
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.18, June 2025

50

Leveraging Error Information from Identical Learning

Materials for Debugging Effectiveness

Keiichi Takahashi
Kindai University

11-6 Kayanomori, Iizuka, Fukuoka, Japan

ABSTRACT

As programming education has become more widespread,

helping novices fix bugs remains a significant challenge. While

various support methods have been studied, implementing

them in educational settings requires customization of specific

teaching materials, which demands time and technical

resources. This study focuses on the fact that teaching materials

are used repeatedly in educational settings. If error information

from previous uses of the same teaching materials can help

debug similar errors that occur later, it enables debugging

support tailored to specific materials by simply conducting

classes and collecting error data. To test this hypothesis, a

system is proposed that automatically collects error

information, searches for similar errors, and suggests

appropriate solutions. Experiments were conducted using this

system by collecting error data from programming practice

courses at Kindai University in 2021 and 2022. The results

showed that past error information was able to effectively

support debugging for approximately 30% of future errors,

confirming the potential of this approach as a new method to

support novice programming learning.

General Terms

Algorithms, Design, Experimentation, Human Factors,

Measurement, Education

Keywords

Programming Education, Debugging Support, Error

Information Sharing, Similar Error Retrieval, Web Application

Development

1. INTRODUCTION
Programming skills have become increasingly important.

Programming is now recognized not only as a means of

software development but also as a skill that develops problem-

solving abilities and logical thinking [1], [2]. Programming

education has been widely adopted, from elementary to higher

education and professional training [3], [4].

However, as programming education expands, novices

continue to face significant learning challenges [5], [6]. One

major factor is bugs (program errors) caused by input mistakes

and logical errors [7]. While these bugs are an inevitable part

of the learning process, they can become substantial barriers for

novices [8]. Many learners who have not yet developed the

ability to find, identify, and fix errors may lose motivation and

give up programming when faced with bugs [9], [10].

Several common factors make bug fixing difficult for novices.

First, they struggle to correctly interpret error messages

because they are unfamiliar with programming language syntax

and basic structures. Error messages designed for language

developers often contain advanced technical terms and abstract

expression. As a result, novices frequently find it difficult to

understand error messages and determine the appropriate fixes

[11], [12], [13]. Second, while novices typically encounter

syntax, type, and logic errors during learning, they have not yet

developed the ability to identify the specific causes of these

errors, often leading to time-consuming solutions. This is

particularly challenging when errors in one part of the program

affect other parts, making it difficult for novices to identify the

root cause [14], [15], [16]. These recurring situations can not

only hinder learning progress but also cause significant

frustration. Third, novices may not receive sufficient feedback

during the error correction. While traditional programming

education typically involves direct support from instructors, the

rise of online education and learner diversity has reduced the

opportunities for individual instruction. This can leave learners

isolated when fixing errors, thereby hampering efficient

learning [17], [18].

Various technical approaches have been proposed to address

these issues. For example, many online programming platforms

now provide features that analyze learners’ codes in real time

and immediately identify errors, allowing early detection and

correction [19], [20]. Systems that analyze coding patterns and

suggest potential errors and fixes have also been developed

[21]. Research on tools that translate error messages into

explanations suitable for novices is also progressing. Recently,

systems using Large Language Models (LLMs) have been

proposed to provide novices with natural language error

explanations and code completion [22], [23]. LLMs’ generative

capabilities offer clear explanations of typical errors and

provide appropriate correction suggestions [24], [25]. There

have also been attempts to analyze learners’ progress in real

time and provide feedback based on their individual

weaknesses [26].

While many technical approaches have been proposed for

programming learning debug support systems, using these

research outcomes in one’s own educational environment

requires customization of specific teaching materials [27], [28],

[29]. Customization requires at least information about

programming learning materials, and sometimes data from

students’ practice results using these materials. It is technically

time-consuming for users of research outputs to prepare such

information. However, programming classes often repeatedly

use the same programming materials. If the error information

generated when students work with these materials can be used

to debug others using the same materials, error information

from each class can be automatically collected and

accumulated, minimizing the cost of customizing classroom

support tools.

Therefore, this study examines whether error information

collected from using specific programming materials can help

fix errors that occur when using the same programming

materials. This study uses Rails (Ruby on Rails) as the

programming environment [30]. Rails is one of the major web

application development frameworks. Since Rails adopts the

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.18, June 2025

51

MVC (Model-View-Controller) architecture, implementing a

single feature requires combining multiple files. We chose this

development environment to verify the effectiveness of

debugging support using error information in a programming

environment that assumes realistic application development.

As Rails currently influence various frameworks in use, the

findings obtained are expected to be applicable to other

frameworks as well.

2. PROPOSED SYSTEM

2.1 System Architecture
We propose a system that automatically collects error

information from students working on programming

assignments and provides debugging advice. Figure 1 shows

the system’s structure. A tool that automatically collects error

information when students encounter errors in programming

assignments is called the Error Information Collector (EIC).

When EIC detects an error, it sends the related information to

Debugging Method Suggestion System (DMSS). DMSS stores

the received information in Debug Database (DD). Instructors

can review this error information and annotate it with causes

and solutions. When another student encounters an error,

similar errors are extracted from DD and presented to the

student via a tool called Debugging Method Suggester (DMS).

The following sections explain EIC and DMS in detail.

Fig 1: System Architecture of Debugging Method

Suggestion System (DMSS)

2.2 Error Information Collector (EIC)
This tool automatically sends relevant files to DMSS when a

student encounters an error. EIC detects an error when the

string “Error” appears in a log file. Most modern web

application frameworks include web servers that output

execution logs to facilitate debugging. For example, in Rails,

this log file is called development.log. This tool can be adapted

for other web application frameworks by configuring the log

file name and the error string. The information sent to DMSS

includes the user ID, IP address, error message, and updated

files. The extracted information is then serialized and sent to

DMSS.

2.3 Algorithm for Determining the Most

Similar Error Information (MSEI)
DMS compares files from a student’s current error with files

registered in DD to extract error information with the highest

similarity. This extracted information is referred to as the Most

Similar Error Information (MSEI). This error information is

assumed to have debugging methods annotated by instructors.

A key feature of our method is that it does not perform syntax

analysis, which is expected to minimize the customization

required for programming materials. Modern web development

frameworks such as Rails manage multiple files in directories

according to their roles. There are approximately 35 directories

in Rails. To determine the similarity between multiple files

containing errors, our method calculates the similarity between

files with the same name in the same directory. The algorithm

for determining MSEI from DD is described below [31], [32],

[33].

First, we extract error information by matching error messages

from DD. If only a single instance of error information is

extracted, it is designated as MSEI. If multiple instances are

extracted, we determine MSEI as follows.

Two metrics are introduced: 𝐷𝑑𝑖𝑓𝑓 and 𝐹𝑑𝑖𝑓𝑓 . 𝐷𝑑𝑖𝑓𝑓 is the

number of files that exist in only one of the two directories.

𝐹𝑑𝑖𝑓𝑓 is the number of different lines between files with the

same name, and 𝐹𝑑𝑖𝑓𝑓 is calculated using the Longest Common

Subsequence (LCS). For example, when 𝐷𝑑𝑖𝑓𝑓 is zero, both

directories contain files with the same names. When 𝐹𝑑𝑖𝑓𝑓 is

zero, the contents of the two files are identical. After extracting

the error information with matching error messages from DD,

we determine MSEI from these candidates using the following

rules:

Rule 1: If there is only one error information with a

minimum, it becomes MSEI.

Rule 2: If there is only one piece of error information with

both the minimum 𝐷𝑑𝑖𝑓𝑓 and minimum 𝐹𝑑𝑖𝑓𝑓, it becomes

MSEI.

Rule 3: If MSEI cannot be determined by the above rules, the

oldest error information among the candidates becomes

MSEI.

3. EXPERIMENTS

3.1 Research Method
The 12th session of a web application programming course was

conducted using Ruby, which was offered to third-year

students at Kindai University. Each session lasted for 180 min.

Students had varying programming experience levels: 45%

were beginners, 35% had intermediate skills, and 20% were

advanced learners. In this course, students learned Ruby basics

and programming using Rails. In the 12th session, students

developed a web application using Rails to upload image files.

This study examined error information collected from students

during this class in both 2021 and 2022. The class had 67

students in 2021 and 50 students in 2022. The study evaluated

whether error information from students in 2021 could be

useful for debugging errors encountered by students in 2022.

3.2 Programming Materials
All steps for developing a web application are described in the

programming materials, which consist of a total of 24 steps.

Since the same programming materials were used in both the

2021 and 2022 classes, the programming steps were identical.

As Rails adopts the MVC architecture, programs need to be

written in various MVC files. In total, programs need to be

written in six files, including main files such as the routing file,

which links URLs to program calls, the controller file, which

retrieves data from the database based on the requested content,

and the view file, which contains a mixture of HTML and

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.18, June 2025

52

Ruby. In such a development environment, compared to single-

file programs, programming input errors are more likely to

occur, and debugging tends to be more challenging.

3.3 Method for Evaluating the Usefulness

of Error Information for Debugging
The error information from 2021 was loaded into the DD.

Using the algorithm described in Section 2.3, the MSEI was

determined for the errors that occurred in 2022. The debugging

advice was obtained associated with this error information. The

course instructors evaluated whether this advice was

appropriate for errors that occurred in 2022.

Figure 2 illustrates an example of verifying the applicability of

this advice. The figure shows a case in which a student inputs

an Error Code in the view file and receives an

ActionView::Template::Error when executing the web

application. It also shows the MSEI and its associated advice.

The error in the MSEI program occurred because, similar to the

Error Code, there was a mismatch between Ruby’s block

parameter and the variable name used within the block. It was

judged that debugging would be possible because students

could be expected to notice their mistakes by reading their

advice. Conversely, if the MSEI was caused by a different

issue, the advice was judged as not applicable.

Fig 2: An example of debugging feasibility verification

4. RESULTS

4.1 Frequency Distribution of Error

Messages
Before examining the availability of debuggable information,

an analysis of the content of error information is presented.

There were 248 errors in 2022 and 236 errors in 2021. Figure 3

shows a graph of the seven most frequent errors categorized by

error message. The vertical axis shows the relative frequency,

indicating the proportion of each error message relative to the

total number of errors. The labels on the horizontal axis include

“V” or “C”, indicating the functionality of the file in which the

error occurred. “V” indicates a view function file, and “C”

indicates a controller function file. In both 2022 and 2021, the

most frequent error was ActionView::TemplateError, which

occurred in the view function files. The line graph shows the

cumulative relative frequencies. The 2022 graph shows that the

top seven error messages accounted for 90% of all the errors.

A similar trend was observed in 2021 as well. The seven most

frequent error messages are analyzed in detail below.

Fig 3: Frequency distribution of error messages

4.2 Feasibility of Debugging for Each

Error Message
For the seven most frequent errors shown in Figure 3, MSEI

was determined using the algorithm described in Section 2.3.

The results of evaluating debugging possibilities with the

method described in Section 3.3 are shown in Table 1. The

“Errors” column shows the number of occurrences for each

error. The “Debugged” column shows the number of cases

judged as debuggable, with the percentage shown in

parentheses. Of the 222 total occurrences of the seven error

messages, 76 (34%) were judged as debuggable. Among the

seven types, ActionView::TemplateError-V was the most

frequent, with 88 occurrences, of which 49 cases (56%) were

debuggable. SyntaxError-V was the second most frequent, with

33 occurrences, of which 13 (39%) were debuggable. This

indicates that view function files tend to be more prone to errors

but are more debuggable than controller or routing files.

Generally, view function files contain more lines of code than

other files because they generate HTML, making them more

susceptible to input errors.

Table 1. Number of debuggable errors per error message

No Error Messages Errors Debugged

1 ActionView::Template::Error-V 88 49 (56%)

2 SyntaxError-V 33 13 (39%)

3 NameError-C 24 9 (38%)

4 ActionController::RoutingError-C 32 1 (3%)

5 NoMethodError-C 21 2 (10%)

6 ActionController::RoutingError-R 19 0 (0%)

7 SyntaxError-C 5 2 (40%)

Total 222 76(34%)

5. DISCUSSION

5.1 Example of

ActionView::TemplateError-V
Of the ActionView::TemplateError-V errors, 49 (56% of all

errors) were judged as debuggable (Table 1). Among these, 44

had programs similar to those shown in Figure 4. For easier

analysis, we highlighted the differences between the error code

and MSEI. By comparing the two programs, it was observed

that MSEI contained an error where “book” was mistakenly

entered instead of “image.” Nevertheless, this was determined

to be MSEI because the overall program structure was similar

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.18, June 2025

53

to those of other errors types, and debugging was considered

successful because the error factors were of the same type as

those in other cases.

Fig 4: Successful debugging example of

ActionView::TemplateError-V

Figure 5 shows an example of an error in which debugging was

judged to be unsuccessful for ActionView::TemplateError-V.

This error occurred during the process of generating HTML

from a template file that contains Ruby code. Compared with

the program in Figure 4, the program in Figure 5 appears more

similar, differing by just one line. However, upon examining

MSEI program, no syntax errors were found. The error

occurred because the @images variable was empty due to an

error in the controller program upstream in the data flow.

Therefore, debugging was judged to be unsuccessful because

MSEI addressed a different issue from that indicated by the

error code. As shown in Section 2.3, since similarity is

calculated as the total number of different lines across several

files, this demonstrates that debugging can fail even when the

file where an error occurs has a high similarity score.

Fig 5: Failed debugging example of

ActionView::TemplateError-V

5.2 Example of SyntaxError-V
Next, we analyze SyntaxError-V, the second most frequent

error message. As the name suggests, this error occurs when

the program violates Ruby’s syntax rules. Figure 6 shows

representative examples of 13 debuggable error cases. A

common mistake in both the error code and MSEI is

highlighted in a red box. Both cases show a missing closing tag

“%>” that should correspond to “<%= link_to.” Although the

missing closing tag is only two characters long, this program

was classified as MSEI because the rest of the program was

similar and had the characteristic of a missing closing tag.

Fig 6: Successful debugging example of SyntaxError-V

However, Figure 7 shows an example in which the system

failed to provide appropriate MSEI despite having the same

error cause (red arrow). In this case, the suggested program

failed to debug because the error was caused by incorrect

quotation marks, rather than a missing closing tag. This

demonstrates that even when programs appear similar, the

appropriate MSEIs cannot always be extracted.

Fig 7: Successful debugging example of SyntaxError-V

5.3 Example of NameError-C
Figure 8 shows examples of the third most frequent debuggable

error cases. This error occurs when an undefined local variable

or a constant is used. Looking at the error code, we can see that

the error occurred because @image.update method used the

local variable “file” before it was assigned an initial value.

Similarly, the MSEI program showed an error in which the

variable “title” was used in the Image.new method before being

initialized. MSEI was determined to be appropriate because

debugging would be possible by checking whether values were

set before using the method arguments.

Fig 8: Successful debugging example of NameError-C

In contrast, Figure 9 shows an example in which the error code

sets data to the variable “@file”, but an error occurs because

@image.update method argument specifies the variable “file”

without the “@” symbol, resulting in the use of an uninitialized

variable. In the MSEI, the error is due to using the variable

“title” without setting its value. Since these are different causes,

it was determined that debugging would be difficult because

the MSEI would not be helpful.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.18, June 2025

54

Fig 9: Failed debugging example of NameError-C

5.4 Challenges in Extracting Debuggable

Error Information
In this section, we examine situations in which debugging was

determined to be difficult by referring to specific programs.

Based on this analysis, two conditions necessary for successful

debugging were identified using our method of referencing past

error information and advice.

Condition 1: Similar error information exists in DD.

Condition 2: Error information with the same error factors can

be extracted from DD.

In this study, Condition 1 was satisfied because we focused on

frequently occurring errors. Error information is likely to

improve as more data are accumulated through repeated

programming classes using the same teaching materials. As

shown in Sections 5.1 to 5.3, even when programs had similar

formal structures, their error causes could differ. As shown in

Table 1, only 30% of the error information met Condition 2.

How should this 30% result be evaluated? Many studies have

been conducted to measure program similarity, such as code-

clone research. Recently, the accuracy of clone code detection

has been improved through the use of LLMs [34]. Research is

also progressing toward developing code search engines to

promote code reuse [35]. The effectiveness of search queries in

major code search engines has been reported to be between

25% and 60%. It is important to note that the programs targeted

in these studies did not contain bugs. As shown in our

experiment, even when the same programming materials are

used, errors can occur in various ways. It is generally known

that searching for code containing bugs is challenging. Given

this context, while a 30% success rate for all error information

may not be sufficient for practical use, it could be considered

an reasonable initial result. Through this investigation, areas for

improvement in the method were identified. MSEI was

determined using the algorithm described in Section 2.3. To

extract similar error information, it compares all the error

information that occurs with the same error message across

files. As shown in sections 5.1 to 5.3, incorrect error

information sometimes became MSEI because of the high

similarity with files other than those where the error occurred.

As a potential solution to this problem, the algorithm from

Section 2.3 could be applied only to files that are upstream of

the error-occurring file in the data flow, potentially leading to

more appropriate error information becoming MSEI.

6. CONCLUSIONS
This study addressed a key challenge faced by novices in

programming education: the difficulty of debugging. This

study investigated how past error information, gathered from

the same teaching materials, could help address this problem.

For this investigation, three tools were proposed: Error

Information Collector (EIC), Debugging Method Suggestion

System (DMSS), and Debugging Method Suggester (DMS). In

DMS, we introduced an algorithm to determine the Most

Similar Error Information (MSEI). Error information was

collected using the proposed tools during programming

practice courses at Kindai University in 2021 and 2022. An

analysis of the collected data showed that 30% of the errors in

2022 were considered debuggable using MSEI extracted from

the 2021 data. In code search research, search queries for

defect-free datasets have been reported to be effective 25-60%

of the time. Considering that our target data consisted only of

programs with bugs, these results were reasonable. However, a

30% success rate for debugging support is insufficient for

practical use in classrooms. Going forward, several promising

directions will be explored: (1) integrating machine learning

algorithms to improve error similarity calculations, (2)

developing cross-language error pattern recognition, (3)

implementing real-time adaptive feedback mechanisms, and

(4) creating personalized debugging assistance based on

individual learning patterns. Future work will also investigate

the integration of Large Language Models for natural language

explanation generation and the development of a

comprehensive multi-institutional database for error pattern

sharing. The long-term vision is to create an intelligent,

scalable debugging support ecosystem that can adapt to diverse

programming environments and educational contexts,

ultimately fostering independent problem-solving skills among

novice programmers across different institutions and

programming domains.

7. REFERENCES
[1] J. Nouri, L. Zhang, L. Mannila, and E. Norén,

“Development of computational thinking, digital

competence and 21st century skills when learning

programming in K–9,” Education Inquiry, vol. 11, no. 1,

pp. 1–17, 2019.

https://doi.org/10.1080/20004508.2019.1627844

[2] G. Wong and H. Cheung, “Exploring children’s

perceptions of developing twenty-first century skills

through computational thinking and programming,”

Interactive Learning Environments, vol. 28, no. 4, pp.

438–450, 2018.

https://doi.org/10.1080/10494820.2018.1534245

[3] M. Guzdial, “Computing Education as a Foundation for

21st Century Literacy,” in Proceedings of the 50th ACM

Technical Symposium on Computer Science Education

(SIGCSE 2019), Minneapolis, MN, USA, Feb. 27–Mar. 2,

2019. https://doi.org/10.1145/3287324.3290953

[4] S. Huang and Y. Xu, “A comparative study on

programming education—based on China and America,”

Journal of Education, Humanities and Social Sciences,

vol. 15, pp. 220–231, 2023.

https://doi.org/10.54097/ehss.v15i.9272

[5] J. Figueiredo and F. J. García-Peñalvo, “Design science

research applied to difficulties of teaching and learning

initial programming,” Universal Access in the

Information Society, vol. 23, pp. 1151–1161, 2022.

https://doi.org/10.1007/s10209-022-00941-4

[6] Y. Qian and J. Lehman, “Students’ misconceptions and

other difficulties in introductory programming,” ACM

Transactions on Computing Education, vol. 18, no. 1, pp.

1–24, 2017. https://doi.org/10.1145/3077618

[7] D. Radaković and W. Steingartner, “Common errors in

high school novice programming,” IPSI Transactions on

Internet Research, vol. 20, no. 1, pp. 47–59, 2024.

https://doi.org/10.58245/ipsi.tir.2401.05

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.18, June 2025

55

[8] C. S. Cheah, “Factors contributing to the difficulties in

teaching and learning of computer programming: A

literature review,” Contemporary Educational

Technology, vol. 12, no. 3, Article ep272, 2020.

https://doi.org/10.30935/CEDTECH/8247

[9] H. Du, W. Xing, and Y. Zhang, “A Debugging Learning

Trajectory for Text-Based Programming Learners,” In

Proceedings of the 26th ACM Conference on Innovation

and Technology in Computer Science Education, Virtual

Event, Germany, Jun. 26–Jul. 1, 2021.

https://doi.org/10.1145/3456565.3460049

[10] M. Ahmadzadeh, D. Elliman, and C. Higgins, “An

analysis of patterns of debugging among novice computer

science students,” in Proceedings of the 10th Annual

Conference on Innovation and Technology in Computer

Science Education (ITiCSE 2005), Caparica, Portugal,

Jun. 27–29, 2005.

https://doi.org/10.1145/1067445.1067472

[11] J. Ko, B. A. Myers, and D. H. Chau, “A Linguistic

Analysis of How People Describe Software Problems,” in

Proceedings of the 2006 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC),

Brighton, UK, Sept. 4–8, 2006.

https://doi.org/10.1109/VLHCC.2006.3

[12] T. Barik et al., “Do Developers Read Compiler Error

Messages?” in Proceedings of the 39th International

Conference on Software Engineering (ICSE 2017),

Buenos Aires, Argentina, May 20–28, 2017.

https://doi.org/10.1109/ICSE.2017.59

[13] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining

mental models: a study of developer work habits,” in

Proceedings of the 28th International Conference on

Software Engineering (ICSE 2006), Shanghai, China,

May 20–28, 2006.

https://doi.org/10.1145/1134285.1134355

[14] A. J. Ko and B. A. Myers, “Finding causes of program

output with the Java Whyline,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems (CHI 2009), Boston, MA, USA, Apr. 4–9, 2009.

https://doi.org/10.1145/1518701.1518942

[15] S. Fitzgerald, G. Lewandowski, R. McCauley, L. Murphy,

B. Simon, L. Thomas, and C. Zander, “Debugging:

finding, fixing and flailing, a multi-institutional study of

novice debuggers,” Computer Science Education, vol. 18,

no. 2, pp. 93–116, 2008.

https://doi.org/10.1080/08993400802114508.

[16] S. Fitzgerald, R. McCauley, B. Hanks, L. Murphy, B.

Simon, and C. Zander, “Debugging from the student

perspective,” IEEE Transactions on Education, vol. 53,

no. 3, pp. 390–396, 2010.

https://doi.org/10.1109/TE.2009.2025266

[17] S. Marwan, A. Dombe, and T. W. Price, “Unproductive

help-seeking in programming: What it is and how to

address it,” in Proceedings of the 25th ACM Conference

on Innovation and Technology in Computer Science

Education (ITiCSE 2020), Trondheim, Norway, Jun. 15–

19, 2020. https://doi.org/10.1145/3341525.3387394

[18] U. Ahmed, N. Srivastava, R. Sindhgatta, and A. Karkare,

“Characterizing the Pedagogical Benefits of Adaptive

Feedback for Compilation Errors by Novice

Programmers,” in Proceedings of the 42nd International

Conference on Software Engineering: Software

Engineering Education and Training (ICSE-SEET 2020),

Seoul, South Korea, Jun. 27–Jul. 19, 2020.

https://doi.org/10.1145/3377814.3381703

[19] J. Kim, Y. Sun, and F. Zhang, “ReCodez: An Intelligent

and Intuitive Online Coding Editor using Machine

Learning and AI,” in Proceedings of the 12th International

Conference on Computer Science and Information

Technology (CSIT 2020), Sydney, Australia, Oct. 24–25,

2020. https://doi.org/10.5121/csit.2020.101216

[20] R. Chenartha and C. Safitri, “Web-based realtime course

platform with integrated live coding interface,” IT Society

Journal of Information Technology, vol. 9, pp. 22–26,

2024. https://doi.org/10.33021/itfs.v9i1.5077

[21] A. Gupta, M. Jindal, and A. Goyal, “Identification of

Student Programming Patterns through Clickstream

Data,” in Proceedings of the 2024 IEEE International

Conference on Computing, Power and Communication

Technologies (IC2PCT 2024), Greater Noida, India, Feb.

9–10, 2024.

https://doi.org/10.1109/IC2PCT60090.2024.10486775

[22] J. Leinonen et al., “Using Large Language Models to

Enhance Programming Error Messages,” in Proceedings

of the 54th ACM Technical Symposium on Computer

Science Education (SIGCSE 2023), Toronto, ON, Canada,

Mar. 15–18, 2023.

https://doi.org/10.1145/3545945.3569770

[23] F. Assiri and H. Elazhary, “Automated Java exceptions

explanation using natural language generation

techniques,” Computer Applications in Engineering

Education, vol. 28, no. 3, pp. 626–644, 2020.

https://doi.org/10.1002/cae.22232

[24] A. Amburle, C. Almeida, N. Lopes, and O. Lopes, “AI

based Code Error Explainer using Gemini Model,” in

Proceedings of the 2024 3rd International Conference on

Applied Artificial Intelligence and Computing (ICAAIC

2024), Salem, India, Jun. 5–7, 2024.

https://doi.org/10.1109/ICAAIC60222.2024.10574931

[25] A. Taylor, A. Vassar, J. Renzella, and H. A. Pearce, “dcc

--help: Transforming the Role of the Compiler by

Generating Context-Aware Error Explanations with Large

Language Models,” in Proceedings of the 55th ACM

Technical Symposium on Computer Science Education

(SIGCSE 2024), Portland, OR, USA, Mar. 20–23, 2024.

https://doi.org/10.1145/3626252.3630822

[26] S. Schacht, S. Barkur, and C. Lanquillon, “Generative

Agents to Support Students’ Learning Progress,” in

Proceedings of the 5th International Conference on

Business Meets Technology (BmT 2023), Valencia,

Spain, Jul. 13–15, 2023.

https://doi.org/10.4995/bmt2023.2023.16750

[27] E. Paikari, B. Sun, G. Ruhe, and E. Livani,

“Customization support for CBR-based defect

prediction,” in Proceedings of the 7th International

Conference on Predictive Models in Software Engineering

(PROMISE 2011), Alberta, Canada, Sept. 20–21, 2011.

https://doi.org/10.1145/2020390.2020406

[28] M. Velez, P. Jamshidi, N. Siegmund, S. Apel, and C.

Kästner, “On debugging the performance of configurable

software systems: Developer needs and tailored tool

support,” in Proceedings of the 44th International

Conference on Software Engineering (ICSE 2022),

Pennsylvania, USA, May 21–29, 2022.

https://doi.org/10.1145/3510003.3510043

[29] D. Oliveira et al., “The untold story of code refactoring

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.18, June 2025

56

customizations in practice,” in Proceedings of the 2023

IEEE/ACM 45th International Conference on Software

Engineering (ICSE 2023), Melbourne, Victoria, Australia,

May 14–20, 2023.

https://doi.org/10.1109/ICSE48619.2023.00021

[30] Ruby on Rails. [Online]. Available:

https://rubyonrails.org/ [Accessed: Apr. 12, 2025].

[31] K. Takahashi, “Analyze the possibility of advice based on

historical error information for debugging during

programming exercises,” in Proceedings of the Hinokuni

Information Symposium 2023, Kagoshima, Japan, Mar.

13–14, 2023.

[32] K. Takahashi and N. Suzuki, “Learning Status Report

Tool for Programming Learning Services,” Procedia

Computer Science, vol. 207, pp. 1562–1570, 2022.

https://doi.org/10.1016/j.procs.2022.09.213

[33] K. Takahashi, “A tool for estimating the learning progress

of web application framework,” in Proceedings of the 28th

Foundation of Software Engineering Workshop (FOSE

2021), Fukushima, Japan, Nov. 11–13, 2021.

https://doi.org/10.11309/fose.28.0_97

[34] M. Khajezade, J. J. Wu, F. H. Fard, G. Rodríguez-Pérez,

and M. S. Shehata, “Investigating the efficacy of large

language models for code clone detection,” in Proceedings

of the 32nd IEEE/ACM International Conference on

Program Comprehension (ICPC 2024), Lisbon, Portugal,

Apr. 15–16, 2024.

https://doi.org/10.1145/3643916.3645030

[35] L. Di Grazia and M. Pradel, “Code search: A survey of

techniques for finding code,” ACM Computing Surveys,

vol. 55, pp. 1–31, 2023. https://doi.org/10.1145/3565971

IJCATM : www.ijcaonline.org

