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ABSTRACT 

The self-balancing problem is crucial for the future 

development of self-driving technology, particularly for two-

wheeled vehicles. This report investigates and analyzes a self-

balancing bike model using a control system based on reaction 

wheel actuation. The Linear Quadratic Regulator (LQR) and 

fuzzy controller combined with LQR (Fuzzy-LQR) are applied 

to stabilize the bike by adjusting the reaction wheel’s response. 

To ensure a comprehensive approach to model development, 

following a structured methodology is necessary: theoretical 

analysis, data collection, mathematical modeling and 

simulation, and real-world experimentation. The results 

demonstrate that both control methods can effectively stabilize 

the system. However, balancing performance and energy 

efficiency must be carefully considered for real-world 

applications. The Fuzzy-LQR approach performs better than the 

standalone LQR method, highlighting the advantages of 

integrating human-inspired intelligent control with traditional 

control techniques. This finding reinforces the potential of 

hybrid control strategies in handling nonlinear self-balancing 

bike models in practical applications. 
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1. INTRODUCTION 
A self-balancing bike system is a system that can be controlled 

in many ways, based mainly on the principle of generating 

torque to balance the system. The main idea is to get feedback 

from a sensor measuring the tilt angle of the bike, and then use 

a mechanism designed to balance the bike at the desired 

position based on this tilt angle. The self-balancing bike system 

is a system thathasahigh characteristic of linearity when the tilt 

angle is smaller than 10 degrees. There are popular methods 

developed for controlling this system:  

- The first one is the control method of the steering angle of 

the bike to balance the system conducted in research [1], 

[2], [3]. This method uses a motor to control the handlebar 

of the bike, hence controlling the steering angle of the 

system. This method would be energy-saving, but the 

system will have friction and reaction forces between the 

wheel and the ground, because this factor will significantly 

affect the response time of the steering angle change to 

external factors, and the mathematical model would be 

complicated. 

- The second method is related to usingthe Control Moment 

Gyroscope (CMG). A CMG consists of a spinning rotor and 

one or more motorized gimbals that tilt the rotor’s angular 

momentum. As the rotor tilts, the changing angular 

momentum causes gyroscopic precession torque that 

balances the bike, this method is conducted inresearch [4], 

[5], [6]. The advantages of this system are that it can 

produce a large amount of torque, it has no ground reaction 

forces, and the system can be stable even when the bike is 

stationary. The disadvantages are that it consumes more 

energy and it is physically complex. 

- The third approach is to control the system based on 

controlling the reaction wheel,which is conducted in reports 

[7], [8]. In comparison to the above approaches, the reaction 

wheel can dissipate energy suitably with a tilt angle to 

reduce energy, low cost, simplicity, and no ground force are 

the advantages of this method. The disadvantages of this 

method are energy consumption and small torque 

generation.  

Popular algorithms, such as PID and LQR controllers, are 

applied to control the system with the above-mentioned 

approaches. Because this system is not perfectly linear and is 

approximately linearized for most of the controllers applied, 

algorithms related to PID application perform pretty well to 

control the system, but when noise happensto make the system 

out of the linearized range, the model tends to be less stable, 

and oscillations happen. Besides, with the real-world problems 

of energy optimization, while controlling is also prioritized, 

traditional control methods such as PID are less considered. 

With the problem of optimal control and robustness for the 

system, the Linear Quadratic Regulator (LQR) is considered 

one of the most suitable methods thatare applied in studies [7], 

[9], [10]. Because the LQR controller is developed to balance 

the controlling effort with the control signal, the energy used 

problem can be solved well. On the other hand, combining a 

fuzzy controller with a set of rules from human experiences 

would be a suitable way to improve the robustness and 

adaptation of the controlled system.Successful applications can 

be seen in reports [11], [12], [13]. In this study, the fuzzy 

controller is combined with the LQR controller by taking the 

control signal from the LQR controller and processing it into 

the fuzzy controller to improve the performance of the 

controlled system. 

The rest of this paper is organized as follows: Section 2 

introduces the practical bike model and presents the 

mathematical modeling of the bike system. Section 3 focuses on 

the design of the LQR controller based on the developed model, 

while Section 4 introduces a hybrid control approach that 

combines the fuzzy controller and LQR controllers. Section 5 

discusses and compares the simulation and experimental results 

obtained from both control methods. Finally, Section 6 provides 

the conclusions of the study. 

2. MODELLING OF SELF-BALANCING 

BIKE 
The two-wheel bike model and mathematical modelare shown 
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in Figures 1 and 2, in which, m1 is the mass of the bike 

(including DC motor controlling the reaction wheel), I1 is the 

moment of inertia generated by the bike, A is the center of mass 

of the bike, h1 is the distance from ground to A, m2 is the mass 

of the reaction wheel, I2 is the moment of inertia generated by 

reaction wheel, B is the center of mass of the reaction wheel, h2 

is the distance from ground to B, g is the gravitational 

acceleration.The real parameters of the model are displayed in 

Table 1. 

 

Figure 1: The 3D printed bike prototype for real-world 

controller application 

 

Figure2: Self-balancing bikemathematicalmodeling 

From the report [6], the Lagrange equation is used to build the 

mathematical dynamics of the model: 

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞′
 −

𝜕𝐿

𝜕𝑞
=  # 1  

L = T – V 

In which T is the kinetic energy of the system, V is the potential 

energy of the system,  is the external torques applied to the 

system,  q = [θφ]Tis the generalized coordinate,θ is the tilt angle 

of the bike, φ is the position of the reaction wheel. 

The kinetic energy of the bike (not includingthe reaction wheel) 

is: 

𝑇1 =
1

2
𝐼1𝜃 

2 +
1

2
𝑚1 ℎ1𝜃  

2
 # 2  

Table 1. Parameters of the real-world model 

Parameter Value 

I1 0.0014295 kg.m2 

I2 0.000234 kg.m2 

h1 0.085 m 

h2 0.125 m 

m1 0.8 kg 

m2 0.12 kg 

Ke 0.037 Vs/rad 

Km 0.037 Nm/A 

Rm 2.9 Ω 

a 1 

g 9.81 m/s2 

 

The kinetic energy of the reaction wheel is: 

𝑇2 =
1

2
𝐼2 𝜃 + 𝑡𝜑  

2
+

1

2
𝑚2 ℎ2𝜃  

2
 # 3  

From (2) and (3), the total kinetic energy of the system is 

obtainedas: 

𝑇 =
1

2
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+
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 ## 4  

The potential energy of the system is: 

𝑉 = 𝑚1ℎ1𝑔 cos 𝜃 + 𝑚2ℎ2𝑔 𝑐𝑜𝑠 𝜃 # 5  

From (1), (4), and (5), the expression of L is as follows: 

𝐿 =
1

2
𝐼2 𝜃 + 𝑡𝜑  

2
+

1

2
𝑚2 ℎ2𝜃  

2
+
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−𝑚1ℎ1𝑔 𝑐𝑜𝑠 𝜃 − 𝑚2ℎ2𝑔 𝑐𝑜𝑠 𝜃 # 6 
 

LetTm is the shaft torque generated by the motor: 

𝑇𝑚 = 𝐾𝑡

𝑈 − 𝐾𝑒𝜑 

𝑅𝑚
 # 7  

Replacing qin equation (1) by θ and φ, and incorporating 

equation (7), yields the following expressions: 

𝜃 =
𝑚𝑔𝐻

𝐼 − 𝐼2
𝑠𝑖𝑛𝜃 +

𝐾𝑡𝐾𝑒𝜑 

 𝐼 − 𝐼2 𝑅𝑚
+

𝐾𝑡𝑢

 𝐼 − 𝐼2 𝑅𝑚
 # 8  

𝜑 = −
𝑚𝑔𝐻

𝐼 − 𝐼2
𝑠𝑖𝑛𝜃 −

𝐾𝑡𝐾𝑒𝐼𝜑 

 𝐼 − 𝐼2 𝐼2𝑅𝑚
+

𝐾𝑡𝐼𝑢

 𝐼 − 𝐼2 𝐼2𝑅𝑚
 # 9  

In whichKtis the torque constant of the DC motor, Rm is the 

internal resistance of the motor, Ke is the back emf constant of 

the motor, and U is the voltage control applied to the DC motor. 

The parameters m, H, and I are defined as follows: 

𝑚 = 𝑚1 + 𝑚2; 

𝐻 =
𝑚1ℎ1 + 𝑚2ℎ2

𝑚
; 

𝐼 = 𝐼1 + 𝐼2 + 𝑚1ℎ1
2 + 𝑚2ℎ2

2; # 10  

The bike systemis designed to balance around the vertical 

direction withinthe range −8𝑜 ≤  ≤ 8𝑜 .In this range, the 

linearized model of the bike can be obtained by approximating 

𝑠𝑖𝑛𝜃 ≈ 𝜃. 

Denoting𝑥 =  𝑥1𝑥2𝑥3𝑥4 
𝑇 =  𝜃  𝜃   𝜑  𝜑  

𝑇
, from (8), (9), and 

(10), the linearized state space equations of the system is 

obtained as follows: 
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𝑥1 =  𝑥2 

𝑥2 =
𝑚𝑔𝐻

𝐼 − 𝐼2
𝑥1 +

𝐾𝑡𝐾𝑒

 𝐼 − 𝐼2 𝑅𝑚
𝑥4 +

𝐾𝑡

 𝐼 − 𝐼2 𝑅𝑚
𝑢 

𝑥3 = 𝑥4 

𝑥4 = −
𝑚𝑔𝐻

𝐼 − 𝐼2
𝑥1 −

𝐾𝑡𝐾𝑒𝐼

 𝐼 − 𝐼2 𝐼2𝑅𝑚
𝑥4 +

𝐾𝑡𝐼

 𝐼 − 𝐼2 𝐼2𝑅𝑚
𝑢 # 11  

3. LQR CONTROLLER 
The cost function of the LQR controller is as follows: 

𝐽 =   𝑥𝑄𝑥𝑇 + 𝑢𝑅𝑢𝑇 𝑑𝑡 # 12  

Q and R are the State Cost Matrix and Control Cost Matrix, 

respectively.  

Assume that the linearized state equation describing the system 

dynamics is as follows: 

𝑥 = 𝐴𝑥 + 𝐵𝑢 # 13  

In which,x is the state vector of the system, and u is the control 

signal applied tothe system. 

 

From the linearized state equations (11) of the bike model, the 

matrix A and vector B can be determined as: 
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The LQR control signal is𝑢 = −𝐾𝑥, with 

𝐾 = 𝑅−1𝐵𝑇𝑃 # 14  

In (14), P is calculated through the Algebraic Riccati Equation: 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 # 15  

Denoteqịjas the element at row i and column j in matrix Q, 

thenq11 is the weight state factor of tilt angle in matrix Q. 

The most suitable way to choose the values of q11 and R is to 

choose them equal to each other. When choosing q11 with 

higher weight values, the model will have more overshoot and 

will be less stable. And with pairs of value q11 and R smaller, 

the model also has a higher overshoot. The main reason is 

𝐾 = 𝑅−1𝐵𝑇𝑃, when R is smaller, the value of K with direct 

effects from 𝑅−1, the value of K will be higher over the effects 

of P from Q in the Riccati equation. The demonstrations of the 

assumptions are shown in Figure 3 and Figure 4. 

The schematic of the designed LQR controller is presented in 

Figure 6. K1, K2, K3, K4 are the gains of [𝜃  𝜃   𝜑  𝜑 ] 
respectively. 

Figure3: Tilt angle(theta) response (in degrees)  

Figure4: Reaction wheel position(phi) response (in radians)  

Figure5: Control signal u (in volt) 

time (in second) 
 

time (in second) 

time (in second) 
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Figure 6: Schematic of the designed LQR controller 

The best performance comes from q11 = 10000 and R = 

10000.Higher values almost have no changes when compared 

with this case. Although the settling time is a little longer than 

thetwo left cases, the robustness and stability characteristics of 

the system are guaranteed. 

10000 0 0 0

0 1 0 0
10000

0 0 1 0

0 0 0 1

Q and R

 
 
  
 
 
   

4. FUZZY–LQR CONTROLLER 
The Fuzzy LQR controller has two inputs E and EC, and the 

output is the control signal U. The inputs E and EC are defined 

as follows: 

𝐸 = −
𝐾𝑒

 𝐾1
2 + 𝐾2

2 + 𝐾3
2 + 𝐾4

2

 𝐾1𝜃 + 𝐾3𝜑              (16)  

𝐸𝐶 = −
𝐾𝑒𝑐

 𝐾1
2 + 𝐾2

2 + 𝐾3
2 + 𝐾4

2

 𝐾2𝜃 + 𝐾4𝜑           (17) 

In which K1, K2, K3, K4 are the state feedback gains of the LQR 

controller designed in section 3. The constants Ke, Kec, and KU 

are the standardization coefficients depending on practical 

conditions. Each input and output has 7 linguistic values, 

namely NB, NM, NS, ZE, PS, PM, and PM. Figure 7 and 

Figure 8 show membership functions defined for two inputs E 

and EC. Based on experience, the fuzzy rules of the Fuzzy-LQR 

controller are proposed as shown in Table 2. Figure 9presents 

the surface relationships between the controller’s inputs and 

output. Figure 10illustrates the schematic of the designed 

Fuzzy-LQR controller. 

Table 2. Rule base applied to Fuzzy-LQR controller 

U E 

NB NM NS ZE PS PM PB 

EC 

NB NB NB NB NM NM NS ZE 

NM NB NB NM NM NS ZE PS 

NS NB NM NM NS ZE PS PM 

ZE NM NM NS ZE PS PM PM 

PS NM NS ZE PS PM PM PB 

PM NS ZE PS PM PM PB PB 

PB ZE PS PM PM PB PB PB 

 

Figure7: Membership functions of input E 

 

Figure8: Membership functions of input EC 

 

Figure9:Fuzzy surface relationship between inputs and 

output 
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Figure10: Schematic of the Fuzzy–LQR controller 

Analysis ofthe approach of the FLC controller combined with 

the LQR controller: 

Step 1: With factors  𝐾1𝜃 + 𝐾3𝜑  and (𝐾2𝜃 + 𝐾4𝜑 ) in E and 

EC, respectively, the control signal of the LQR controller is 

generated again. In other words, the control signal from the 

LQR controller is used to process further in the fuzzy controller.  

Step 2: Multiply these two inputs by the gain 

of
1

 𝐾1
2+𝐾2

2+𝐾3
2+𝐾4

2
, the inputs are normalized into the range 

between 1 and 1. 

From this procedure, the control signal of the LQR controller is 

processed into the fuzzy controller. The gain vector Kof the 

LQR controller is computed initially and remains fixed, even 

when the system dynamics change, such as when the system 

operates outside the linearized range. As a result, while the 

LQR controller can perform well in the linearized range, its 

control signal lacks adaptability to varying model 

conditions.From this less-adaptive characteristic, the energy 

used and the ability to deal with complicated situations will not 

be optimized. The adaptive and well-adjusted characteristic of 

the fuzzy controller from the rule base will improve the control 

performance by overcoming the weakness of the LQR 

controller 

5. SIMULATION AND EXPERIMENT 

RESULTS 

5.1 Simulation setting 
MATLAB is used to write code and use Simulink blocks to 

build the real-world mathematical model of the system for 

simulation purposes.The feedback linearization and finding the 

state feedback gain vectorK through the Algebraic Riccati 

equation of the LQR controller are conducted through a script 

code file in MATLAB. 

In Simulink, the fixed-step solver “ode5 (Dormand-Prince)” is 

usedwith a sampling time of 0.001s.  

For the fuzzy controller, the Fuzzy toolbox available in 

MATLABexports the necessary files for the Simulink 

simulation. 

The state feedback vectorK of the LQR controller from the best 

performance of Q and R in section 3 is used, using the 

MATLAB command𝐾 = 𝑙𝑞𝑟 𝐴, 𝐵, 𝑄, 𝑅 to find K:    

𝐾 =  −159.9917 − 16.9432 − 0.01 − 0.08196  

The standardization coefficients of the Fuzzy–LQR controller 

are set as follows: Ke=8, Kec=8, and KU=12. 

5.2 Simulation results 
Figure 11 and Figure 12 show the simulation results of the 

Fuzzy-LQR with the LQR controllers when setting the initial 

tilt angle for both methods are 7 degrees, and 8 degrees, 

respectively. 

 
 

 
 

 
Figure 11: Bike model responses when setting the initial tilt 

angle equal to 7
o 

 

 

 

Table 3. Performances of the model when setting the initial 

tilt angle equal to 7
o 
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Criteria  LQR Fuzzy-LQR 

Maximum peak 

overshoot (degrees) 
0.042 0.02 

Settling time (s) 7 4.7 

Steady-state error 0 0 

 

When the initial tilt angle of the bike is 7o, the maximum peak 

overshoot when applying the LQR controller is 0.042 degrees 

and the Fuzzy-LQR controller is 0.02 degrees, the settling time 

when applying the LQR controller is 7s and the Fuzzy-LQR 

controller is 4.7s. This simulation result demonstrates that the 

performance of the Fuzzy-LQR controller is better than that of 

the LQR controller standaloneinterms of time response and 

stability when controlling the system. 

 

 

 
Figure 12: Bike model responses when setting the initial tilt 

angle equal to 8
o 

 

Table 3. Performances of the model when setting the initial 

tilt angle equal to 8
o 

Criteria  LQR Fuzzy-LQR 

Maximum peak 

overshoot (degrees) 
N/A 0.035 

Settling time (s) N/A 6.5 

Steady-state error N/A 0 

When the initial tilt angle of the bike is 8o, the maximum peak 

overshoot when applying the Fuzzy-LQR controller is 0.035 

degrees, and the settling time is 6.5s. Meanwhile, applying the 

LQR controller in this case, the tilt anglegoes to a very large 

value, demonstrating that the LQR controller cannot control the 

system in this case, making the bike fall in a short time. This 

simulation result demonstrates the robustness and adaptation 

characteristics of the Fuzzy-LQR controller when the working 

range of tilt angle is near the out-of-linearized-range. 

5.3 Experiment results 
The microcontroller STM32 is used to implement the code of 

the LQR controller and the Fuzzy-LQR controller to control the 

real-world model. The DC775 motor is used as an actuator to 

control the reaction wheel when receiving the control signal 

from the microcontroller.  

To get the data related to the tilt angle of the bike, an MPU 

6050 sensor is used, and an encoder of 100 pulses is used to get 

the data related to the reaction wheel speed and position 

through the DC775 motor.APython file is used to visualize the 

data received from the microcontroller through the UART 

(Universal Asynchronous Receiver-Transmitter) connection 

between the STM32 and the computer. Figure 13illustrates the 

block diagram of the implemented hardware. 

 

Figure 13: Block diagram of the implemented hardware 

Figure 14and Figure 15 show the experiment results on 

therealistic model of the self-balancing bike. The Fuzzy-LQR 

controller has a little higher overshoot, –3ocompared with –

2.5o,but stabilizesfaster in comparison to the LQR controller 

standalone. This effect may be caused by the difference in ideal 

characteristics between simulation and experiment hardware,the 

overall performance of the Fuzzy–LQR controller is also better 

than the LQR controller. 

The simulation and experiment results prove the advancement 

of the Fuzzy-LQR controller in comparison to the LQR 

controller, in both ideal conditions of simulation and non-ideal 

conditions of experiment. With the simulation results, the fast 

response and stability of the Fuzzy-LQR controller are 

demonstrated through settling time and overshoot value, 

however, the control signal of the Fuzzy-LQR controller 

displayed has a little chattering effect and not smooth like that 

of the LQR controller, this phenomenon can be explained by the 

neighboring feature, rules defined, and fast rate of change of the 

input in the fuzzy controller, which processed through the 

membership functions of input E and EC, make the output – 

control signal change immediately. 
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Figure 14: Experiment result of the Fuzzy–LQR controller 

 

Figure 15: Experiment result of the LQR controller

The fuzzy controller is implemented on hardware devices that 

require a lot of computational effort, the singleton output 

membership function is used to save energy. Instead of using 

the traditional triangular shape of membership function, 

singleton calculates only one value at a membership function 

without scanning the whole range, butthe precision is similar 

between the two methods. This also highlights the practical 

application of the fuzzy controller when applied to solve real-

world problems, not just in ideal conditions like a simulation 

platform. 

6. CONCLUSION 
The mathematical model of the system was first developed and 

used for algorithm analysis and application. The report is 

mainly based on the LQR control method to develop 

independent applications and combine them with a fuzzy 

controller to improve the control performance 

The LQR control method can independently perform well in 

controlling the bike system aroundthe equilibrium point. 

However, fuzzy combined with LQR to improve the precision 

and the adaptation of the system in each general case makesthe 

performance of the model better in terms of overshoot and 

settling time. Besides, linearization is necessary for the LQR 

controller, the Fuzzy-LQR controller improves the performance 

of the model when the working range is near the out-of-

linearized-range. Simulation and experiment results even show 

apparent differences in the performance of Fuzzy-LQR with 

LQR, which strengthens the advances of intelligent methods in 

controlling systems. 

The use of the reaction wheel combined with the Fuzzy-LQR 

controller can control the bike well in aenough small range, 

which can be linearizedwith high robustness and stability.For 

real-world applications, considering actuators with higher 

torque generation is necessary, or combining methods to save 

energy is worth applying. For example, with a small range of 

the tilt angle, the reaction wheel method – a lower torque but 

saving more energy can be applied; with a large range of the tilt 

angle, the CMG method – a higher torque but using more 

energy can be applied. Besides, the adjustment of the fuzzy 

controller has a high characteristic of relativity; the performance 
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of the model can also be improved through a better application 

of the parameters of the fuzzy controller. 
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