJECT

APPROACHES
Comparing the implementations of two students in a project or

assignment can provide several benefits, both for the students

involved and for instructors. Next are some advantages:

 Diverse Problem-Solving: Students may approach

the same problem from different angles. By comparing

their solutions, they can learn new techniques,

methodologies, or strategies that they hadn’t considered

before.

 Exposure to Multiple Perspectives: Each student

brings their unique perspective and creativity to the

project. This comparison exposes students to alternative

ways of thinking and helps broaden their approach to

solving problems.

 Evaluation and Reflection: Comparing

implementations requires students to critically assess the

strengths and weaknesses of each approach. This process

encourages deeper reflection on the logic, design, and

functionality of their work.

 Problem Identification: When analyzing different

implementations, students can identify areas for

improvement in their own work and recognize potential

flaws in other approaches, fostering critical thinking.

 Concept Reinforcement: By comparing different

implementations, students reinforce their understanding

of course concepts, algorithms, or tools. Seeing how

others use the same concepts in different ways can

strengthen their grasp of the material.

 Clarifying Misunderstandings: Students may

recognize gaps or misunderstandings in their own

approach when comparing it to a peer’s implementation.

This can help them clarify concepts and improve their

understanding of the topic.

 Knowledge Sharing: Comparison often leads to

discussions between students, where they can share ideas

and insights. This collaborative exchange can deepen

their learning and help them develop new skills.

 Peer Learning: When students compare their

implementations, they can explain their reasoning to each

other, reinforcing their own understanding while teaching

others. This peer-to-peer learning is a powerful tool for

academic growth.

 Identifying Optimal Solutions: By comparing

implementations, students can identify which approach is

more efficient, robust, or scalable. This helps them

understand the trade-offs between different methods and

choose the best solution.

 Learning from Mistakes: If one student’s

implementation contains errors or inefficiencies,

comparing it to another’s may provide insight into how

to avoid similar mistakes in the future.

 Motivation: Knowing that their work will be

compared with others can motivate students to put more

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.2, May 2025

57

effort into their projects, leading to higher-quality

outcomes.

 Inspiration for Improvement: Seeing a peer’s well-

executed project can inspire students to strive for

improvement in their own work and push their

boundaries further.

 Self-Evaluation: Comparing their work with a peer’s

allows students to assess their own strengths and areas of

improvement, fostering self-awareness and continuous

development.

 Constructive Feedback: When comparing

implementations, students can give and receive

constructive feedback, which is crucial for refining their

skills and enhancing their final product.

 Explaining Concepts: In discussions that arise from

comparing implementations, students must articulate

their thought processes clearly. This enhances their

ability to explain complex ideas and engage in technical

discussions.

 Debate and Justification: Comparing

implementations often leads to debates where students

must justify their choices. This can help them practice

defending their ideas and reasoning, a valuable skill in

both academic and professional settings.

 Acknowledging Progress: By comparing different

implementations, students can recognize how they’ve

improved over time and what areas still require

development. This reinforces the idea that learning is a

continuous process.

 Accepting Constructive Criticism: Students learn

how to receive and give constructive criticism, which is

essential for personal and academic growth.

 Exposure to Best Practices: In a comparison,

students can identify and adopt best practices from one

another, improving the overall quality of their future

work.

 Refinement of Skills: As students analyze peer

work, they may notice techniques or methods they could

implement in their own projects, ultimately refining their

skill set.

 Real-World Simulations: In the workplace, it’s

common to compare and evaluate different approaches to

a problem. By practicing this in a classroom setting,

students better prepare for future professional

environments, where collaboration and comparison are

routine.

In summary, comparing the implementations of two students

helps deepen understanding, improves critical thinking and

problem-solving skills, and promotes peer learning and

collaboration. It encourages a growth mindset and prepares

students for real world professional challenges. The process of

discussing, evaluating, and learning from each other’s work

can lead to enhanced outcomes for all involved.

4. METHODOLOGY
The text-to-sign language translation system utilizes a

combination of web technologies and image processing

techniques to convert English text into corresponding ASL

finger spelling representations. The system architecture

comprises two main components: a frontend interface for user

interaction and a backend processing engine for text analysis

and image generation.

4.1 Frontend Interface

The frontend interface is built using HTML, CSS, and

JavaScript. It provides a user-friendly web page where users

can input English text and initiate the translation process. The

interface design prioritizes simplicity and ease of use,

ensuring accessibility for a wide range of users.

HTML: HTML (Hyper Text Markup Language) is used to

structure the content of the web page, including input fields,

buttons, and image display areas.

CSS: CSS (Cascading Style Sheets) is used to style the visual

presentation of the web page, ensuring an attractive and

intuitive user experience.

JavaScript: JavaScript is used to handle user interactions, such

as capturing text input, triggering the translation process, and

dynamically displaying the generated sign language images.

4.2 Backend Processing Engine
The backend processing engine is responsible for analyzing

the input text and generating the corresponding ASL finger

spelling images. It utilizes Python and image processing

libraries to perform these tasks. In specific,

 Python: Python is a versatile programming language

well-suited for text processing and image manipulation.

It provides a wide range of libraries and tools for string

manipulation, file handling, and image processing.

 Image Processing Libraries: Python libraries such as

OpenCV and Pillow are used to handle image loading,

manipulation, and display. These libraries enable

efficient processing of image data, ensuring smooth and

accurate generation of sign language representations.

4.3 System Workflow

The overall workflow of the system can be summarized as

follows:

 Text Input: The user enters English text into the

input field on the frontend interface.

 Text Processing: The backend processing engine

receives the input text and splits it into individual words

and characters.

 Image Retrieval: For each character, the system

retrieves the corresponding ASL finger spelling image

from a pre-compiled image dataset.

 Image Display: The retrieved images are

dynamically displayed on the frontend interface in a

sequential manner, representing the finger spelling of the

input text.

4.4 Technology Integration
The frontend and backend components of the system are

integrated using a web framework, such as Flask (Python) or

PHP. The web framework facilitates communication between

the frontend and backend, enabling seamless transfer of data

and processing requests.

Flask/PHP: Flask (Python) or PHP is used to handle web

requests, route data between the front-end and back-end, and

manage the overall application logic.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.2, May 2025

58

By combining these technologies and employing an efficient

workflow, our text-to-sign language translation system

provides a user-friendly and effective tool for converting

English text into ASL fin-ger spelling representations.

5. PROJECT 1 IMPLEMENTATION
This section explains the details of the first text-to-sign

language translation project, referred to as Project 1. This

project focuses on converting English text to American Sign

Language (ASL) finger spelling using a combination of web

technologies and image processing.

5.1 Approach
Project 1 adopts a straightforward approach to translate

English text to ASL finger spelling. The system takes the

input text, processes it to extract individual characters, and

then maps each character to its corresponding ASL handshape

image. This approach leverages the availability of

standardized ASL finger spelling images, simplifying the

translation process.

The design of Project 1 prioritizes simplicity and user-

friendliness. The user interface (UI) is implemented using

HTML and Bootstrap, providing a clean and intuitive

interface for users to input text and view the translated sign

language output. The UI consists of a text box for input, a

submit button to initiate the translation, and an area to display

the generated sign language images.

5.2 Design

The design of Project 1 prioritizes simplicity and user-

friendliness. The user interface (UI) is implemented using

HTML and Bootstrap, providing a clean and intuitive

interface for users to input text and view the translated sign

language output. The UI consists of a text box for input, a

submit button to initiate the translation, and an area to display

the generated sign language images

5.3 Implementation
Project 1 is implemented using PHP, a server-side scripting

language well-suited for web development. The

implementation involves the following key steps:

(1) Input Collection: The system retrieves the text entered by

the user in the text box.
(2) Text Processing: The input text is converted to lowercase

and split into individual characters.
(3) Image Mapping: Each character is mapped to its

corresponding ASL finger spelling image file.
(4) Image Display: The mapped images are dynamically

displayed on the web page, forming the translated output.

5.4 Code Snippets
The following snippets illustrate key aspects of the

implementation:

Text Processing

<?php
// Input
$phrase = $_POST[’phrase’];
// Converting the string to lowercase $phrase =

strtolower($phrase);

// Splitting the string input into an array of characters $phrase

= str_split($phrase);
?>

(2) Image Mapping and Display

<?php
foreach ($phrase as $character) {
// Fetching jpg file based on the character $character =

$character . ".jpg";
// Loop to collect all the jpg files for given input if

(file_exists($character) == 1) {
$results .= ""; } else {
// DO NOTHING }
} ?>

5.5 Technologies Used
Project 1 utilizes the following technologies:

HTML: For structuring the web page content. —Bootstrap:

For styling and enhancing the UI.
PHP: For server-side processing and image mapping.
Visual Studio Code: As the development environment.

5.6 Evaluation
Project 1 was evaluated by a group of five subjects who rated

the system on various aspects, including clarity of goal, ease

of input, UI design, accuracy of translation, and overall

performance. The evaluation results were positive, with high

ratings for UI design and ease of use. However, limitations

were identified, such as the lack of support for special

characters and shortcuts.

In general, project 1 demonstrates a simple and effective

approach to text-to-ASL finger spelling translation using basic

web technologies. While it has limitations, it provides a

foundation for future development and highlights the potential

of technology to facilitate communication for the Deaf

community.

6. PROJECT 2 IMPLEMENTATION
This section describes the second text-to-sign language

translation project, referred to as Project 2. This project also

focuses on converting English text to ASL finger spelling, but

it utilizes a different set of technologies and design choices

compared to Project 1.

6.1 Approach
Project 2 employs a similar approach to Project 1, where the

input text is processed to extract individual characters, and

each character is then mapped to its corresponding ASL

handshape image. However, Project 2 differs in its

implementation, utilizing Python and Flask to handle the

backend processing and HTML, CSS, and JavaScript for the

front-end interface.

6.2 Design
The design of Project 2 emphasizes a minimalistic and user-

friendly interface. The front-end is implemented using HTML

and JavaScript, providing a clean and intuitive platform for

users to in-put text and view the translated sign language

output. The interface consists of a text box for input, a convert

button to initiate the translation, and an area to display the

generated sign language images.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.2, May 2025

59

6.3 Implementation
Project 2’s implementation leverages Python and Flask for

backend processing and HTML, CSS, and JavaScript for the

front-end interface. The implementation involves the

following:
(1) Text Input: The user enters the English text in the text box

on the front-end interface.
(2) Backend Processing: The Flask backend receives the input

text, splits it into words, and searches for matching signs in

the dataset.
(3) Image Retrieval: The backend retrieves the relevant image

translations for the identified signs.
(4) Front-end Display: The retrieved images are sent back to

the front-end and displayed in a row-wise format.

6.4 Code Snippets
The following code snippets showcase key aspects of the

implementation:

(1) Backend Processing (Python)

from flask import Flask, render_template, request
app = Flask(__name__, template_folder=’templates’)
@app.route(’/’, methods=[’GET’]) def index():
return render_template(’index.html’)
if __name__ == "__main__": app.run(host=’0.0.0.0’,

port=8080)

(2) Front end Interaction (JavaScript)

function callBack() {
let content = document.getElementById("input").value; // ...

(rest of the code for processing and displaying images)
}

6.5 Technologies Used
Project 2 utilizes the following technologies:

Python: For backend processing and logic.
Flask: As a web framework for handling requests and routing.
HTML, CSS, and JavaScript: For creating the front-end inter-

face and user interaction.
Visual Studio Code: As the development environment.

6.6 Evaluation
Project 2 was evaluated by a developer, a homemaker, and a

tester. The evaluation focused on usability aspects such as

ease of use, interface attractiveness, and overall functionality.

The feedback received was positive, highlighting the user-

friendly interface and efficient translation process. However,

some limitations were noted, such as the inability to handle

special characters and the lack of prompts for missing words.

Overall, Project 2 presents an alternative implementation of a

text-to-ASL finger spelling translator using Python, Flask, and

web technologies. The project shows a user-friendly interface

and efficient backend processing. While it has certain

limitations, it offers valuable insights into different

technological approaches for sign language translation.

7. COMPARISON AND ANALYSIS
This section provides a comparative analysis of Project 1 and

Project 2, highlighting their similarities, differences, and

respective strengths and weaknesses.

7.1 Similarities
Both projects share the fundamental goal of translating

English text to ASL finger spelling, utilizing image-based

representations of ASL hand shapes. They both employ a

character-by-character translation approach, where the input

text is processed to extract individual characters, which are

then mapped to corresponding ASL images. Additionally,

both projects prioritize user-friendliness by implementing

simple and intuitive web-based interfaces for user interaction.

7.2 Differences
Despite their shared goal and approach, Project 1 and Project

2 exhibit several key differences:
Technology Stack: Project 1 utilizes PHP for backend

processing, while Project 2 employs Python and Flask. On the

frontend, Project 1 uses HTML and Bootstrap, whereas

Project 2 relies on HTML, CSS, and JavaScript.
Implementation Complexity: Project 1’s implementation is

relatively simpler, relying on basic string processing and

image mapping techniques. In contrast, Project 2 involves

more complex backend logic with Flask handling web

requests and routing.
Features: Project 2 demonstrates a slightly more advanced

feature set, including dynamic image generation and display

using JavaScript. Project 1, on the other hand, relies on pre-

generated image files and basic HTML for display.
Evaluation Methodology: Project 1 was evaluated by a group

of friends, while Project 2 involved a developer, a

homemaker, and a tester. This difference in evaluation

methodology reflects the varying perspectives considered for

each project.

7.3 Interfaces
Figure 1 showcases the home screen of Project 1, presenting a

clean and simple interface with a text box for user input and a

submit button.

Fig 1. Project 1 Home Screen

Figure 2 displays the output screen of Project 1, showing the

translated sign language images corresponding to the input

text.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.2, May 2025

60

Fig 2. Project 1 Output Screen

Figure 3 illustrates the home screen of Project 2, featuring a

text box for input and a convert button.

Fig 3. Project 2 Home Screen

Figure 4 presents the output screen of Project 2, displaying the

translated sign language images for the given text.

Fig 4. Project 2 Output Screen

7.4 Code Snippets Comparison
Next is an example of how text Processing is handled in

Project 1 using (PHP):

<?php
// Input
$phrase = $_POST[’phrase’];
// Converting the string to lowercase $phrase =

strtolower($phrase);

// Splitting the string input into an array of characters

$phrase = str_split($phrase); ?>

Next is an example code from Project 2 using (JavaScript):

function callBack() {
let content = document.getElementById("input").value; let

items = content.split(" ");

items = items.map((item) => item.trim().split("")); // ... further

processing and image display
}

Both projects perform similar text processing, but Project 2’s

JavaScript implementation includes additional steps like

splitting the input into words and trimming whitespace.

7.5 Image Handling
Project 1 (PHP): Relies on pre-generated image files and uses

a simple img tag for display.
$results .= "";

Project 2 (JavaScript): Dynamically generates img elements

and sets their attributes.
let img = document.createElement("img"); img.src =

"../static/images/alpha/" + element[j].toUpperCase() +

"_test.jpg"; img.className = "m-2";
img.style = "max-height: 120px";

imageDiv.appendChild(img);
Project 2’s approach allows for more flexibility and control

over image display.

7.6 Comparative Table
Table 1 summarizes the key differences between Project 1 and

Project 2:

Table 1: Comparing the key differences between projects 1

and 2.

Characteristics Project 1 Project 2

Backend

Technology

PHP

Python, Flask

Frontend

Technology
HTML, Bootstrap

HTML, CSS,

JavaScript

Implementation

Complexity
Simpler More Complex

Features Basic image

mapping and

display

Dynamic image

generation

Evaluation Friends Developer,

Homemaker, Tester

7.7 Analysis
Project 1’s simplicity makes it easier to understand and

implement, particularly for those familiar with PHP and basic

web development. Project 2, with its use of Python and Flask,

demonstrates a more robust and scalable approach, suitable

for handling larger datasets and more complex functionalities.

The dynamic image generation in Project 2 offers a more

interactive and engaging user experience.

 The evaluation of both projects reveals positive feedback

regarding usability and effectiveness. However, the different

evaluation methodologies provide unique perspectives. Project

1’s evaluation by friends highlights its user-friendliness and

accessibility to a general audience. Project 2’s evaluation by

individuals with varying technical expertise showcases its

robustness and potential for broader applications.

Both Project 1 and Project 2 successfully demonstrate the

feasibility of text-to-ASL finger spelling translation using web

technologies. Their comparative analysis reveals valuable

insights into different technological approaches,

implementation complexities, and evaluation methodologies.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.2, May 2025

61

These insights can inform future development efforts and

contribute to the advancement of accessible communication

tools for the Deaf community.

8. COMPARISON OF EVALUATION
While both Project 1 and Project 2 aimed to achieve similar

goals, their evaluation methods and the participant groups

differed, leading to varied results and insights. This section

compares the evaluation results of both projects, highlighting

key findings and areas for improvement.

Project 1’s evaluation, conducted with five master’s students,

focused on a goal-based approach. Participants rated the

system on five key aspects: clarity of goal, ease of input, UI

design, accuracy of translation, and overall performance. The

results showed high ratings for UI design and ease of input,

indicating a user-friendly interface and a clear understanding

of the system’s purpose. However, the lack of support for

special characters and shortcuts was identified as a limitation.

Project 2’s evaluation involved three participants with diverse

backgrounds: a developer, a homemaker, and a tester. The

evaluation utilized a usability testing approach with a

questionnaire focusing on ease of use, interface attractiveness,

and overall functionality. The results were generally positive,

highlighting the system’s user-friendly interface and efficient

translation process. However, limitations such as the inability

to handle special characters and the lack of prompts for

missing words were noted.

Comparing the results of both projects reveals interesting

insights. Project 1’s evaluation by a homogenous group of

master’s students suggests that the system is well-suited for

educational purposes and users with a basic understanding of

technology. On the other hand, Project 2’s evaluation by

individuals with varying technical expertise indicates its

potential for broader applications and user groups. Both

evaluations identified limitations related to handling special

characters, suggesting a common area for improvement in

future development. Additionally, Project 2’s evaluation

highlighted the need for more informative feedback

mechanisms, such as prompts for missing words, to enhance

user experience.

The comparison of evaluation results reveals valuable insights

into the strengths and limitations of each project. Project 1

demonstrates strong user-friendliness and clarity of purpose,

while Project 2 showcases broader applicability and potential

for diverse user groups. The identified limitations provide a

road map for future development, guiding the refinement and

enhancement of sign language translation systems to better

serve the needs of the Deaf community.

9. CONCLUSION

This paper examined two distinct implementations of a text-

to-ASL finger spelling translation system, Project 1 and

Project 2, developed by students. Both projects successfully

achieved their core functionality, converting English text into

corresponding ASL fin-ger spelling images. However, their

approaches differed in terms of technologies used and

implementation complexities. Project 1 utilized PHP for a

simpler implementation, while Project 2 employed Python and

Flask for a more robust and scalable solution.

The comparison of these projects revealed valuable insights.

Firstly, it highlighted the diverse approaches and technologies

that can be employed for sign language translation, offering

flexibility for future development. Secondly, it emphasized

the importance of user centered design and evaluation in

developing accessible technologies for the Deaf community.

The evaluations, while differing in methodology, revealed

positive user experiences and identified areas for

improvement, such as handling special characters and

incorporating additional features. This feedback is crucial for

refining and enhancing future iterations of sign language

translation systems.

In conclusion, both Project 1 and Project 2 contribute valuable

insights into the development and implementation of text-to-

ASL finger spelling translation systems. Their comparative

analysis highlights the flexibility in technological choices, the

importance of user-centered design, and the value of diverse

evaluation approaches. These findings can guide future

research and development efforts, ultimately contributing to

more accessible and effective communication tools for the

Deaf community. It is also important to note that the

development of these two projects were completed in one

month as an end of semester project.

10. REFERENCES

[1] Wikipedia contributors. American sign language, 2025.

URL

https://en.wikipedia.org/wiki/American_Sign_Language.

Accessed: 2025-02-25.
[2] Necati Cihan Camgoz, Oscar Koller, Simon Hadfield, and

R. Bowden. Sign language transformers: Joint end-to-end

sign language recognition and translation. 2020

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 10020–10030, 2020. URL

https://api. semanticscholar.org/CorpusID:214728269.
[3] Hao Zhou, Wen gang Zhou, Weizhen Qi, Junfu Pu, and

Houqiang Li. Improving sign language translation with

monolingual data by sign back-translation. 2021

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1316–1325, 2021. URL

https://api. semanticscholar.org/CorpusID:235195736.
[4] Sandra Baldassarri, Eva Cerezo, and Francisco Royo-

Santas. Automatic translation system to spanish sign

language with a virtual interpreter. volume 5726, pages

196–199, 08 2009.ISBN 978-3-642-03654-5. doi:

10.1007/978-3-642-03655-2 23.
[5] Daiga Straupeniece, Dina Bethere, and Elza Ozola. Sign

lan-guage of the deaf people: A study on public

understanding. Education. Innovation. Diversity., 2:109–

114, 12 2023. doi: 10.17770/eid2023.2.7356.
[6] Hicham Abdelouafi. The necessity for research on

indigenous sign languages to enrich africa’s deaf

communities. 11 2024.
[7] Kirsten Bergmann. The production of co-speech iconic

ges-tures: Empirical study and computational simulation

with vir-tual agents. 2012. URL

https://api.semanticscholar. org/CorpusID:36814279.
[8] Clayton Valli and Ceil Lucas. Linguistics of American

Sign Language: an introduction. Gallaudet University

Press, Washington, D.C., 3rd ed. edition, 2000. URL https:

//cmc.marmot.org/EbscoAcademicCMC/ocm57352333.

eBook, Available Online, Ebsco Academic (CMC).
[9] Parteek Bhatia, Sugandhi Verma, and Sanmeet Kaur. Sign

language generation system based on indian sign language

grammar. ACM Transactions on Asian Language

Information Processing, 01 2020.
[10] Ida Bagus, Nyoman Wairagya, Putu Wira Buana, and I

Made Sukarsa. Development of english-to-sign-language

trans-lation system on android. 2019. URL https://api.

semanticscholar.org/CorpusID:212584311.

IJCATM : www.ijcaonline.org

https://en.wikipedia.org/wiki/American_Sign_Language
https://en.wikipedia.org/wiki/American_Sign_Language
https://en.wikipedia.org/wiki/American_Sign_Language
https://api.semanticscholar.org/CorpusID:214728269
https://api.semanticscholar.org/CorpusID:214728269
https://api.semanticscholar.org/CorpusID:235195736
https://api.semanticscholar.org/CorpusID:235195736
https://api.semanticscholar.org/CorpusID:36814279
https://api.semanticscholar.org/CorpusID:36814279
https://cmc.marmot.org/EbscoAcademicCMC/ocm57352333
https://cmc.marmot.org/EbscoAcademicCMC/ocm57352333
https://api.semanticscholar.org/CorpusID:212584311
https://api.semanticscholar.org/CorpusID:212584311

