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ABSTRACT 

As programming education has become more widespread, 

helping novices fix bugs remains a significant challenge. While 

various support methods have been studied, implementing 

them in educational settings requires customization of specific 

teaching materials, which demands time and technical 

resources. This study focuses on the fact that teaching materials 

are used repeatedly in educational settings. If error information 

from previous uses of the same teaching materials can help 

debug similar errors that occur later, it enables debugging 

support tailored to specific materials by simply conducting 

classes and collecting error data. To test this hypothesis, a 

system is proposed that automatically collects error 

information, searches for similar errors, and suggests 

appropriate solutions. Experiments were conducted using this 

system by collecting error data from programming practice 

courses at Kindai University in 2021 and 2022. The results 

showed that past error information was able to effectively 

support debugging for approximately 30% of future errors, 

confirming the potential of this approach as a new method to 

support novice programming learning.   
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1. INTRODUCTION 
Programming skills have become increasingly important. 

Programming is now recognized not only as a means of 

software development but also as a skill that develops problem-

solving abilities and logical thinking [1], [2]. Programming 

education has been widely adopted, from elementary to higher 

education and professional training [3], [4].  

However, as programming education expands, novices 

continue to face significant learning challenges [5], [6]. One 

major factor is bugs (program errors) caused by input mistakes 

and logical errors [7]. While these bugs are an inevitable part 

of the learning process, they can become substantial barriers for 

novices [8]. Many learners who have not yet developed the 

ability to find, identify, and fix errors may lose motivation and 

give up programming when faced with bugs [9], [10].  

Several common factors make bug fixing difficult for novices. 

First, they struggle to correctly interpret error messages 

because they are unfamiliar with programming language syntax 

and basic structures. Error messages designed for language 

developers often contain advanced technical terms and abstract 

expression. As a result, novices frequently find it difficult to 

understand error messages and determine the appropriate fixes 

[11], [12], [13]. Second, while novices typically encounter 

syntax, type, and logic errors during learning, they have not yet 

developed the ability to identify the specific causes of these 

errors, often leading to time-consuming solutions. This is 

particularly challenging when errors in one part of the program 

affect other parts, making it difficult for novices to identify the 

root cause [14], [15], [16]. These recurring situations can not 

only hinder learning progress but also cause significant 

frustration. Third, novices may not receive sufficient feedback 

during the error correction. While traditional programming 

education typically involves direct support from instructors, the 

rise of online education and learner diversity has reduced the 

opportunities for individual instruction. This can leave learners 

isolated when fixing errors, thereby hampering efficient 

learning [17], [18].  

Various technical approaches have been proposed to address 

these issues. For example, many online programming platforms 

now provide features that analyze learners’ codes in real time 

and immediately identify errors, allowing early detection and 

correction [19], [20]. Systems that analyze coding patterns and 

suggest potential errors and fixes have also been developed 

[21]. Research on tools that translate error messages into 

explanations suitable for novices is also progressing. Recently, 

systems using Large Language Models (LLMs) have been 

proposed to provide novices with natural language error 

explanations and code completion [22], [23]. LLMs’ generative 

capabilities offer clear explanations of typical errors and 

provide appropriate correction suggestions [24], [25]. There 

have also been attempts to analyze learners’ progress in real 

time and provide feedback based on their individual 

weaknesses [26].  

While many technical approaches have been proposed for 

programming learning debug support systems, using these 

research outcomes in one’s own educational environment 

requires customization of specific teaching materials [27], [28], 

[29]. Customization requires at least information about 

programming learning materials, and sometimes data from 

students’ practice results using these materials. It is technically 

time-consuming for users of research outputs to prepare such 

information. However, programming classes often repeatedly 

use the same programming materials. If the error information 

generated when students work with these materials can be used 

to debug others using the same materials, error information 

from each class can be automatically collected and 

accumulated, minimizing the cost of customizing classroom 

support tools.  

Therefore, this study examines whether error information 

collected from using specific programming materials can help 

fix errors that occur when using the same programming 

materials. This study uses Rails (Ruby on Rails) as the 

programming environment [30]. Rails is one of the major web 

application development frameworks. Since Rails adopts the 
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MVC (Model-View-Controller) architecture, implementing a 

single feature requires combining multiple files. We chose this 

development environment to verify the effectiveness of 

debugging support using error information in a programming 

environment that assumes realistic application development. 

As Rails currently influence various frameworks in use, the 

findings obtained are expected to be applicable to other 

frameworks as well.  

2. PROPOSED SYSTEM 

2.1 System Architecture 
We propose a system that automatically collects error 

information from students working on programming 

assignments and provides debugging advice. Figure 1 shows 

the system’s structure. A tool that automatically collects error 

information when students encounter errors in programming 

assignments is called the Error Information Collector (EIC). 

When EIC detects an error, it sends the related information to 

Debugging Method Suggestion System (DMSS). DMSS stores 

the received information in Debug Database (DD). Instructors 

can review this error information and annotate it with causes 

and solutions. When another student encounters an error, 

similar errors are extracted from DD and presented to the 

student via a tool called Debugging Method Suggester (DMS). 

The following sections explain EIC and DMS in detail. 

 

Fig 1: System Architecture of Debugging Method 

Suggestion System (DMSS) 

2.2 Error Information Collector (EIC) 
This tool automatically sends relevant files to DMSS when a 

student encounters an error. EIC detects an error when the 

string “Error” appears in a log file. Most modern web 

application frameworks include web servers that output 

execution logs to facilitate debugging. For example, in Rails, 

this log file is called development.log. This tool can be adapted 

for other web application frameworks by configuring the log 

file name and the error string. The information sent to DMSS 

includes the user ID, IP address, error message, and updated 

files. The extracted information is then serialized and sent to 

DMSS. 

2.3 Algorithm for Determining the Most 

Similar Error Information (MSEI) 
DMS compares files from a student’s current error with files 

registered in DD to extract error information with the highest 

similarity. This extracted information is referred to as the Most 

Similar Error Information (MSEI). This error information is 

assumed to have debugging methods annotated by instructors. 

A key feature of our method is that it does not perform syntax 

analysis, which is expected to minimize the customization 

required for programming materials. Modern web development 

frameworks such as Rails manage multiple files in directories 

according to their roles. There are approximately 35 directories 

in Rails. To determine the similarity between multiple files 

containing errors, our method calculates the similarity between 

files with the same name in the same directory. The algorithm 

for determining MSEI from DD is described below [31], [32], 

[33]. 

First, we extract error information by matching error messages 

from DD. If only a single instance of error information is 

extracted, it is designated as MSEI. If multiple instances are 

extracted, we determine MSEI as follows. 

Two metrics are introduced: 𝐷𝑑𝑖𝑓𝑓  and 𝐹𝑑𝑖𝑓𝑓 . 𝐷𝑑𝑖𝑓𝑓  is the 

number of files that exist in only one of the two directories. 

𝐹𝑑𝑖𝑓𝑓  is the number of different lines between files with the 

same name, and 𝐹𝑑𝑖𝑓𝑓 is calculated using the Longest Common 

Subsequence (LCS). For example, when 𝐷𝑑𝑖𝑓𝑓  is zero, both 

directories contain files with the same names. When 𝐹𝑑𝑖𝑓𝑓 is 

zero, the contents of the two files are identical. After extracting 

the error information with matching error messages from DD, 

we determine MSEI from these candidates using the following 

rules: 

Rule 1: If there is only one error information with a 

minimum, it becomes MSEI. 

Rule 2: If there is only one piece of error information with 

both the minimum 𝐷𝑑𝑖𝑓𝑓 and minimum 𝐹𝑑𝑖𝑓𝑓, it becomes 

MSEI. 

Rule 3: If MSEI cannot be determined by the above rules, the 

oldest error information among the candidates becomes 

MSEI. 

3. EXPERIMENTS 

3.1 Research Method 
The 12th session of a web application programming course was 

conducted using Ruby, which was offered to third-year 

students at Kindai University. Each session lasted for 180 min. 

Students had varying programming experience levels: 45% 

were beginners, 35% had intermediate skills, and 20% were 

advanced learners. In this course, students learned Ruby basics 

and programming using Rails. In the 12th session, students 

developed a web application using Rails to upload image files. 

This study examined error information collected from students 

during this class in both 2021 and 2022. The class had 67 

students in 2021 and 50 students in 2022. The study evaluated 

whether error information from students in 2021 could be 

useful for debugging errors encountered by students in 2022. 

3.2 Programming Materials 
All steps for developing a web application are described in the 

programming materials, which consist of a total of 24 steps. 

Since the same programming materials were used in both the 

2021 and 2022 classes, the programming steps were identical. 

As Rails adopts the MVC architecture, programs need to be 

written in various MVC files. In total, programs need to be 

written in six files, including main files such as the routing file, 

which links URLs to program calls, the controller file, which 

retrieves data from the database based on the requested content, 

and the view file, which contains a mixture of HTML and 
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Ruby. In such a development environment, compared to single-

file programs, programming input errors are more likely to 

occur, and debugging tends to be more challenging.  

3.3 Method for Evaluating the Usefulness 

of Error Information for Debugging 
The error information from 2021 was loaded into the DD. 

Using the algorithm described in Section 2.3, the MSEI was 

determined for the errors that occurred in 2022. The debugging 

advice was obtained associated with this error information. The 

course instructors evaluated whether this advice was 

appropriate for errors that occurred in 2022. 

Figure 2 illustrates an example of verifying the applicability of 

this advice. The figure shows a case in which a student inputs 

an Error Code in the view file and receives an 

ActionView::Template::Error when executing the web 

application. It also shows the MSEI and its associated advice. 

The error in the MSEI program occurred because, similar to the 

Error Code, there was a mismatch between Ruby’s block 

parameter and the variable name used within the block. It was 

judged that debugging would be possible because students 

could be expected to notice their mistakes by reading their 

advice. Conversely, if the MSEI was caused by a different 

issue, the advice was judged as not applicable. 

 

Fig 2: An example of debugging feasibility verification 

4. RESULTS 

4.1 Frequency Distribution of Error 

Messages 
Before examining the availability of debuggable information, 

an analysis of the content of error information is presented. 

There were 248 errors in 2022 and 236 errors in 2021. Figure 3 

shows a graph of the seven most frequent errors categorized by 

error message. The vertical axis shows the relative frequency, 

indicating the proportion of each error message relative to the 

total number of errors. The labels on the horizontal axis include 

“V” or “C”, indicating the functionality of the file in which the 

error occurred. “V” indicates a view function file, and “C” 

indicates a controller function file. In both 2022 and 2021, the 

most frequent error was ActionView::TemplateError, which 

occurred in the view function files. The line graph shows the 

cumulative relative frequencies. The 2022 graph shows that the 

top seven error messages accounted for 90% of all the errors. 

A similar trend was observed in 2021 as well. The seven most 

frequent error messages are analyzed in detail below. 

 
Fig 3: Frequency distribution of error messages 

4.2 Feasibility of Debugging for Each 

Error Message 
For the seven most frequent errors shown in Figure 3, MSEI 

was determined using the algorithm described in Section 2.3. 

The results of evaluating debugging possibilities with the 

method described in Section 3.3 are shown in Table 1. The 

“Errors” column shows the number of occurrences for each 

error. The “Debugged” column shows the number of cases 

judged as debuggable, with the percentage shown in 

parentheses. Of the 222 total occurrences of the seven error 

messages, 76 (34%) were judged as debuggable. Among the 

seven types, ActionView::TemplateError-V was the most 

frequent, with 88 occurrences, of which 49 cases (56%) were 

debuggable. SyntaxError-V was the second most frequent, with 

33 occurrences, of which 13 (39%) were debuggable. This 

indicates that view function files tend to be more prone to errors 

but are more debuggable than controller or routing files. 

Generally, view function files contain more lines of code than 

other files because they generate HTML, making them more 

susceptible to input errors. 

 

Table 1. Number of debuggable errors per error message 

No Error Messages Errors Debugged 

1 ActionView::Template::Error-V 88 49 (56%) 

2 SyntaxError-V 33 13 (39%) 

3 NameError-C 24 9 (38%) 

4 ActionController::RoutingError-C 32 1 (3%) 

5 NoMethodError-C 21 2 (10%) 

6 ActionController::RoutingError-R 19 0 (0%) 

7 SyntaxError-C 5 2 (40%) 

Total 222 76(34%) 

5. DISCUSSION 

5.1 Example of 

ActionView::TemplateError-V 
Of the ActionView::TemplateError-V errors, 49 (56% of all 

errors) were judged as debuggable (Table 1). Among these, 44 

had programs similar to those shown in Figure 4. For easier 

analysis, we highlighted the differences between the error code 

and MSEI. By comparing the two programs, it was observed 

that MSEI contained an error where “book” was mistakenly 

entered instead of “image.” Nevertheless, this was determined 

to be MSEI because the overall program structure was similar 
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to those of other errors types, and debugging was considered 

successful because the error factors were of the same type as 

those in other cases. 

 

Fig 4: Successful debugging example of 

ActionView::TemplateError-V 

Figure 5 shows an example of an error in which debugging was 

judged to be unsuccessful for ActionView::TemplateError-V. 

This error occurred during the process of generating HTML 

from a template file that contains Ruby code. Compared with 

the program in Figure 4, the program in Figure 5 appears more 

similar, differing by just one line. However, upon examining 

MSEI program, no syntax errors were found. The error 

occurred because the @images variable was empty due to an 

error in the controller program upstream in the data flow. 

Therefore, debugging was judged to be unsuccessful because 

MSEI addressed a different issue from that indicated by the 

error code. As shown in Section 2.3, since similarity is 

calculated as the total number of different lines across several 

files, this demonstrates that debugging can fail even when the 

file where an error occurs has a high similarity score. 

 

Fig 5: Failed debugging example of 

ActionView::TemplateError-V 

5.2 Example of SyntaxError-V 
Next, we analyze SyntaxError-V, the second most frequent 

error message. As the name suggests, this error occurs when 

the program violates Ruby’s syntax rules. Figure 6 shows 

representative examples of 13 debuggable error cases. A 

common mistake in both the error code and MSEI is 

highlighted in a red box. Both cases show a missing closing tag 

“%>” that should correspond to “<%= link_to.” Although the 

missing closing tag is only two characters long, this program 

was classified as MSEI because the rest of the program was 

similar and had the characteristic of a missing closing tag. 

 

Fig 6: Successful debugging example of SyntaxError-V 

However, Figure 7 shows an example in which the system 

failed to provide appropriate MSEI despite having the same 

error cause (red arrow). In this case, the suggested program 

failed to debug because the error was caused by incorrect 

quotation marks, rather than a missing closing tag. This 

demonstrates that even when programs appear similar, the 

appropriate MSEIs cannot always be extracted. 

 

Fig 7: Successful debugging example of SyntaxError-V 

5.3 Example of NameError-C 
Figure 8 shows examples of the third most frequent debuggable 

error cases. This error occurs when an undefined local variable 

or a constant is used. Looking at the error code, we can see that 

the error occurred because @image.update method used the 

local variable “file” before it was assigned an initial value. 

Similarly, the MSEI program showed an error in which the 

variable “title” was used in the Image.new method before being 

initialized. MSEI was determined to be appropriate because 

debugging would be possible by checking whether values were 

set before using the method arguments. 

 

Fig 8: Successful debugging example of NameError-C 

In contrast, Figure 9 shows an example in which the error code 

sets data to the variable “@file”, but an error occurs because 

@image.update method argument specifies the variable “file” 

without the “@” symbol, resulting in the use of an uninitialized 

variable. In the MSEI, the error is due to using the variable 

“title” without setting its value. Since these are different causes, 

it was determined that debugging would be difficult because 

the MSEI would not be helpful. 
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Fig 9: Failed debugging example of NameError-C 

5.4 Challenges in Extracting Debuggable 

Error Information 
In this section, we examine situations in which debugging was 

determined to be difficult by referring to specific programs. 

Based on this analysis, two conditions necessary for successful 

debugging were identified using our method of referencing past 

error information and advice.  

Condition 1: Similar error information exists in DD. 

Condition 2: Error information with the same error factors can 

be extracted from DD. 

In this study, Condition 1 was satisfied because we focused on 

frequently occurring errors. Error information is likely to 

improve as more data are accumulated through repeated 

programming classes using the same teaching materials. As 

shown in Sections 5.1 to 5.3, even when programs had similar 

formal structures, their error causes could differ. As shown in 

Table 1, only 30% of the error information met Condition 2. 

How should this 30% result be evaluated? Many studies have 

been conducted to measure program similarity, such as code-

clone research. Recently, the accuracy of clone code detection 

has been improved through the use of LLMs [34]. Research is 

also progressing toward developing code search engines to 

promote code reuse [35]. The effectiveness of search queries in 

major code search engines has been reported to be between 

25% and 60%. It is important to note that the programs targeted 

in these studies did not contain bugs. As shown in our 

experiment, even when the same programming materials are 

used, errors can occur in various ways. It is generally known 

that searching for code containing bugs is challenging. Given 

this context, while a 30% success rate for all error information 

may not be sufficient for practical use, it could be considered 

an reasonable initial result. Through this investigation, areas for 

improvement in the method were identified. MSEI was 

determined using the algorithm described in Section 2.3. To 

extract similar error information, it compares all the error 

information that occurs with the same error message across 

files. As shown in sections 5.1 to 5.3, incorrect error 

information sometimes became MSEI because of the high 

similarity with files other than those where the error occurred. 

As a potential solution to this problem, the algorithm from 

Section 2.3 could be applied only to files that are upstream of 

the error-occurring file in the data flow, potentially leading to 

more appropriate error information becoming MSEI. 

6. CONCLUSIONS 
This study addressed a key challenge faced by novices in 

programming education: the difficulty of debugging. This 

study investigated how past error information, gathered from 

the same teaching materials, could help address this problem. 

For this investigation, three tools were proposed: Error 

Information Collector (EIC), Debugging Method Suggestion 

System (DMSS), and Debugging Method Suggester (DMS). In 

DMS, we introduced an algorithm to determine the Most 

Similar Error Information (MSEI). Error information was 

collected using the proposed tools during programming 

practice courses at Kindai University in 2021 and 2022. An 

analysis of the collected data showed that 30% of the errors in 

2022 were considered debuggable using MSEI extracted from 

the 2021 data. In code search research, search queries for 

defect-free datasets have been reported to be effective 25-60% 

of the time. Considering that our target data consisted only of 

programs with bugs, these results were reasonable. However, a 

30% success rate for debugging support is insufficient for 

practical use in classrooms. Going forward, several promising 

directions will be explored: (1) integrating machine learning 

algorithms to improve error similarity calculations, (2) 

developing cross-language error pattern recognition, (3) 

implementing real-time adaptive feedback mechanisms, and 

(4) creating personalized debugging assistance based on 

individual learning patterns. Future work will also investigate 

the integration of Large Language Models for natural language 

explanation generation and the development of a 

comprehensive multi-institutional database for error pattern 

sharing. The long-term vision is to create an intelligent, 

scalable debugging support ecosystem that can adapt to diverse 

programming environments and educational contexts, 

ultimately fostering independent problem-solving skills among 

novice programmers across different institutions and 

programming domains. 
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