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ABSTRACT
Multimodal deep learning has become a primary methodological
framework in artificial intelligence, allowing models to learn from
(and reason over) many different types of data, such as text, im-
ages, audio, and video. By utilizing multiple modalities simultane-
ously, systems can enhance their contextual understanding, noise
resilience, and generalization, all of which closely resemble hu-
man perception. This review offers a comprehensive overview of
the field, taking a look at the basics of modality integration, fusion
methods (early, late, and hybrid), and some of the main architec-
tural advances in models like CLIP, Flamingo, GPT-4V, Gemini
1.5, and AudioCLIP. It also provides a primer on real-world appli-
cations in healthcare, autonomous systems, robotics, and education,
including benchmarking datasets and evaluation metrics essential
for evaluating performance. Notable challenges, such as modality
imbalance, scalability, and interoperability, are highlighted, while
also looking at growing areas of interest such as long-context mod-
eling and embodied intelligence. As a review survey, the goal is
to provide a map of options for researchers and practitioners who
want to enhance their use of multimodal AI systems, both in re-
search and in actual deployment.
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1. INTRODUCTION
Multimodal deep learning refers to machine learning methods that
can process and learn from multiple modalities at once (e.g., text,
images, audio, video) to improve prediction and understanding.
The motivation for multimodal models comes from the human
brain, which naturally responds to multiple types of sensory in-
puts and generates a more complete picture of the world. Multi-
modal systems are rapidly advancing due to the growth of large-
scale, multimodal data collection, model architectures, and self-
supervised learning, and have become prominent in areas like
vision-language, audio and video processing, and image and video

classification. There are now realizable applications across sectors
ranging from healthcare, robotics, education, entertainment, and
more.
Multimodal learning is gaining traction as a core asset to building
general-purpose intelligent systems. Unlike its unimodal counter-
parts that consume one data type and subsequently reduce many
contextual cues, multimodal systems can contextualize multiple as-
pects of the environment. Multimodal systems inherit additional re-
siliency to noise from moment-to-moment environmental variabil-
ity that single-modality models cannot. Further, multimodal sys-
tems can help perform reasoning tasks that require analyzing data
from multiple sources at once to guide predictions. For example,
consider how autonomous vehicles are designed to process visual
and lidar data, GPS data, and auditory data simultaneously; this is
vital for safe and accurate navigation. Similarly, a conversational
AI assistant can take advantage of multimodality by audio input
and facial expression to better infer user intent and meaning.
This research aims to provide both researcher and practitioner com-
munities with a comprehensive review of multimodal deep learn-
ing and its evolution. The following sections in the review provide
a summary of introductory concepts (section 2), architectures and
major models (Section 3), applications (Section 4), datasets and
evaluation metrics (Section 5), major challenges and thoughts on
future research directions (Section 6).

2. CORE MULTIMODAL LEARNING CONCEPTS
2.1 Modalities and Heterogeneity
A modality is simply a separate source of data, commonly referred
to as images, speech, text, and signals from senses, in the field of
deep learning. Each of these data types also has different properties;
e.g., text is sequential and symbolic, images are dense and spatial,
and audio is continuous and temporal. This diversity in modality
properties creates challenges for integrating one type of data with
another, especially when the data has varying dimensions, rates of
sampling, and structures [3].
Typically, modality-specific encoders are used to transform the raw
input to a latent representation. Manufacturers typically provide
encoders, such as convolutional neural networks (CNNs) for im-
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age data, recurrent neural networks (RNNs) or Transformers (for
text), and spectrogram-based CNNs or temporal convolution net-
works (for audio). After encoding the modalities with one or more
modality-specific encoders, the representations generated by the
encoders are then aligned and fused for joint reasoning.

2.2 Fusion strategies
A core aspect of multimodal learning is fusion, or the joining of
representations obtained from several different modalities. There
are broadly three strategies, or levels of fusion:

(1) Early Fusion: Early fusion combines or merges raw or lower-
level features from multiple modalities and inputs to jointly
model the different modalities. This allows cross-modal inter-
action at the early stages of processing, but is often faced with
incompatible feature dimensions and noisy inputs.

(2) Late Fusion: In late fusion, each modality gets processed in-
dependently, with the outputs fused at the decision level, typi-
cally through averaging, voting, or taking a weighted sum as an
output value. Independent processing of each modality allows
for robustness against missing modalities; however, it reduces
potential interaction between modalities during learning.

(3) Hybrid Fusion: Hybrid fusion combines data at different fu-
sion levels (early, mid, and late), establishing a balance be-
tween representational richness and robustness. More recent
methods focus on using attention models and Transformers for
dynamic fusion, which allow any modality to arbitrarily attend
to relevant signals of other modalities [23].

2.3 Learning Challenges
Multimodal deep learning has introduced unique challenges in
learning as listed below:

(1) Alignment: Meaningful associations between modalities re-
quire alignment, whether it be temporal or spatial. For instance,
one could conceivably align oral words to mapped facial move-
ments in audiovisual speech recognition.

(2) Missing/noised modalities: A real-world instance is one
where data is missing (e.g., missing audio) or the input is per-
turbed. Models need to be conditioned on such scenarios effec-
tively. Modal dropout, imputation, and conditional gating are
some of the techniques used for model conditioning.

(3) Representation Collapse and Dominance: When a single
modality is allowed to dominate the learning process (e.g., text
in image-text datasets), the other modalities could be neglected
in their potential. Strategies to mitigate this include regulariza-
tion strategies, co-learning objectives, and attention normaliza-
tion.

(4) Cross-modal Transfer and Generalization: A central pur-
pose of foundation models and contrastive learning approaches
[18] relates to the ability for one modality to inform another
(e.g., learning visual grounding supervision on text only).

3. MAJOR ARCHITECTURES AND MODELS
Most modern multimodal AI architectures tend to be modular in
design, where each modality of data (e.g., text, images, or au-
dio) has its own encoder. Each encoder processes modality-specific
features, which are then fused at the fusion layer, which encodes
cross-modal relationships, thus producing the fused embedding for

Fig. 1. Illustration of a typical multimodal deep learning architecture

a richer and more contextualized representation. This is then de-
coded by a shared decoder to perform various tasks (e.g., caption-
ing, retrieval, or question answering). This generalized pipeline,
represented in Figure 1, serves as the basis for many recently de-
veloped models, including CLIP, Flamingo, and Gemini 1.5.

3.1 CLIP (Contrastive Language-Image Pretraining)
CLIP was released by OpenAI in 2021 in the form of a dual-
encoder model that is trained on 400 million image-text pairs [18].
It represents images and text into a common embedding space us-
ing a contrastive distributional loss function; the goal is to ensure
that both matched image-text pairs have a higher joint probabil-
ity than unmatched linkages. The model consists of (i) a Vision
Transformer (or ResNet) to handle images and (ii) a Transformer to
handle text. STRAP has demonstrated exceptional zero-shot perfor-
mance on image classification and retrieval tasks without explicit
fine-tuning.
Its training objectives scale well with noisy, internet-scale data
and allow for generalizations across tasks such as object recogni-
tion, OCR, and visual entailment. The ease of use and efficiency
of CLIP empowered an influx of multimodal research, while also
providing an architecture backbone in many downstream pipelines
such as DALL·E and Flamingo. Despite this exciting leap in per-
formance, researchers are already exploring more general models,
since CLIP’s dual-encoder architecture introduces rigidities that
limit fine-grained alignment between modalities.

3.2 DALL-E 2
DALL-E 2 is a generative model that can create high-resolution,
realistic images from text descriptions [19]. The system first passes
the text prompt to a prior model, which outputs a CLIP image em-
bedding. The image embedding is then passed into a diffusion de-
coder, which builds a realistic image. The two-phase pipeline struc-
ture enables semantic adequacy while providing realistic image
quality. The improvements in photorealism and text-image consis-
tency are substantial compared to the first DALL-E. Also, DALL-E
2 is capable of inpainting (editing regions) and generating varia-
tions (different flexible outputs from a prompt). The model shows
a flexible way of exhibiting visual creativity. The use of diffusion
models is a notable departure from autoregressive pixel-level mod-
els, as DALL-E 2 generates images in latent space, which allows
for better scalability. Ethical issues surrounding the misuse of large
models and hallucinated content have spurred the continued devel-
opment of guardrails and content filters in DALL-E 2 and other
large language models.
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3.3 Flamingo
Flamingo [2] is a multimodal model created by DeepMind that
builds off language models (LLMs) with visual input through gated
cross-attention layers. Flamingo is a few-shot learning model that
uses the vision encoder in a frozen state together with a pre-trained
LLM, allowing the prompt to comprise alternating sequences of
images and text. Gated cross-attention layers allow for hierarchical
multimodal learning, where there is no full-tuning to accomplish
few-shot learning.
An important innovation of Flamingo is their efficient learning
paradigm, where they learn a small number of multimodal-specific
parameters while keeping the vision backbone and language back-
bone frozen. The separate parameters are the learning focus that
makes it quicker and cheaper to learn new tasks. Flamingo demon-
strates state-of-the-art performance on tasks such as the VQA and
Science QA benchmarks, demonstrating reasoning across modali-
ties as a strong model. Flamingo has inspired successors such as
Gemini, as well as new extensions to extend the competencies,
well-being of the performance discovered in Flamingo.

3.4 GPT-4V
GPT-4V [1] is a multimodal extension of GPT-4 with vision ca-
pabilities, with image and text ability. In that domain of capabili-
ties, GPT-4V gives rise to a new set of image and text processing
tasks and forms of visual question answering, ie, multimodal rea-
soning, chart interpretation, etc. There are very little amounts of
architectural details of the model, but they utilize a visual encoder
that is embedded as part of the Transformer through token unifica-
tion through learned embeddings.
In the proposed architecture of GPT-4V, they treat the image inputs
as sequences of embedding tokens—so it’s reasonable to then pro-
cess the inputs as embedding tokens as text inputs either together
or across a shared set of Transformer layers. This is viable because
it circumvents the need for a separate modality, it allows for easy
collaboration, and it more clearly preserves cross-modality atten-
tion between modalities across all layers of the network. GPT-4V
is especially strong at few-shot visual tasks, and has strong capabil-
ities for real-world examples of chart and web interface interpreta-
tion, diagrams, and handwritten text interpretation. In general, this
work will serve to demonstrate the feasibility of unified architec-
tures longer term and in a broader sense, generalist AI.

3.5 Gemini 1.5
Gemini 1.5 by Google DeepMind is unprecedented for long-
context multimodal inputs (text, images, and audio) [22]. Gem-
ini has a context window in millions of tokens and can han-
dle cross-document and long-sequence tasks (e.g., multi-document
QA, instructional video comprehension, and audio-visual analy-
sis). The design builds upon Flamingo and PaLM-E and utilizes
special adapters with sparse attention to handle larger input se-
quences. Gemini is promising for reasoning about multimodal data
at scale, such as reading dense scientific papers, trying to follow
a best workflow, and fine-grained entity identification across dia-
grams/tables/narration. Its training was focused on modularity and
temporal coherence, which gives it a better grounding temporally
when dealing with time-based data like video or speech.
3.6 AudioCLIP

3.6 AudioCLIP
AudioCLIP brings CLIP (Contrastive Language/Audio Pretrain-
ing) into the audio domain by applying a third encoder to learn to
align audio embeddings to the shared vision-language space [12].
For example, tasks like audio-caption retrieval or classification of
sounds using textual supervision. AudioCLIP shows one way trans-
fer learning and shared latent spaces can enable models to general-
ize from one modality (ex., text) to another (ex., audio) and not re-
quire direct supervision. AudioCLIP comprises a pretrained audio
encoder (i.e., VGGish or PANNs) and is aligned to the embeddings
of images and text embeddings using a contrastive loss. The model
has been applied successfully to musical genre classification, envi-
ronmental sound tagging, and multilingual sound retrieval, to name
a few. One of the contributions of AudioCLIP is showing one of
the many low-barrier paths to extend existing multimodal models
to novel sensory domains.

4. APPLICATIONS AND CASE STUDIES
4.1 Healthcare
Multimodal systems within healthcare integrate types of data (e.g.,
medical imaging (e.g., X-rays, MRIs), clinical notes, lab tests, ge-
nomics, patient history) to improve diagnoses and treatment deci-
sions. For example, multimodal models that have been trained on
the MIMIC-CXR dataset [14] can produce radiology reports from
chest X-rays or classify findings like lung opacity or cardiomegaly.
These systems improve diagnostic accuracy by contextualizing vi-
sual abnormalities with textual markers to make diagnostic deci-
sions, which helps decrease false positive rates and also helps with
participatory practice, especially important as an interpretation for
radiologists. Alternatively, low-functioning models would help se-
vere patient resource triaging and prioritization so clinicians may
better respond to the most critical cases promptly. Recent efforts are
also exploring the incorporation of patient data from wearable de-
vices (e.g., heart rate, oxygen levels, etc.) along with the clinician-
patient interaction from the visit and developing more complete
models as needed. Federated learning methods, particularly those
that are privacy-preserving, are also trending due to the sensitive
nature of health data.

4.2 Autonomous Vehicles
Modalities are critical to autonomous driving, which relies on
multimodal sensor fusion capabilities that utilize multiple sensor
modalities such as vision from a camera, spatial depth from a li-
dar, motion from a radar, and multi-position based localization [5].
Models trained on the nuScenes datasets, for example, can utilize
these modalities to achieve tasks such as 3D object detection, lane
tracking, and semantic segmentation of the scene.
Bi-modal fusion is important for robustness under real-world en-
vironments where adverse weather or lighting conditions may de-
grade the usability of one of the modalities (e.g., vision). Fusion
approaches may focus on the early stages of the fusion (i.e., early,
late, and hybrid), and although innovation to the network is per-
formed without post-hoc re-learning, modular designs are more
sustainable for updates and facilitate re-usage. Recent efforts also
use audio to detect emergency sirens and driver intention modeling
that utilizes internal cabin cameras and voice commands. The use
of multimodal reasoning in real-time allows for the robot’s abil-
ity to understand a scene, reason about what to do, and generate
an action plan. This helps a vehicle or robot safely and efficiently
navigate a dynamic urban space.
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Table 1. Summary of Key Multimodal Models.
Model Modalities Architecture Highlights
CLIP [18] Image + Text Dual encoder, contrastive Zero-shot classification and retrieval
DALL-E 2 [19] Text → Image CLIP prior + diffusion High-quality generative synthesis
Flamingo [2] Image + Text LLM + vision cross-attn Few-shot multimodal reasoning
GPT-4V [1] Image + Text Unified Transformer General visual understanding
Gemini 1.5 [22] Text + Vision + Audio Long-context Transformer Multimodal document and video QA
AudioCLIP [12] Audio + Image + Text Triple encoder Cross-modal audio re-

trieval/classification

4.3 Robotics and Embodied AI
In robotics, multimodal models allow a machine to observe, reason,
and act in real-world, dynamic environments. Agents like PaLM-E
[7] use language commands, RGB-D vision, proprioceptive feed-
back, and maps of the environment to achieve tasks such as object
retrieval or using a tool.
These agents have been able to ground language to actions and vice
versa - for example, taking the meaning of ”put the mug on the
left shelf” through the combination of scene layout, perception of
the object, and planning an arm trajectory. By using cross-modal
Transformers, a person can control multiple robotic platforms us-
ing a minimum of fine-tuning. The advantage of having real-time
feedback from different modalities provides the opportunity for
adaptive learning that incorporates trial-and-error interactive ex-
periences. For example, current designs for future robots will al-
low continuous memory and long-context reasoning to occur so the
robot can robustly operate in household, industrial, and health care
spaces with little human intervention.

4.4 Education and HCI
The use of multimodal AI systems in education uses various inputs
such as speech, gaze, facial expressions, pen strokes, and typing be-
haviors to create personalized learning experiences. For example,
intelligent tutoring systems can assess students’ confusion depend-
ing on variations in the pitch of their voice and eye movement to
dynamically adjust the level of difficulty for the presented content
[6].
Visual dialog agents and virtual assistants can use facial track-
ing and recognition of gestures to recognize confusion and clarify
ambiguities in user requests. In accessibility-oriented HCI, multi-
modal systems can integrate speech-to-text transcription, sign lan-
guage interpretation, and customized interfaces for users with mo-
tor disabilities. Such applications not only add value for usability
and inclusiveness but also help advance human-machine collabora-
tion. As mixed-reality gains traction and AR/VR platforms, includ-
ing spatial computing, emerge, the utilization of multimodal AI will
only become more central to immersive educational simulation and
remote collaborative environments.

5. DATASETS AND EVALUATION METRICS
5.1 Benchmark Datasets
Multimodal datasets are fundamentally important for training, eval-
uating, and benchmarking AI systems that learn across multiple
modalities. The key multimodal datasets that are used in the field
are as follows:
Many of these datasets have millions of samples and span mul-
tiple modalities, which allows for large-scale pretraining of AI
systems known as foundation models. For instance, LAION-5B
is the dataset used to scale CLIP and Stable Diffusion, while

HowTo100M helps to learn procedural tasks, for example, through
narrated videos. Medical datasets such as MIMIC-CXR, where
ground truth is structured, for instance, e-coding from radiology
reports, allow for the prototyping of interpretable clinical systems.
Ego4D provides a large collection of egocentric videos, providing
an avenue for research in first-person activity recognition and mul-
timodal memory. As multimodal benchmarks evolve, they will be-
gin to incorporate different dimensions such as multilingual, in-
teractive, and even synthetic modalities (e.g., 3D point clouds and
generated speech), while expanding the dimensions of multimodal
learning.

5.2 Evaluation Metrics
Evaluating multimodal models is difficult because of the wide va-
riety of outputs and tasks. Some key metrics include:

(1) Recall@K: How many correct matches are in the top-K
matches retrieved? Recall is typically used in cross-modal re-
trieval tasks such as text-to-image or audio-to-text matching
[24].

(2) BLEU/CIDEr/METEOR: Common in image and video cap-
tioning. BLEU, CIDEr, and METEOR are used to extract gen-
erated text and compare it to human reference text by hu-
man metrics based on n-gram overlap, consensus, and preci-
sion/recall [4].

(3) FID (Fréchet Inception Distance): FID is a measure of the
quality of generated images. It compares distributions of fea-
tures extracted from real and generated samples [13].

(4) F1-Score/Accuracy: The standard for classification tasks.
E.g., sentiment analysis or medical diagnosis is a classification
task where you would be interested in a performance metric
[17].

(5) SPICE/ROUGE/BERTScore: Commonly used to assess se-
mantic similarity in language generation and question answer-
ing.

Relatively new trends are research that uses human-in-the-loop
evaluation to evaluate complex outputs (e.g., the quality of dia-
logue or visual reasoning), and even uses the language model on its
own as an evaluator (e.g., GPT-as-a-judge). There are multimodal
benchmarks, including VQAv2 and ScienceQA, that provide not
only automatic scoring but also human assessment, which better
reflects real-world performance.

6. CHALLENGES AND FUTURE DIRECTIONS
Though much has been accomplished, multimodal deep learning
still faces several challenges that prohibit robustness, scalability,
and widespread deployment.
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Table 2. Representative Multimodal Datasets.
Dataset Modalities Domain Use Case
COCO [15] Image + Text General Captioning, retrieval
VQA v2.0 [10] Image + Text (Q&A) General Visual question answering
AudioSet [9] Audio + Video General Audio-visual classification
MIMIC-CXR [14] Image + Text Medical Diagnosis and report generation
LAION-5B [20] Image + Text Web-scale Pretraining, retrieval
HowTo100M [16] Video + Text Instructional video Pretraining, video-language tasks
Ego4D [11] Video + Audio + Text Egocentric vision Action recognition, narration

6.1 Robustness to Missing Modalities
Unfortunately, in the real world, this often means that inputs are
missing. For instance, a user could turn off the webcam, or a meet-
ing’s audio could be mostly background chatter or noise. Multi-
modal systems must work reliably in this scenario. Training tech-
niques such as modality dropout have been developed where inputs
can be masked at random during training to simulate robustness.
Methods such as dynamic fusion models or conditional networks
allow the model to adaptively ignore or reweight inputs when a
modality is missing. There is even research that explores the no-
tion of cross-modal prediction (i.e., hallucinating a missing input
modality, say the audio input, based on an available modality, such
as lip movement), which enables performance to gracefully degrade
when a modality is missing.

6.2 Scalability and Efficiency
People are beginning to train massive multimodal models like
Gemini and GPT-4V. These models consume staggering amounts
of compute and memory to train, making them all but impossible to
reproduce or enable accessibility. People have begun to investigate
modular training (i.e., freezing vision/language backbones), low-
rank adapters, and mechanisms for efficient attention (e.g., sparse
attention, or linear attention) to circumvent the scalability problem.
Some petabytes of useful model size reduction research have fo-
cused on knowledge distillation and quantization. As the world
continues to build out edge-computing capabilities and cloud-
optimized design, multimodal models will play an increasing role
in human-machine interfacing in robotics, AR/VR applications at
the edge, or simply for real-time deployment for oil and gas, con-
struction, or energy-efficient building features.

6.3 Interpretability
Unfortunately, multimodal models act as black boxes, which makes
it challenging to understand the rationale of how actions were made
by the model. For example, in medical diagnosis tasks, it is crucial
to know the affected regions of an X-RAY or the influenced clinical
terms that inform a prediction, especially as part of a social contract
with the user’s confidence for future engagements.
Based on research, human-readable explanations are beginning to
explore visual attention maps, cross-modal attention visualization,
and chain-of-thought for natural language generation. The rationale
explicitly focused on multimodal ensembles of human-generated
text explanations that are grounded in images and videos, provid-
ing another mode of interpretability. Establishing interpretability
will also protect against bias and maintain ethical sensibilities, too,
particularly in sensitive applications of AI.

6.4 Multilingual and Cross-Cultural Learning
At present, the majority of multimodal models that exist are trained
on primarily English data without consideration of cultural simi-
larities or differences. Despite their shortcomings, this will mean
that these models would only be effective in the West for global
deployments, including health care, education, and social services.
More recently, researchers are working on multilingual multimodal
pretraining. While models like M3P and UC2 are quickly making
strides to bridge the divide through alignment of visual representa-
tions and semantics in multiple languages [8], it remains important
to consider and create data credits across highly variable datasets of
various forms of media. It should be a consideration of other modes
of representation to realize the goal of building more equitable AI
systems.

6.5 Embodied Intelligence and AGI
The promise of multimodal extending into embodied, intelligent
agents aligns with building avatars and robots that perceive their
environments as they reason and act. Services will need to adhere
to vision and language grounded in long-horizon memory to assess
actions embedded in all four modalities, including unmixed motor
control [7, 21].
Models such as PaLM-E and Gemini represent the first significant
advances toward this vision of embodied progress. These multi-
modal models demonstrate reasoning with sequences of observa-
tions and can make high-level action plans through modality cou-
pling of visual and textual sequences. Future multi-agent environ-
ments could leverage wearable sensors and headsets, spatialized
audio-generated audio, and dynamic, real-world dialogues, creat-
ing temporally aware and safe forms of interaction with humans
in homes, factories, and public including public transportation. Ul-
timately, capabilities will expand through some virtually person-
alized agent, where the development of multimodal learning will
represent a sizable piece of the road-map toward general-purpose
AI.

7. CONCLUSION
Multimodal deep learning has emerged as an important domain for
advancing AI, providing ways to connect otherwise isolated data
modalities to allow for sophisticated contextual reasoning. By us-
ing several modalities of visual images, language, audio, and other
types of sensor data, multimodal models can generalize and pro-
vide robustness and flexibility that was not possible with unimodal
systems. This review of the substantive literature in multimodal AI
covers what multimodal learning is, various augmentation aspects
and fusion strategies, describes system architectures, and surveys
some of the most prominent multimodal systems to date, includ-
ing CLIP, Flamingo, GPT-4V, and Gemini 1.5. Several instances
of real-world applications of multimodal AI are summarized, span-
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ning domains such as healthcare, robotics, education, autonomous
vehicles, human-in-the-loop environments, and recommender sys-
tems. Existing benchmarking datasets and evaluation approaches
that are shaping research and deployment are also discussed. How-
ever, despite the advances and momentum growing in the field,
there are still many important limitations to overcome, including
robust treatment of missing modalities, scalable and efficient train-
ing, interpretability, multilingual alignment, and the potential for
embodied interaction. These considerations will be critical to over-
come if multimodal AI advances to further support the development
of capable and trustworthy general-purpose AI.
Looking to the future, the directions in which multimodal AI may
develop include embodied agents, long context learning, cross-
cultural generalization, and ethical alignment. These systems will
not only recognize an image or understand a sentence, but there will
be reasoning across modalities, retaining memories across time-
frames or states, adapting across tasks, and interacting in rich real-
world environments. Thus, multimodal deep learning represents not
just a new area of research but also a new paradigm for the design
and deployment of AI systems. The next evolution of intelligent
technology, as they integrate context and augment the physical and
social world, will rely on multimodal AI.
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