
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.19, June 2025

34

Adaptive Encoding for Scalable Segment Storage in

Advertising and Recommendation Systems

Xingpeng Xiao
Shandong University of Science and Technology

Pengfei Gao
Qingdao, China

ABSTRACT

Effective segment storage is an integral infrastructure problem

in recommendation systems and targeted advertising systems.

These systems need to store and retrieve enormous numbers of

user-segment relationships on-the-fly in real-time while

keeping latency low and storage overhead minimal.

Conventional segment storage solutions have high storage

overhead and low query performance, particularly as the

number of user accounts and segments grows. In this work, we

introduce an adaptive storage system for segment stores that

automatically chooses among storing in an array form versus

bitmaps versus run-length encoding depending on each user's

segment listing's sparsity or density. Through optimized

threshold computation, the system can automatically choose

the most space-effective storage mechanism for each user

segment listing without having to compare all compression

options. Our approach is shown through experimentation to

save significant storage space while also optimizing segment

retrieval operations at a low latency. The new methods are well-

suited for large-scale real-time recommendation engines and

targeted advertising systems as well as for large-scale

streaming services. A preliminary version of this encoding

model was published as a U.S. patent [1].

General Terms

Algorithms, Design, Experimentation, Performance

Keywords

Segment store, adaptive encoding, sparsity, personalization,

advertising

1. INTRODUCTION
Segment stores are central to today's digital platforms like

personalized video streaming, online ads, and e-commerce

recommendation platforms. These platforms are dependent on

efficient user-associated segment storage and retrieval of

encapsulating preferences, behavior, and demographic

information. As the number of users and number of segments

grow exponentially, scalability is the main issue.Traditional

approaches such as plain arrays or bitmaps are not optimal.

Arrays are efficient for dense data but not for sparse datasets.

Bitmaps have fast accesses but high space requirements. More

sophisticated compression techniques incur either complexity

or latency and are not optimal for real-time systems.

To address these issues, we suggest using a threshold-based

adaptive storage approach. The system makes dynamic

decisions on whether to store using array storage, bitmap

encoding, or run-length encoding (RLE) for each user

segment's data. The approach saves space and improves

response time with minimal reliance on heuristics and profiling

and makes segment store scale well at little computational

expense. These challenges are particularly acute in real-time ad

targeting systems, which must encode and retrieve user

segments at scale with strict latency budgets [2,3].

2. PROBLEM FORMULATION
A key complexity of designing scalable segment storage

systems is dealing with the large variation in segment list size

for each user. In systems we've supported, it's not uncommon

to have segment vocabularies in the hundreds of thousands. A

few users may have just a few segments assigned to them—

only enough to capture their minimal behavior—while others

will have tens of thousands of them as their history gets richer

or as time goes on.

Attempting to store each user's segment list using a uniform

format leads to obvious inefficiencies: sparse users waste

space, while dense users suffer from slow lookup performance.

Addressing this imbalance in a scalable and adaptive manner is

a key motivation for the approach we present.

Let 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛} denote the set of users, and let 𝑆 =
{𝑠1, 𝑠2, . . . , 𝑠𝑚} represent the universe of possible segments.

Each user 𝑢𝑖 ∈ 𝑈 is associated with a subset of segments 𝑆𝑖 ⊆
𝑆. The goal is to store each 𝑆𝑖 such that:

1. The total storage space ∑ |Encoded(𝑆𝑖)|
𝑛
𝑖=1 is

minimized.

2. The average query latency for retrieving 𝑆𝑖 is kept

below a practical threshold.

3. The encoding process maintains constant or near-

constant time complexity 𝑂(1) for real-time

applications.

This leads to the formulation of a decision function:

SelectEncoding(𝑆𝑖) = {

Array, if |𝑆𝑖| ≤ 𝑇1
Bitmap, if 𝑇1 < |𝑆𝑖| < 𝑇2
RLE, if |𝑆𝑖| ≥ 𝑇2

where 𝑇1 and 𝑇2 are empirically determined thresholds based

on experiments with real-world data. The function must take

into account the density 𝑑𝑖 = |𝑆𝑖|/|𝑆|, as high-density vectors

may favor different encodings.

The central hypothesis is that no single encoding method is

optimal for all 𝑆𝑖; instead, adaptively selecting the encoding

based on |𝑆𝑖| and 𝑑𝑖 yields better performance.

3. RELATED WORK
A wide body of work has explored encoding strategies for

large-scale data systems, especially within domains such as

information retrieval, recommendation pipelines, and columnar

storage engines. Bitmap indexes, for example, have long been

valued for their fast query performance and simplicity in

implementation [4]. That said, their raw size becomes

problematic when working with highly sparse segment data. To

mitigate this, compression schemes like Word-Aligned Hybrid

(WAH) [4] and Enhanced Word-Aligned Hybrid (EWAH) [5]

have been introduced to reduce footprint with minimal

performance cost. Roaring Bitmaps have also been proposed as

a more recent alternative, balancing compression and speed for

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.19, June 2025

35

both sparse and dense data [6, 7].

Run-Length Encoding (RLE) offers another space-saving

approach, particularly effective for dense data with long

contiguous runs. Several enhancements to RLE, such as BBC

and PLWAH, have been proposed to better exploit structure

within specific datasets[8].

Arrays, while often more efficient for sparse representations,

pose challenges for fast membership testing unless augmented

with indexes. In response, adaptive or hybrid strategies have

emerged—like the Hybrid Bitmap-List [9] or density-aware

encodings in streaming analytics [10]—that attempt to tailor

encoding to data characteristics.

Yet, many of these systems either depend on runtime profiling

or struggle to scale cleanly when faced with both large user

populations and high segment cardinality. In contrast, our

approach emphasizes simplicity and scalability, using

lightweight threshold-based logic to make encoding decisions

in real time. To the best of our knowledge, this is the first to

explicitly frame adaptive segment storage as a threshold

selection problem in the context of recommendation and

personalization systems.

4. METHODOLOGY
Our adaptive segment storage system is designed to

dynamically select the most space-efficient encoding for each

user’s segment list without performing exhaustive

benchmarking. The methodology is structured around four

main components: segment density estimation, threshold-based

encoding selection, predictive storage cost modeling, and

seamless integration into the segment store infrastructure.

4.1 Segment Density Estimation
Each user 𝑢𝑖 has an associated segment list 𝑆𝑖 ⊆ 𝑆, where 𝑆 is

the global set of segment identifiers. To inform the encoding

decision, segment density is computed as 𝑑𝑖 = |𝑆𝑖|/|𝑆|. This

normalized density quantifies the sparsity of the user’s segment

list relative to the total segment universe. where 𝑆𝑖 is the set of

segments associated with user 𝑖, and 𝑆 is the global segment

universe. This normalized value quantifies the sparsity of the

user's segment list relative to the total segment space.

4.2 Threshold-Based Encoding
Selection Based on empirical evaluation, two density-based

thresholds, 𝑇1 and 𝑇2 , are defined based on empirical

evaluation to guide the encoding decision:

• Array Encoding is selected when |𝑆𝑖| ≤ 𝑇1. In this

case, the list of segment IDs is stored directly as an

array. This format minimizes overhead for sparse

data.

• Bitmap Encoding is used for moderate densities,

where 𝑇1 < |𝑆𝑖| < 𝑇2 . A fixed-size bit vector of

length |𝑆| represents presence (1) or absence (0) of

each segment.

• Run-Length Encoding (RLE) is chosen for high-

density lists (|𝑆𝑖| ≥ 𝑇2), where long runs of

consecutive bits allow for effective compression.

The thresholds 𝑇1 and 𝑇2 are determined offline by analyzing a

representative dataset and identifying crossover points where

one encoding becomes more efficient than another in terms of

storage and access latency.

4.3 Predictive Storage Cost Modeling
Storage costs for each format are analytically modeled to

support real-time decisions without requiring actual encoding.

• Array:

𝐶𝑎𝑟𝑟𝑎𝑦(𝑆𝑖) = |𝑆𝑖| × sizeof(segment_id)

• Bitmap:

𝐶𝑏𝑖𝑡𝑚𝑎𝑝(𝑆𝑖) = ⌈|𝑆|/8⌉ bytes

• RLE:

𝐶𝑟𝑙𝑒(𝑆𝑖) =∑ sizeof(run
𝑗

𝑘

𝑗=1

)

where each run represents a sequence of 0s or 1s, encoded as a

pair (value, run-length).

This model provides a fast estimation of storage cost and is

used to validate threshold selection during system tuning.

4.4 System Integration and Workflow
The encoding decision process is embedded in the segment

ingestion pipeline. For each new or updated user-segment list:

• The density 𝑑𝑖 is computed.

• A storage strategy is selected based on precomputed

thresholds.

• The segment list is encoded and stored with metadata

specifying the encoding type.

To ensure long-term performance, the system periodically re-

evaluates stored segment lists, particularly for active users

whose segment data may evolve over time. This re-evaluation

is done in batches during low-traffic windows to minimize

impact on real-time performance.

In addition, our system is designed to be extensible: additional

encodings such as Roaring Bitmaps or Delta Encoding could

be integrated in future iterations without altering the core logic.

5. EXPERIMENTS RESULTS
To validate the effectiveness of our adaptive storage strategy,

we conducted comprehensive experiments using real-world

segment data collected from a large-scale recommendation

platform. This section presents the setup, metrics, baseline

comparisons, and findings that highlight the advantages of our

threshold-based encoding framework.

5.1 Dataset
We evaluated our system using anonymized segment data

representing 10 million users and approximately 200,000

unique segments. The distribution of segment list sizes per user

was highly skewed, following a long-tail pattern. The median

user had 200 segments, while the 90th percentile exceeded

3,200 segments. A small subset (< 3%) had ultra-dense profiles

with over 100,000 segments. This variance strongly motivated

the use of an adaptive storage strategy.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.19, June 2025

36

Figure 1: Distribution of Segment List Size per User(Log

Scale)

5.2 Baseline Strategies
To benchmark our adaptive system, we compared it against

three static storage strategies:

• Pure Array Storage: Each segment list stored as an

unsorted array of IDs.

• Pure Bitmap Storage: One bitmap vector per user.

• Pure Run-Length Encoding (RLE): Applied to

bitmaps before storage.

These baselines represent the extremes of the design spectrum

and help illustrate the limitations of one-size-fits-all

approaches.

5.3 Metrics
Evaluation of the storage strategies was based on the following

metrics:

• Storage Overhead (bytes/user): Total storage space

required per user segment list.

• Encoding Time (ms): Time to encode a user segment

list.

• Query Latency (µs): Time to check membership or

retrieve the full segment list.

• System Throughput (users/sec): Number of user

segment lists processed per second.

5.4 Results
Storage Efficiency: As shown in Figure 2, the adaptive

approach yields a total storage requirement of just 26.81 GB for

10 million users—more than 4× smaller than RLE and nearly

20× smaller than bitmap-only strategies.

Bitmap assumes a fixed 62.5 KB per user, sufficient to

represent up to 1 million segments (i.e., 8 million bits).

RLE assumes average compression of ~1.5 bytes per segment

based on typical run-length encoding efficiency.

Adaptive selects the most efficient encoding strategy per user

based on their segment density (e.g., RLE for sparse, Bitmap

for dense).

All values are coarse estimates for comparative purposes only.

Segm

ent
Coun

t
Rang

e

%
of
Us
ers

Avg.

Segm
ents
per

User

Estima
ted

User
Count

Array
(4B/se

g)

RLE
(~1.5B/

seg)

Bitmap
(62.5 KB/

user)

Adap
tive

0–50 50
%

30 5,000,
000

0.56 G
B

0.21 G
B

298.5 GB
0.21 
GB

50–
500

30
%

200 3,000,
000

2.23 G
B

0.84 G
B

179.0 GB
0.84 
GB

500–
10,00
0

17
%

3,200 1,700,
000

20.76 
GB

8.16 G
B

101.6 GB
8.16 
GB

>20,0
00
(ultra
-
dens
e)

3% 120,0
00

300,00
0

134.4
0 GB

54.00 
GB

17.60 GB
17.60
 GB

Total 10
0%

– 10,000
,000

157.9
5 GB

63.21 
GB

596.7 GB
26.81
 GB

Figure 2: Average Storage Cost by Strategy

Encoding Time (ms): Figure 3 presents the average encoding

time per user under different segment count ranges. As

expected, array encoding is fastest due to its direct structure.

Bitmap encoding is slower because of per-bit access

operations, while RLE requires linear traversal and run

computation. However, the absolute times remain low (sub-

millisecond), making all strategies acceptable in practice. The

adaptive strategy inherits the lowest of the applicable options

and maintains a bounded worst-case encoding time of less than

1 ms even in ultra-dense scenarios.

Figure 3: Average Encoding Time per User by Strategy

Query Latency (µs): Bitmap strategies perform well for

random-access membership testing (~30–50 µs). Adaptive

strategies retain this benefit for dense users while enabling fast

list iteration for sparse ones.

System Throughput (users/sec): The adaptive strategy

maintains throughput above 100K users/sec under parallel

ingestion and lookup, matching or exceeding fixed strategies.

6. DISCUSSION
Our experiments demonstrate that threshold-based adaptive

encoding consistently improves efficiency in large-scale

segment stores deployed in personalization systems.

By dynamically selecting between array, bitmap, and run-

length encodings based on segment list density, our approach

significantly reduces storage overhead while maintaining low

latency and high throughput.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.19, June 2025

37

A key observation is that encoding strategies tailored to data

sparsity yield outsized benefits. For example, approximately

50% of users have highly sparse segment lists (fewer than 50

segments), where bitmap encoding incurs over 1,000× the

storage cost of arrays. In contrast, ultra-dense segment lists—

though representing just 3% of users—account for the majority

of segment volume. For these cases, run-length encoding

proved far more efficient than both arrays and bitmaps. These

findings support our central hypothesis: the optimal encoding

format varies widely with segment density, and static strategies

are inherently inefficient at scale.

The adaptive selection process relies solely on precomputed

cost thresholds, eliminating the need for runtime encoding

benchmarks. This makes the framework well-suited for

latency-sensitive applications such as recommender systems

and real-time ad targeting[11].

We also note that the framework is designed with extensibility

in mind. Additional encodings—such as Roaring Bitmaps or

more customized hybrid formats—can be incorporated with

relatively low integration overhead.

At present, our implementation assumes a fixed global segment

vocabulary. In real-world deployments, however, segment

taxonomies often evolve over time. Supporting such dynamics

through scalable encoding adjustments is a natural direction for

future work. Another opportunity lies in exploring threshold

selection via lightweight learning models, which may better

capture cost asymmetries and system constraints.

In summary, threshold-based adaptive encoding offers a

practical middle ground—meeting the scalability needs of

personalization systems without introducing unnecessary

complexity.

7. CONCLUSION AND FUTURE WORK
An efficient and practical adaptive segment storage approach is

proposed, leveraging threshold-encoded selection to achieve

significant storage savings and improved performance. The

system demonstrates ease of deployment, minimal overhead in

scaling, and strong generalization across varied segment

distributions. Future extensions include incorporating more

advanced encodings such as Roaring Bitmaps and enabling

threshold learning [12] via sampling and offline profiling,

aiming to enhance flexibility in highly dynamic scenarios.

8. REFERENCES
[1] X. Xiao, Y. Shi, et al., “Efficient Storage for Segment

Store,” U.S. Patent US20240403919A1, Apr. 2024.

[Online]. Available:

https://patents.google.com/patent/US20240403919A1/en

[2] A. Agarwal, R. Agrawal, P. Jain, V. Kashyap, R.

Khandekar, and M. Sabharwal, “Scaling personalized

advertising on LinkedIn,” in Proc. 23rd ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining

(KDD), 2017, pp. 1953–1961.

[3] B. Schwartz, E. Weinstein, and A. Roy-Chowdhury,

“FLEDGE: Privacy-preserving interest-based

advertising,” Google Ads Developer Blog, 2022. [Online].

Available:

https://developer.chrome.com/en/docs/privacy-

sandbox/fledge/

[4] K. Wu, E. Otoo, and A. Shoshani, “Compressing bitmap

indexes for faster search operations,” In Proc. SSDBM,

2006, pp. 99–108.

[5] D. Lemire, O. Kaser, and K. Aouiche, “Compressed

bitmap indexes: Beyond unions and intersections,”

Software: Practice and Experience, vol. 40, no. 2, pp. 131–

147, 2010.

[6] S. Chambi, D. Lemire, O. Kaser, and R. Godin, "Better

bitmap performance with Roaring bitmaps," Software:

Practice and Experience, vol. 46, no. 5, pp. 709–719,

2016.

[7] D. Lemire, L. Boytsov, and N. Kurz, "Roaring bitmaps:

Implementation of an optimized compressed bitmap

index," Software: Practice and Experience, vol. 48, no. 4,

pp. 867–886, 2018.

[8] A. Colantonio and R. Di Pietro, “Concise: Compressed 'n'

composable integer set,” Information Systems, vol. 38, no.

8, pp. 1084–1097, 2013.

[9] M. Zukowski, S. Heman, N. Nes, and P. Boncz, “Super-

scalar RAM-CPU cache compression,” in Proc. IEEE Int.

Conf. on Data Engineering (ICDE), 2006, pp. 59–70.

[10] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C.

Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik,

“Aurora: a new model and architecture for data stream

management,” The VLDB Journal, vol. 12, no. 2, pp. 120–

139, 2003.

[11] P. Covington, J. Adams, and E. Sargin, “Deep neural

networks for YouTube recommendations,”

in Proceedings of the 10th ACM Conference on

Recommender Systems (RecSys), 2016, pp. 191–198.

[12] A. Criminisi, J. Shotton, and E. Konukoglu,

“Decision forests: A unified framework for classification,

regression, density estimation, manifold learning and

semi-supervised learning,”

Foundations and Trends in Computer Graphics and

Vision, vol. 7, no. 2–3, pp. 81–227, 2012.

IJCATM : www.ijcaonline.org

