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ABSTRACT 
With the rapid advancement of cloud computing, security 

breaches and intrusion attempts have become increasingly 

sophisticated and real-time. Traditional intrusion detection 

systems often fall short in identifying and detecting the evolving 

threats within dynamic cloud environments because they lack 

adaptability and struggle with effective feature representation. 

To address this, this paper proposes a new Temporal-Spatial 

Deep Learning (TSDL) framework that combines 

Convolutional Neural Networks (CNNs) for capturing spatial 

features with Long Short-Term Memory (LSTM) networks to 

learn temporal patterns in cloud network traffic. The proposed 

model pre-processes sequential packet data while keeping track 

of data flow, which enables early and accurate intrusion 

detection of the system. The system is evaluated on benchmark 

datasets such as CICIDS2017 and UNSW-NB15, and it 

outperforms traditional machine learning models and regular 

deep learning networks in both detection accuracy and 

processing latency. This system is designed to operate in real-

time, making it suitable for deployment in large-scale cloud 

infrastructures. 
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1. INTRODUCTION 
Cloud computing has revolutionized the way the use of digital 

infrastructures. It offers scalable, cost-effective and elastic 

resources to enterprises and individual users. It also enables 

cloud environments for rapid provisioning of resources with 

minimal effort. With more and more organizations shifting their 

workloads to the cloud, the risk and complexity that they face 

and  cyber threats—such as Distributed Denial of Service 

(DDoS) attacks, data breaches, and sophisticated threats became 

frequent and harder to manage [2][3].  

Traditional signature-based Intrusion Detection Systems (IDS) 

which rely on known attack patterns often failed in detecting 

emerging cyber threats and struggled to identify zero-day 

exploits [4]. While anomaly-based IDS, which uses machine 

learning (ML), offers better adaptability in detecting emerging 

cyberattacks, it still faces challenges such as high false positive 

rates and has limited ability to effectively capture and 

understand both spatial and temporal patterns in network traffic 

[5]. 

The progress in deep learning (DL) has introduced a promising 

approach to address these issues. Techniques like Convolutional 

Neural Networks (CNN) are highly effective in learning spatial 

features of data, while Recurrent Neural Networks (RNN), 

especially Long Short-Term Memory (LSTM) models, are well-

suited for spotting temporal and sequential data patterns in 

network behavior [6][7]. 

Despite these advancements, there has been relatively little 

focus on integrating these architectures specifically for real-

time intrusion detection in cloud environments. 

This paper proposes a Temporal-Spatial Deep Learning (TSDL) 

framework that combines CNNs for extracting spatial features 

with LSTMs for capturing temporal features in cloud network 

traffic. This hybrid model is evaluated using benchmark 

datasets and demonstrates superior performance in intrusion 

detection when compared to traditional systems and existing 

deep learning approaches. 

2. RELATED WORKS 
Intrusion Detection Systems (IDS) have evolved significantly 

with the integration of deep learning techniques, particularly 

hybrid models combining Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTM) networks. 

These models leverage CNNs for spatial feature extraction and 

LSTMs for capturing temporal dependencies, enhancing the 

detection of complex and evolving cyber threats. 

In 2024, Lv and Ding proposed a hybrid IDS combining K-

means clustering with CNN and LSTM architectures, 

demonstrating improved accuracy and reduced false alarm rates 

on the NSL-KDD dataset. Similarly, Gueriani et al. developed 

a CNN-LSTM-based IDS tailored for IoT environments, 

achieving an accuracy of 98.42% on the CICIoT2023 

dataset[8][9].  

Altaie and Hoomod introduced a lightweight CNN-LSTM 

model optimized for deployment on resource-constrained IoT 

devices, maintaining high detection accuracy while minimizing 

computational overhead. Jouhari and Guizani further enhanced 

this approach by designing a CNN-BiLSTM model that 

achieved 97.28% accuracy on the UNSW-NB15 dataset, 

emphasizing its suitability for real-time intrusion detection in 

IoT networks.[10][11].  

In the context of cloud infrastructures, Srilatha and Thillaiarasu 

proposed an LSTM-CNN model that achieved a test accuracy 

of 99.27%, highlighting its effectiveness in handling large 

volumes of network traffic in cloud environments. Aljuaid and 

Alshamrani developed a deep learning-based IDS utilizing 

CNN architectures, demonstrating over 98.67% accuracy in 

detecting cyberattacks within cloud computing 

environments.[12][13]. 
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Moreover, Ismaila and Sabo presented a hybrid CNN-LSTM 

model for network anomaly detection, achieving an impressive 

accuracy of 99.99% after only two training epochs, indicating 

the model's robustness and efficiency. Altunay and Albayrak's 

study on industrial IoT networks revealed that their hybrid 

CNN-LSTM model attained a detection accuracy of 99.84% for 

binary classification on the X-IIoTID dataset, underscoring its 

applicability in industrial settings. [14][15]. 

3. SYSTEM ARCHITECTURE 
The proposed Temporal-Spatial Deep Learning Framework 

enables real-time intrusion detection by combining spatial and 

temporal analysis of network traffic. It comprises four core 

components: data preprocessing, spatial feature extraction using 

CNN, temporal modeling with LSTM, and final classification. 

3.1 Data collection and Preprocessing 
 Network traffic data is collected using tools like Wireshark, 

Tcpdump, or through flow exporters in cloud environments 

(e.g., NetFlow, sFlow). Raw Input is captured as packet flows 

or NetFlow records. The features extracted include timestamp, 

source and destination IP/ports, protocol, flow duration, packet 

count, and byte size.  Derived metrics such as packet rate, byte 

rate, and flag counts are computed. Min-Max or Z-score is used 

for normalization. Encoded Categorical variables like protocol 

type are one-hot encoded or label encoded to maintain input 

consistency for the model. 

3.2 Spatial feature extraction (CNN Block) 
A 1D Convolutional Neural Network is applied to the flow 

vectors to capture spatial relationships between features in a 

single packet or flow. Convolution Layers capture localized 

patterns like abnormal header fields or byte distribution 

anomalies. The Activation Functions used are ReLU layers 

introduce non-linearity. MaxPooling is used to reduce 

dimensionality and emphasize dominant features. A condensed 

vector representing the spatial characteristics of each input flow 

is the output from this layer.  

3.3 Temporal Sequence Modeling(LSTM 

Block) 

The spatial feature vectors are fed into a stacked Long Short-

Term Memory (LSTM) network to capture long-term 

dependencies.LSTM Layers learn from sequences of flows to 

detect time-coordinated threats like DDoS or slow port scans. 

Dropout Layers are added between LSTM layers to prevent 

overfitting. This module, which has temporal awareness, allows 

the system to differentiate between isolated anomalies and 

sustained attack behaviors. 

3.3 Classification Layer 
The final output from the LSTM is passed through a fully 

connected (dense) layer and a classification activation function. 

Dense Layer aggregates temporal context into a final decision 

score. Activation functions are Sigmoid for binary classification 

(attack vs. normal) or Softmax for multi-class labeling. The final 

prediction indicates the presence and type of intrusion. 

 

Fig 1: TSDL System Architecture 

4. EXPERIMENTAL SETUP 
To evaluate the effectiveness of the proposed Temporal-Spatial 

Deep Learning (TSDL) framework for real-time intrusion 

detection in cloud environments, extensive experiments were 

conducted using two publicly available and widely adopted 

benchmark datasets: CICIDS2017 and UNSW-NB15. These 

datasets were chosen since they contain a vide variety of both 

normal and malicious network traffic, capturing a wide range of 

real and simulated attack types such as DDoS, Port Scan, 

Botnet, Exploits, and more. 

The CICIDS2017 dataset, developed by the Canadian Institute 

for Cybersecurity, contains over three million labeled flow 

records. It offers detailed features such as flow durations, packet 

counts, byte counts, and various TCP/IP header fields etc. The 

UNSW-NB15 dataset, created by the Australian Centre for 

Cyber Security, consists of approximately 2.5 million flow 

instances and includes nine different types of modern attack 

vectors. Both of these datasets were pre-processed by removing 

irrelevant attributes, handling missing values, and normalizing 

numerical features using Min-Max scaling to ensure that they 
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contain uniform feature ranges. Categorical features, such as 

protocol types and service labels, were encoded in to numerical 

form using one-hot encoding To manage the imbalance in attack 

versus normal traffic, especially prominent in real-world 

datasets where amount of normal data is much higher than 

attack data, also employed the Synthetic Minority 

Oversampling Technique (SMOTE) during the training phase 

for generating synthetic attacks of rare classes.  

The proposed model (TDSL) architecture was built using 

TensorFlow 2.9 with a Keras backend. For analyzing the spatial 

patterns in the network, a spatial feature extraction module is 

created, and it uses a series of one-dimensional convolutional 

layers with varying kernel sizes (3, 5, and 7) and depths (64, 

128, and 256). These layers detect patterns with unusual traffic 

spikes or anomalies in packet flow. Each convolutional layer 

was subsequently followed by a ReLU activation function and 

a max pooling layer to retain dominant and most important 

patterns. The output from this block was passed to two  Long 

Short-Term Memory (LSTM) layers for extracting temporal 

features. The first LSTM layer has 128 units and the second 

LSTM layer has 64 units. To avoid overfitting Dropout 

regularization was introduced with a rate of 0.3 and recurrent 

dropout for better temporal feature learning. 

For the final prediction, a dense layer with 64 neurons is used, 

followed by either a sigmoid activation function for binary 

classification (attack vs. normal) or a softmax activation for 

multi-class attack detection. The model is trained using the 

Adam optimizer, which is a popular choice for deep learning 

networks, with a learning rate of 0.001. A batch size of 128 is 

used, and the model is trained for up to 50 epochs. Also 

employed early stopping with a patience threshold of five 

epochs based on validation loss to prevent overfitting. 

The performance of the model was evaluated using standard 

classification metrics, including Accuracy, Precision, Recall, 

F1-Score, and the Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC). Also, detection latency was 

measured to assess the framework’s suitability for real-time 

deployment. 

For the fair performance comparisons, we also implemented a 

range of baseline models, which include traditional machine 

learning algorithms such as Logistic Regression, Support 

Vector Machines (SVM), and Random Forests, as well as deep 

learning models like CNNs, LSTMs, and hybrid models like 

CNN-BiLSTM and DNN-Attention. Each baseline model was 

individually tuned using grid search. 

The experiments were executed on a high-performance 

computing environment equipped with an Intel Core i9-13900K 

processor, 64 GB of DDR5 RAM, and an NVIDIA RTX 4090 

GPU with 24 GB of VRAM. The system operated on Ubuntu 

22.04 LTS with Python 3.9, and all relevant libraries, including 

TensorFlow, Scikit-learn, Pandas, and NumPy, were utilized for 

data handling and model implementation. 

This comprehensive setup ensured a rigorous evaluation of the 

proposed TSDL framework in terms of both detection efficacy 

and computational efficiency, highlighting its potential for real-

time deployment in modern cloud infrastructures. 

5.  RESULTS AND DISCUSSIONS 
The proposed Temporal-Spatial Deep Learning (TSDL) 

framework was evaluated using two publicly available 

benchmark datasets: CICIDS2017 and UNSW-NB15. These 

datasets include a wide range of realistic cyberattacks, including 

DoS, botnet, infiltration, and port scanning.  

Table 1. Results and comparisons 
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Logistic 

Regressi

on 

90.4 88.2 87.9 88 0.904 20.7 

SVM 91.1 89.4 88.7 89 0.912 24.3 

Random 

Forest 

93.6 92.3 91.1 91.7 0.938 21.8 

Deep 

Neural 

Network 

(DNN) 

94.4 93 92.5 92.7 0.945 18.9 

CNN 

Only 

95.1 94.2 93.2 93.6 0.951 17.2 

LSTM 

Only 

95.6 94.5 93.9 94.2 0.956 19.6 

Autoenc

oder + 

Classifie

r 

95.9 95.1 94.6 94.8 0.959 20.1 

CNN-

BiLST

M 

96.4 95.3 95.1 95.1 0.968 17.8 

Transfor

mer-

Based 

Model 

96.9 96 95.5 95.7 0.974 18.4 

RF + 

LSTM 

Ensembl

e 

97.3 96.7 96.2 96.4 0.978 17.9 

Propose

d TSDL 

98.2 97.9 97.6 97.8 0.982 14.2 

The performance of the TSDL model was compared against 

traditional machine learning models (Logistic Regression, 

Support Vector Machine, Random Forest), standalone deep 

learning models (CNN-only, LSTM-only), a hybrid CNN-

BiLSTM architecture, an Autoencoder-Classifier model, 

Transformer-based model  and RF-LSTM-Ensemble model. 

The evaluation metrics used include accuracy, precision, recall, 

F1-score, AUC-ROC, and detection latency, which together 

offer a comprehensive view of both detection effectiveness and 

real-time feasibility. 

Though Logistic Regression and SVM is computationally 

efficient, they achieved lower accuracy and F1 score. These 

models cannot detect complex patterns in network traffic data 

in the cloud. Random Forest and DNN are comparatively better 

in accuracy due to the ensemble nature, but it fall behind in the 

detection of time-dependent attacks.  



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.19, June 2025 

41 

CNN and LSTM models show further improvements in 

accuracy. CNN can detect spatial patterns of data, such as 

anomalous packet structures. LSTM can detect the feature 

change over time. Individually, these models cannot achieve 

both temporal and spatial features, which TDSL can do. 

Auto encoder Classifier has high detection accuracy, but it has 

high computation cost since auto encoder has to reconstruct the 

features and pass them to the classifier for classification. It also 

struggles with imbalanced classes. 

Hybrid models (CNN-BiLSTM and 

RF+LSTM+Ensemble)have high detection accuracy. These 

architectures combine the strengths of different models. But 

these models have more computational overhead and are not 

suitable for real-time use.  

Based on the model performance perspective, compared to 

CNN-only models, TDSL has the benefits of sequential 

modelling, which enables it to detect multifold attacks that are 

unfolded over time. It also detects local spatial patterns before 

the features are passed to the temporal stage analysis. This dual 

strategy reduces false positives and improves the detection of 

attacks. Though the transformer-based models approached 

TDSL accuracy, it has high computational complexity and 

longer latency, which makes it unsuitable for real-time cloud 

environments. 

Results demonstrate that the proposed TSDL model achieves 

superior performance across all metrics. Specifically, it attained 

an accuracy of 98.2% and an F1-score of 97.8% on the 

CICIDS2017 dataset, outperforming all the reviewed models. 

The AUC-ROC value of 0.982 indicates excellent capability in 

distinguishing between attack and normal traffic, even in the 

presence of class imbalance. 

From a latency perspective, TSDL demonstrates efficient 

inference, with an average detection time of 14.2 milliseconds 

per flow. This is significantly lower than traditional ML models 

such as Random Forest (21.8 ms) and even advanced DL models 

like LSTM (19.6 ms), making the proposed framework highly 

suitable for real-time intrusion detection in dynamic cloud 

environments. 

The improvements can be attributed to the dual-stage design of 

the framework, where CNN layers capture spatial patterns such 

as anomalous packet structures, and LSTM layers model the 

temporal evolution of traffic behavior over time. This 

combination enables the system to detect both fast-acting and 

slow-evolving attacks with high accuracy. 

A cross-dataset evaluation is also performed to assess the 

robustness of the system in the case of domain shift. The model 

is trained on  CICIDS2017 and tested on UNSW-NB15; the 

model maintained an accuracy of 96.5%. It highlights the 

model's behavior to generalize beyond a single dataset.  

In summary, the TSDL framework delivers robust, accurate, 

and low-latency intrusion detection, outperforming existing 

approaches and providing a viable solution for securing modern 

cloud infrastructures. However, deployment in heterogeneous 

or multi-tenant cloud environments and resistance to adversarial 

attacks are potential areas for future enhancement. Testing on 

additional publicly available data sets can also be included as a 

future enhancement. 

6. CONCLUSIONS AND FUTURE WORK 
Despite these promising results, several challenges remain to 

address. So far the model performs well in centralized cloud 

settings. However it hasn’t been tested its scalability and 

efficiency in distributed or federated environments. 

Additionally, the current framework primarily addresses 

supervised learning scenarios and may not work well in 

detecting unknown or zero-day attacks without labeled data. 

supervised learning scenarios and may be less effective against 

unknown or zero-day attacks without labeled data.. 

The TDSL framework constantly outperforms both traditional 

machine learning models and existing deep learning models. 

TDSL offers high performance in terms of detection accuracy, 

F1-score, and inference latency. The TDSL offers the ability to 

detect both fast, aggressive, and slow-paced intrusion attempts 

while maintaining low processing time, making deployment in 

real-world, production-grade cloud infrastructure stronger. 

Also, flexibility in learning from diverse traffic patterns 

enhances its adaptability to new cyber threat patterns and 

temporal behavior (e.g., traffic sequences and attack 

progression) in network traffic data. 

Though TDSL offers promising results, there are several areas 

that need to be improved and enhanced its capabilities as future 

research. One of the goals is to extend the use of TDSL in 

federated and edge-cloud environments, which allows for 

collaborative intrusion detection in multi-cloud and distributed 

environments. Another exciting direction is the integration of 

transformer models so that the model can capture long-term 

dependencies, which is helpful in enhancing the detection of 

multi-stage attacks. As the attacks become more and more 

sophisticated, the proposed model should be resilient to 

adversarial attacks. Finally, the aim is to make TSDL more 

adaptable through online and continual learning, which enables 

the framework to adapt to threats by incremental learning. 

Through these enhancements, the model aims to further 

improve its performance, resilience, and operational usability in 

increasingly complex and high-volume cloud environments. 
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