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ABSTRACT 

Effective segment storage is an integral infrastructure problem 

in recommendation systems and targeted advertising systems. 

These systems need to store and retrieve enormous numbers of 

user-segment relationships on-the-fly in real-time while 

keeping latency low and storage overhead minimal. 

Conventional segment storage solutions have high storage 

overhead and low query performance, particularly as the 

number of user accounts and segments grows. In this work, we 

introduce an adaptive storage system for segment stores that 

automatically chooses among storing in an array form versus 

bitmaps versus run-length encoding depending on each user's 

segment listing's sparsity or density. Through optimized 

threshold computation, the system can automatically choose 

the most space-effective storage mechanism for each user 

segment listing without having to compare all compression 

options. Our approach is shown through experimentation to 

save significant storage space while also optimizing segment 

retrieval operations at a low latency. The new methods are well-

suited for large-scale real-time recommendation engines and 

targeted advertising systems as well as for large-scale 

streaming services. A preliminary version of this encoding 

model was published as a U.S. patent [1]. 
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1. INTRODUCTION 
Segment stores are central to today's digital platforms like 

personalized video streaming, online ads, and e-commerce 

recommendation platforms. These platforms are dependent on 

efficient user-associated segment storage and retrieval of 

encapsulating preferences, behavior, and demographic 

information. As the number of users and number of segments 

grow exponentially, scalability is the main issue.Traditional 

approaches such as plain arrays or bitmaps are not optimal. 

Arrays are efficient for dense data but not for sparse datasets. 

Bitmaps have fast accesses but high space requirements. More 

sophisticated compression techniques incur either complexity 

or latency and are not optimal for real-time systems. 

To address these issues, we suggest using a threshold-based 

adaptive storage approach. The system makes dynamic 

decisions on whether to store using array storage, bitmap 

encoding, or run-length encoding (RLE) for each user 

segment's data. The approach saves space and improves 

response time with minimal reliance on heuristics and profiling 

and makes segment store scale well at little computational 

expense. These challenges are particularly acute in real-time ad 

targeting systems, which must encode and retrieve user 

segments at scale with strict latency budgets [2,3]. 

2. PROBLEM FORMULATION 
A key complexity of designing scalable segment storage 

systems is dealing with the large variation in segment list size 

for each user. In systems we've supported, it's not uncommon 

to have segment vocabularies in the hundreds of thousands. A 

few users may have just a few segments assigned to them—

only enough to capture their minimal behavior—while others 

will have tens of thousands of them as their history gets richer 

or as time goes on. 

Attempting to store each user's segment list using a uniform 

format leads to obvious inefficiencies: sparse users waste 

space, while dense users suffer from slow lookup performance. 

Addressing this imbalance in a scalable and adaptive manner is 

a key motivation for the approach we present. 

Let 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛} denote the set of users, and let 𝑆 =
{𝑠1, 𝑠2, . . . , 𝑠𝑚}  represent the universe of possible segments. 

Each user 𝑢𝑖 ∈ 𝑈 is associated with a subset of segments 𝑆𝑖 ⊆
𝑆. The goal is to store each 𝑆𝑖 such that: 

1. The total storage space ∑ |Encoded(𝑆𝑖)|
𝑛
𝑖=1  is 

minimized. 

2. The average query latency for retrieving 𝑆𝑖  is kept 

below a practical threshold. 

3. The encoding process maintains constant or near-

constant time complexity 𝑂(1)  for real-time 

applications. 

This leads to the formulation of a decision function: 

SelectEncoding(𝑆𝑖) = {

Array, if |𝑆𝑖| ≤ 𝑇1
Bitmap, if 𝑇1 < |𝑆𝑖| < 𝑇2
RLE, if |𝑆𝑖| ≥ 𝑇2

 

 
where 𝑇1 and 𝑇2 are empirically determined thresholds based 

on experiments with real-world data. The function must take 

into account the density 𝑑𝑖 = |𝑆𝑖|/|𝑆|, as high-density vectors 

may favor different encodings. 

The central hypothesis is that no single encoding method is 

optimal for all 𝑆𝑖; instead, adaptively selecting the encoding 

based on |𝑆𝑖| and 𝑑𝑖 yields better performance. 

3. RELATED WORK 
A wide body of work has explored encoding strategies for 

large-scale data systems, especially within domains such as 

information retrieval, recommendation pipelines, and columnar 

storage engines. Bitmap indexes, for example, have long been 

valued for their fast query performance and simplicity in 

implementation [4]. That said, their raw size becomes 

problematic when working with highly sparse segment data. To 

mitigate this, compression schemes like Word-Aligned Hybrid 

(WAH) [4] and Enhanced Word-Aligned Hybrid (EWAH) [5] 

have been introduced to reduce footprint with minimal 

performance cost. Roaring Bitmaps have also been proposed as 

a more recent alternative, balancing compression and speed for 
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both sparse and dense data [6, 7]. 

Run-Length Encoding (RLE) offers another space-saving 

approach, particularly effective for dense data with long 

contiguous runs. Several enhancements to RLE, such as BBC 

and PLWAH, have been proposed to better exploit structure 

within specific datasets[8]. 

Arrays, while often more efficient for sparse representations, 

pose challenges for fast membership testing unless augmented 

with indexes. In response, adaptive or hybrid strategies have 

emerged—like the Hybrid Bitmap-List [9] or density-aware 

encodings in streaming analytics [10]—that attempt to tailor 

encoding to data characteristics. 

Yet, many of these systems either depend on runtime profiling 

or struggle to scale cleanly when faced with both large user 

populations and high segment cardinality. In contrast, our 

approach emphasizes simplicity and scalability, using 

lightweight threshold-based logic to make encoding decisions 

in real time. To the best of our knowledge, this is the first to 

explicitly frame adaptive segment storage as a threshold 

selection problem in the context of recommendation and 

personalization systems. 

4. METHODOLOGY   
Our adaptive segment storage system is designed to 

dynamically select the most space-efficient encoding for each 

user’s segment list without performing exhaustive 

benchmarking. The methodology is structured around four 

main components: segment density estimation, threshold-based 

encoding selection, predictive storage cost modeling, and 

seamless integration into the segment store infrastructure. 

4.1 Segment Density Estimation 
Each user 𝑢𝑖 has an associated segment list 𝑆𝑖 ⊆ 𝑆, where 𝑆 is 

the global set of segment identifiers. To inform the encoding 

decision, segment density is computed as 𝑑𝑖 = |𝑆𝑖|/|𝑆|. This 

normalized density quantifies the sparsity of the user’s segment 

list relative to the total segment universe. where 𝑆𝑖 is the set of 

segments associated with user 𝑖, and 𝑆 is the global segment 

universe. This normalized value quantifies the sparsity of the 

user's segment list relative to the total segment space. 

4.2 Threshold-Based Encoding 
Selection Based on empirical evaluation, two density-based 

thresholds, 𝑇1  and 𝑇2 , are defined based on empirical 

evaluation to guide the encoding decision: 

• Array Encoding is selected when |𝑆𝑖| ≤ 𝑇1. In this 

case, the list of segment IDs is stored directly as an 

array. This format minimizes overhead for sparse 

data. 

• Bitmap Encoding is used for moderate densities, 

where 𝑇1 < |𝑆𝑖| < 𝑇2 . A fixed-size bit vector of 

length |𝑆| represents presence (1) or absence (0) of 

each segment. 

• Run-Length Encoding (RLE) is chosen for high-

density lists ( |𝑆𝑖| ≥ 𝑇2 ), where long runs of 

consecutive bits allow for effective compression. 

The thresholds 𝑇1 and 𝑇2 are determined offline by analyzing a 

representative dataset and identifying crossover points where 

one encoding becomes more efficient than another in terms of 

storage and access latency. 

4.3 Predictive Storage Cost Modeling 
Storage costs for each format are analytically modeled to 

support real-time decisions without requiring actual encoding. 

• Array: 

𝐶𝑎𝑟𝑟𝑎𝑦(𝑆𝑖) = |𝑆𝑖| × sizeof(segment_id) 

• Bitmap: 

𝐶𝑏𝑖𝑡𝑚𝑎𝑝(𝑆𝑖) = ⌈|𝑆|/8⌉ bytes 

• RLE: 

𝐶𝑟𝑙𝑒(𝑆𝑖) =∑ sizeof(run
𝑗

𝑘

𝑗=1

) 

where each run represents a sequence of 0s or 1s, encoded as a 

pair (value, run-length). 

This model provides a fast estimation of storage cost and is 

used to validate threshold selection during system tuning. 

4.4 System Integration and Workflow 
The encoding decision process is embedded in the segment 

ingestion pipeline. For each new or updated user-segment list: 

• The density 𝑑𝑖 is computed. 

• A storage strategy is selected based on precomputed 

thresholds. 

• The segment list is encoded and stored with metadata 

specifying the encoding type. 

To ensure long-term performance, the system periodically re-

evaluates stored segment lists, particularly for active users 

whose segment data may evolve over time. This re-evaluation 

is done in batches during low-traffic windows to minimize 

impact on real-time performance. 

In addition, our system is designed to be extensible: additional 

encodings such as Roaring Bitmaps or Delta Encoding could 

be integrated in future iterations without altering the core logic. 

5. EXPERIMENTS RESULTS 
To validate the effectiveness of our adaptive storage strategy, 

we conducted comprehensive experiments using real-world 

segment data collected from a large-scale recommendation 

platform. This section presents the setup, metrics, baseline 

comparisons, and findings that highlight the advantages of our 

threshold-based encoding framework. 

5.1 Dataset 
We evaluated our system using anonymized segment data 

representing 10 million users and approximately 200,000 

unique segments. The distribution of segment list sizes per user 

was highly skewed, following a long-tail pattern. The median 

user had 200 segments, while the 90th percentile exceeded 

3,200 segments. A small subset (< 3%) had ultra-dense profiles 

with over 100,000 segments. This variance strongly motivated 

the use of an adaptive storage strategy. 
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Figure 1: Distribution of Segment List Size per User(Log 

Scale) 

5.2 Baseline Strategies 
To benchmark our adaptive system, we compared it against 

three static storage strategies: 

• Pure Array Storage: Each segment list stored as an 

unsorted array of IDs. 

• Pure Bitmap Storage: One bitmap vector per user. 

• Pure Run-Length Encoding (RLE): Applied to 

bitmaps before storage. 

These baselines represent the extremes of the design spectrum 

and help illustrate the limitations of one-size-fits-all 

approaches. 

5.3 Metrics 
Evaluation of the storage strategies was based on the following 

metrics: 

• Storage Overhead (bytes/user): Total storage space 

required per user segment list. 

• Encoding Time (ms): Time to encode a user segment 

list. 

• Query Latency (µs): Time to check membership or 

retrieve the full segment list. 

• System Throughput (users/sec): Number of user 

segment lists processed per second. 

5.4 Results 
Storage Efficiency: As shown in Figure 2, the adaptive 

approach yields a total storage requirement of just 26.81 GB for 

10 million users—more than 4× smaller than RLE and nearly 

20× smaller than bitmap-only strategies. 

Bitmap assumes a fixed 62.5 KB per user, sufficient to 

represent up to 1 million segments (i.e., 8 million bits). 

RLE assumes average compression of ~1.5 bytes per segment 

based on typical run-length encoding efficiency. 

Adaptive selects the most efficient encoding strategy per user 

based on their segment density (e.g., RLE for sparse, Bitmap 

for dense). 

All values are coarse estimates for comparative purposes only. 
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Figure 2: Average Storage Cost by Strategy 

Encoding Time (ms): Figure 3 presents the average encoding 

time per user under different segment count ranges. As 

expected, array encoding is fastest due to its direct structure. 

Bitmap encoding is slower because of per-bit access 

operations, while RLE requires linear traversal and run 

computation. However, the absolute times remain low (sub-

millisecond), making all strategies acceptable in practice. The 

adaptive strategy inherits the lowest of the applicable options 

and maintains a bounded worst-case encoding time of less than 

1 ms even in ultra-dense scenarios. 

 
Figure 3: Average Encoding Time per User by Strategy 

Query Latency (µs): Bitmap strategies perform well for 

random-access membership testing (~30–50 µs). Adaptive 

strategies retain this benefit for dense users while enabling fast 

list iteration for sparse ones. 

System Throughput (users/sec): The adaptive strategy 

maintains throughput above 100K users/sec under parallel 

ingestion and lookup, matching or exceeding fixed strategies. 

6. DISCUSSION 
Our experiments demonstrate that threshold-based adaptive 

encoding consistently improves efficiency in large-scale 

segment stores deployed in personalization systems. 

By dynamically selecting between array, bitmap, and run-

length encodings based on segment list density, our approach 

significantly reduces storage overhead while maintaining low 

latency and high throughput. 
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A key observation is that encoding strategies tailored to data 

sparsity yield outsized benefits. For example, approximately 

50% of users have highly sparse segment lists (fewer than 50 

segments), where bitmap encoding incurs over 1,000× the 

storage cost of arrays. In contrast, ultra-dense segment lists—

though representing just 3% of users—account for the majority 

of segment volume. For these cases, run-length encoding 

proved far more efficient than both arrays and bitmaps. These 

findings support our central hypothesis: the optimal encoding 

format varies widely with segment density, and static strategies 

are inherently inefficient at scale. 

The adaptive selection process relies solely on precomputed 

cost thresholds, eliminating the need for runtime encoding 

benchmarks. This makes the framework well-suited for 

latency-sensitive applications such as recommender systems 

and real-time ad targeting[11].  

We also note that the framework is designed with extensibility 

in mind. Additional encodings—such as Roaring Bitmaps or 

more customized hybrid formats—can be incorporated with 

relatively low integration overhead. 

At present, our implementation assumes a fixed global segment 

vocabulary. In real-world deployments, however, segment 

taxonomies often evolve over time. Supporting such dynamics 

through scalable encoding adjustments is a natural direction for 

future work. Another opportunity lies in exploring threshold 

selection via lightweight learning models, which may better 

capture cost asymmetries and system constraints. 

In summary, threshold-based adaptive encoding offers a 

practical middle ground—meeting the scalability needs of 

personalization systems without introducing unnecessary 

complexity. 

7. CONCLUSION AND FUTURE WORK 
An efficient and practical adaptive segment storage approach is 

proposed, leveraging threshold-encoded selection to achieve 

significant storage savings and improved performance. The 

system demonstrates ease of deployment, minimal overhead in 

scaling, and strong generalization across varied segment 

distributions. Future extensions include incorporating more 

advanced encodings such as Roaring Bitmaps and enabling 

threshold learning [12] via sampling and offline profiling, 

aiming to enhance flexibility in highly dynamic scenarios. 
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