
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.18, June 2025

33

Process Models and Estimation Methods in Cloud,

Artificial Intelligence and Mobile Software Development

Scenarios: A Systematic Review

Sadhana Pandey
Department of Computer Science and Engineering,

Sage University
Indore, India

Abhay Kothari, PhD
Department of Computer Science and Engineering,

Sage University
Indore, India

ABSTRACT

The software development life cycle (SDLC) provides a

systematic framework with specific deliverables at each phase

of the software development. As the characteristics of each

categories of software are different in many ways, it becomes

crucial to study process model for such categories of software

separately. Cost estimation is the fundamental area that chooses

budgetary constraints related to these software applications

which keep company to maintain accurate estimates for such

application development to maintain their reputation in the

market. In this research paper we have studied process model

and estimation techniques for Artificial Intelligence

application, cloud application and Mobile application in

particular. The process model for artificial intelligence, cloud,

mobile application have been studied and presented separately.

We have also studied basic COCOMO model, intermediate

COCOMO model as a fundamental work in cost estimation.

General Terms
Artificial Intelligence (AI) Application development process

Model, COCOMO, Process Model, Cloud Application

Development Process, Mobile Application development

Process, Software Development Life Cycle (SDLC).

Keywords
Artificial Intelligence (AI) Application development process

Model, COCOMO, Process Model, Cloud Application

Development Process, Mobile Application development

Process, Software Development Life Cycle (SDLC), Cloud

Software Life Cycle Process (CSLCP) Model.

1. INTRODUCTION
The Software Development Life Cycle (SDLC) is a structured

process that enables the production of high-quality, low-cost

software, in the shortest possible time. The goal of the SDLC

is to produce superior software that meets all customer

expectations and demands. The SDLC outlines a detailed plan

with stages, or phases, that each encompasses their own process

and deliverables. Processes in software engineering refers to

the methods and techniques that are used to develop and

maintain software. In software engineering, adaptability refers

to a system's ability to adjust to changing requirements,

technologies, and environments, without requiring much

modifications or re-implementation. ISO/IEC/IEEE 12207

mainly provides processes that can be employed for defining,

controlling, and improving software life cycle processes within

an organization or a project. ISO//IEC/I/EEE 15288 document

defines a set of processes to facilitate system development and

information exchange among acquirers, suppliers, and other

stakeholders in the life cycle of a system.

We have studied process model for AI, cloud and mobile

application. The application of artificial-intelligence-(AI)-

based methods within the context of complex systems presents

new challenges within the product life cycle. The general

approach is to build a component-wise development of the

overall system including an AI component. This allows domain

specific development processes to be in parallel fashion.

This can be summarized in the following two challenges for the

use of ML methods in the development process of complex

technical systems:

1. The ML component functionalities heavily depends

on data from operating components and

2. The performance of ML components cannot be

predicted in advance in such scenarios.

Popular and well-established process models like the Waterfall

Model, Scrum, Crisp-DM and the V-Model do not address

these challenges.

On the other hand, Small to medium-sized enterprises take

advantage of the strengths of cloud computing. These

enterprises require a software process model to produce reliable

and quality cloud software, given their limited resources.

Different types of software need a different type of software

process models. The selection of an unsuitable software

process model results in insufficient software quality and

increases its development Cost. The software engineering

process should be tailored to cloud-based projects. Most of the

research in the area of software process models for cloud-based

applications only considers the development process area. In

these models, attention is not paid to the characteristics,

challenges, and standards of the cloud-computing environment

[2]. In the same context mobile application development

process is also different as requirements vary considerably.

Mobile devices are characterized as a portable device, viewed

as a personal device by its users, and require a network

connection. So we have studied process model for each

category of software and figured out their differentiating

characteristics. We have also focused on estimation model of

such software applications which can be used for all the

software applications under our study and are used by software

companies frequently.

2. LITERATURE REVIEW
This paper [1] seeks to explore six common methodologies: the

Waterfall Model, the Spiral Model, Agile, Scrum, Kanban,and

Extreme Programming. Specifically, a general explanation of

each methodology, the history behind it, its unique features,

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.18, June 2025

34

and general developer opinions of the methodology is

discussed.

In this paper [2], the author A cloud software life cycle process

model proposed, validated, and verified to handle the

shortcomings of existing cloud software process models. A

case study is used to illustrate all the activities required

throughout the software life cycle of the discussed model. The

proposed cloud software life cycle process model is a cyclic

iterative prototyping model. It is compatible with levels two

and three of the capability maturity model integration and

extends the Egyptian software process improvement model to

fit the cloud environment so far.

Software metrics offer a quantitative basis for predicting the

software development process. In this paper the author [3]

discussed the different software metrics and how these metrics

have an impact on software quality and reliability. Effort

estimation is an integral part of software project management.

There is a lot of research in effort estimation in the form of

models, techniques, methods, and tools. Although a variety of

estimation techniques have been applied in an ASD context,

ranging from expert judgment to Artificial Intelligence

techniques, those used the most are the techniques based on

some form of expert-based subjective assessment. These

techniques are expert judgment, planning poker, and use case

points method.[4] Most of the techniques could not result in

good prediction accuracy values. It was observed that there is

little agreement on suitable cost drivers for ASD projects. Story

points and use case points, which are close to prevalent

requirement specifications methods (i.e. user stories, use

cases), are the most frequently used and considered size

metrics. The author [5] used Clustering approach to form

consistent project groups and Support Vector Regression

(SVR) to predict the effort required for development. In this

paper[6] the author worked on cost estimation, fuzzy logic and

applied with three membership functions such as Triangular,

Trepezoidal and Bell. This work has been tested on 5 projects.

When the parameters for triangular function are executed,

values for embedded 1, semidetached 2 are enhanced as

compare to organic, semi detached 1, embedded 2. After the

evaluation of trapezoidal function, values of semidetached 1

and embedded 1 are more as compare to others. The results

show that all three membership functions vary by 1-2 % in the

effort estimation where as if compared; COCOMO 2 Effort var-

ies by 5-10 % from Fuzzy output. In paper[7], the author has

reviewed various papers on COCOMO model. In this paper, the

author[8] has studied the COCOMO’81 model, specifically its

intermediate version and proposed the use of fuzzy sets rather

than classical intervals in the COCOMO’81 model specifically.

For each cost driver and its associated linguistic values, they

have defined the corresponding fuzzy sets. In this paper [9],

comparison of deepnet, neuralnet, support vector machine and

random forest algorithms were carried out and the results show

that random forest outperforms other algorithms because of its

robustness and capacity to handle large datasets. Evaluation

metrics deliberated discussed are Mean Absolute Error, Root

Mean Squared Error, Mean Square Error and R-Squared. The

author [10] studied the existing techniques in term of accuracy,

usage, and suitability. Therefore, their comparison could

facilitate and help the project managers to distinguish and

compare among techniques to choose the optimum technique

as per project type and requirements. Also, they have proposed

a model to help a researchers, and project managers, by

combining three existing estimation techniques to improve the

accuracy. The challenges that are being anticipated, and

covered by using the proposed model include the errors that can

result due to the single approach failure. An accuracy in

software cost estimation has a direct impact on company’s

reputation and also affects the software investment decisions in

the long run. Accurate cost estimation can minimize the

unnecessary costs and increase the productivity and efficiency

of the company considerably. The author[11], identified the

existing methods of software cost estimation prevailing in the

market and analyzing some of the important factors impacting

the software cost estimation process. In the paper[12], presents

a systematic survey about software cost estimation in agile

software development. The paper deals with the current

estimation schemes used in software development other than

agile estimation, so that these schemes may be useful in the

agile development environment. In this paper[13], The main

objective of this paper is to provide an overview of software

cost estimation models and summarize their strengths,

weakness, accuracy, amount of data needed, and validation

techniques used. The findings show, in general, neural network

based models outperforms other cost estimation techniques. In

[14] presents the design and implementation of a software cost

estimation tool integrated into a mobile application developed

using Flutter. This tool includes various techniques for

software cost estimation, including expert judgment, function

point analysis, 3D point analysis, and the COCOMO model.

The tool’s efficacy is assessed using case studies and contrasts

with other software cost estimation methods currently in use.

The outcomes show that the app can produce trustworthy and

precise cost estimates, which makes it an important resource

for software development projects. [15] The work carried out

in this paper contributes to the field of software engineering to

calculate the overall efforts of mobile application development.

research work uses a hybrid approach using the concepts of

CPEEM and Machine learning technique. The framework uses

Mobile Functional Factors as input parameters for the proposed

approach where CPEEM and Machine learning technique can

be used to calculate the size and efforts of mobile application

development. These efforts are compared with the real mobile

applications' actual efforts to see whether the proposed

approach is efficient or not.

In this paper [16], research study compares various machine

learning techniques for estimating effort in software

development, focusing on the most widely used and recent

methods. Random Forest Regression algorithm performs well

on the given dataset tested along with various Regression

algorithms, including Support Vector, Linear, and Decision

Tree Regression. In this paper [17], The main objective of this

research is to investigate the role of fuzzy logic technique in

improving the effort estimation accuracy using COCOMO II

by characterizing inputs parameters using Gaussian,

trapezoidal and triangular membership functions and

comparing their results. NASA (93) dataset is used in the

evaluation of the proposed Fuzzy Logic COCOMO II. It is

found that Gaussian function is performing better than

trapezoidal function and triangular function, as it demonstrates

a smoother transition in its intervals, and the achieved results

were closer to the actual effort. In this paper [18] investigation

started with a survey that targeted software professionals, and

then they conducted multiple-case study approach involving

four different software development companies in Palestine.

Expert-based estimation models are the mostly applied models

especially within agile environments. Multiple improvements

were required to be done on expert-based models to formalize

the process. In this paper [19] a simplified genetic algorithm

based model is proposed. A simplified genetic algorithm is

used for optimizing the parameters of the basic COCOMO

model. The author found COCOMO with simplified GA tuned

parameters gives an improved estimation compared to basic

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.18, June 2025

35

COCOMO. [20] In this paper, different reviews are made clear

to propose a way cosmic an appropriate method that can be

used to size mobile application in a fast and accurate way. The

review paper has provided a layout of different size matrices

and cost estimation models. In [21] the author study aims to

present a systematic literature review (SLR) to investigate the

trends of the articles published in the recent one and a half

decades and to propose a way forward in this domain. This

systematic literature review has proposed a three-stage

approach to plan (Tollgate approach), conduct (Likert type

scale), and report the results from five renowned digital

libraries. It is concluded that ANN; and COCOMO are the most

popular techniques followed by Ensemble and FPA. Also,

ANN has outperformed several ML and Non-ML techniques.

The paper [22] aims to explore project management activities

and techniques for estimating project size. Overall, software

project management involves managing, allocating, and timing

resources to develop software that meets requirements and

required to be delivered within budget and schedule. This paper

highlights the significance of employing efficient estimation

methods to achieve successful software project management.

Estimation plays a critical role in the software development

process, as it helps project managers to determine the resources

and time required for completing the project .In [23], findings

Shows in general, neural network based models outperforms

other cost estimation techniques. However, no one technique

fits every problem and they recommended practitioners to

search for the model that best fit their needs. In this paper[24]

the author concluded that An effective development model can

help improve competitive advantage and shorten release cycles,

which is vital in the fast paced environment of mobile app

development. In this paper[25] the author has explained

Process model for AI Systems Engineering (PAISE®)

contributes to the aim of integrating AI development into

development contexts of increasingly complex systems

3. IDENTIFIED CHARACTERISTICS
As each software application is different in some way or the

other so, we have identified characteristics of each category of

software under the study. Our aim is to study the differences

and similarities of these categories of software and to assess

how these impact their development process as well as

respective estimation techniques. The importance of finding a

systematic approach for the development of intelligent systems

making use of novel AI and machine learning methods is

widely recognized. So the identified characteristics of AI

software application are adaptability, perception, computer

vision and machine learning.

On the other hand, the cloud applications also differ from other

categories of software. The cloud based applications require on

demand self service, broad network access, resource polling,

measured service, elastic scalability and ubiquitous access. On

the other hand, if we talk about software application that run on

mobile device, it demands a well designed user interface, cross

device compatibility, security, live streaming and some

essential offline functionality. Distinguishing aspects for

mobile application are network connectivity concerns,

hardware limitations (e.g., screen sizes and battery power),

portability, reliance on sensors for many applications, user

movement across multiple locations.

Here it is crucial to note that some of the characteristics may be

required in all categories of software applications and some of

them may differ for each categories of application. so it

becomes obvious to study their process models separately

4. PROCESS MODEL FOR AI
The application of artificial-intelligence-(AI)-based methods

within the context of complex systems poses new challenges

within the product life cycle considerably. The process model

for AI systems engineering, PAISE®, addresses these

challenges by combining approaches from the disciplines of

systems engineering, software development and data science.

Now a days, Machine learning (ML) algorithms are advancing

to the practical forefront as a subset of artificial intelligence

(AI). The ML algorithm programs a software for a given use

case by analyzing so-called training data and identifying

patterns and correlations. The functions of the developed

software are therefore largely determined by the training data.

The above explanations must be concluded in the following two

challenges for the use of ML methods in the development

process of complex technical systems:

1. The ML component functionalities essentially

depend on data from operating components and

2. The performance of ML components is not

predictable in advance in such cases.

Popular and well-established process models like the Waterfall

Model, Scrum, Crisp-DM and the V-Model do not address

these challenges .The Waterfall Model, originally defined for

the domain of software development in 1970, consists of a fixed

number of phases that run through in a predefined sequence

with clearly pre-defined results. While this process model

supports good time planning during development, it actually

lacks iterative elements that allow an explorative approach. So,

challenge 2 is not addressed. For ML-components

compatibility severely depends on the quality of the data that

was used during the component’s development. Thus,

challenge 1 is met neither by the V-Model nor Scrum.

Standards such as ISO 12207 and ISO/IEC 15288 are paving

the way for the development of increasingly complex systems.

The standard ISO/IEC 15288 describes the life cycle processes

of a system developed according to the established disciplines

of systems engineering and software engineering.

The Process Model for AI Systems Engineering views the

development of a product as a system that could be

decomposed into subsystems which can be either software (e.

g., ML algorithms) or hardware (e. g., mechanical parts).

The process model consists of seven phases and these are

arranged in a waterfall-like structure. As We can see in figure

1, The first two phases, Goals & Problem Specification and

Requirements & Solution Approaches, adopt the processes

“Business or Mission Analysis Process”, the “Stakeholder

Needs & Requirements Definition Process” and the “System

Requirements Definition Process” from the standard ISO/IEC

15288. Overall project goals are defined, product requirements

are derived and first ideas of how to approach the problem are

developed till here. The artifact of role distribution is initialized

during the phase Requirements & Problem Understanding to

have a clear distribution of responsibilities. Functional

Decomposition must initially be specified including their

interfaces. The phase Handover covers the “Transition process”

from the standard ISO/IEC 15288 where the product is required

to be transferred from the development team to the

organizational units that realize operation and maintenance. the

characteristics of the phases Functional Decomposition,

Development Cycle and Operation & Maintenance are

according to the application of AI methods in addition to

general aspects from the “Design Definition Process”,

“Implementation Process”, “Validation and Verification

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.18, June 2025

36

Process” and “System Analysis Process” from standard

ISO/IEC 15288.

During the phase of Functional Decomposition, the functions

of the overall system are initially distributed onto subsystems.

The result is hierarchical subsystem specification with well-

defined interfaces in most of the cases.

In the context of AI systems engineering, it is essential to

incorporate data sources into the system model. Data sources

are considered to be subsystems or enabling systems that

provide data for development and/or for operation thus

significantly influence the functionality of AI components.

 An iterative development cycle is supported by checkpoints to

synchronize component development. It allows switching

between an exploratory approach on the one hand and a goal-

oriented approach on the other. By iterating through the cycle,

the maturity of the components and that of the overall system

is continuously increased. At checkpoints the (partial)

integration and evaluation of components with respect to

requirements is done. Checkpoints therefore serve as a point of

synchronization of all components. For ML components, this

means evaluation against validation metrics that commonly

assess the component’s functioning within the overall system.

The data provisioning procedure has the purpose to generate,

prepare and evaluate training, test and validation datasets. The

data requirements comprise technical aspects relevant to the

accomplishment of the AI component’s tasks or purpose.

Examples are the amount of data (how many measurements are

available), its quality (e. g., how much missing or incorrect

information) and its representativeness (whether the training

data represents the data that will be generated at runtime). The

data provisioning procedure is based on the V-Model. Each

development step has a testing and verification step at the same

level of detail. The procedure for ML component development

is based on the V-Model as well. The goal of the procedure is

the encapsulation of an ML model (i. e., the data-driven part)

into a component. This facilitates the substitution of data

sources and related enabling systems in order to be able to

iteratively integrate and validate results within the checkpoints.

This approach creates an organizational interface between the

classical data science discipline and systems engineering in

particular. Domain knowledge is required to be incorporated at

this point in order to ensure the correct functionality of the

component.

Afterwards, the selected ML method is implemented as a

specific model architecture with well defined hyperparameters.

Examples of hyperparameters are the number of neurons,

layers in artificial neural networks, learning rate as well as the

definition of the loss function, also denoted as local cost

function. As soon as all requirements are met, the exit of the

development cycle is triggered and the last two phases

Handover and Operation & Maintenance follow.

The monitoring of the ML component functionalities is

essential for reliable operation of AI-based systems. Changes

in the data processed during operation can degrade the

performance of AI subsystems over time. If a model update is

required, a new training data set is collected and processed

following the data provisioning procedure. In the next step, the

ML component development procedure is applied in order to

re-adjust the ML model. Finally, the updated component is

reintegrated into the overall system, tested and must put into

operation.

Process model for cloud application

CSLCP (A cloud software life cycle process (CSLCP) model)

model takes into consideration the risks and challenges,

including the standards of cloud computing. Hence, the CSLCP

model enhances the quality of cloud software development.

The CSLCP model conforms to the quality software process

model (2.2). CSLCP model consists of eight process areas of

the second and third levels of the CMMI (Capability Maturity

Model Integration) and nine sequential phases.

The nine phases are exploration, alternatives and decision

making, planning, analysis, design, implementation,

deployment, maintenance, and retirement phase. The

description of these phases is as follows.

Exploration phase. The goal is to explore the development

environment. That is to have a comprehensive view of the

project’s givens and to elicit the initial requirements. The

collected information will be used in the subsequent phases; for

planning and analysis of the project and making the needed

decisions to develop the software.

Alternatives and the decision-making phase. The development

in a cloud environment involves many crucial decisions. The

aim of this phase are defining the development alternatives,

studying them, and making suitable development decisions.

These decisions are to be used in the following phases.

Planning Phase. The aim of this phase is to plan for all the

development tasks in all the process areas. The planning phase

includes estimating the needed resources and the size and skills

of the development team in advance. It involves preparing the

development schedule, the review plan, configuration

management plan, and quality assurance plan.

Analysis phase. The aim of this phase is to analyze and specify

both the elicited functional and non-functional requirements. In

addition to that, the requirements are transformed into high

level architecture components.

Design phase. In this phase, the analyzed requirements are

converted to detailed architectural components representing the

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.18, June 2025

37

functional behaviors of the software to be developed.

Implementation phase. The aim of this phase is to begin coding

the designed artifacts with a programming language that is

supported by the cloud provider and to test the completed

artifacts subsequently.

Deployment phase. The phase has several goals; deploy the

developed artifacts on the operating platform of the cloud

provider to be used by the end-user, and to specify and provide

the SLA of the developed SaaS/FaaS.

Maintenance phase. if the development team could handle the

arising issues, then the issues are cycledback to the analysis

phase

Retirement phase. The needs and the business environment

change rapidly. Consequently, in some cases, some software

components and features are no longer needed. Therefore, the

development team is getting rid of any software component that

is no longer needed.

The eight process areas of the CSLCP model are project

management(PM), requirements (R), product development

(PD), risk management (RM), verification ‘‘peer review” (V),

quality assurance (A),configuration management (CM), and

security (S).

Applying a structured process model such as the CSLCP model

can help SMEs to develop any type of cloud-based software at

low cost, good quality. The CSLCP model described and

specified what to do to achieve this goal.

Process model for Mobile application

Mobile software development consist of clear goals and

practices in order to be successful, however, this kind of

software bears several limitations not present in desktop

computing that make the mobile ecosystem a particular

environment.

For instance, wireless communication problems (availability,

variability, intermittence), mobility issues (autonomy,

localization), the variety of platforms and technologies, the

limited capabilities of terminal devices (low power supplies,

small-sized user interfaces), and strict time-to-market

requirements.

Mobile-D was the first attempt to incorporate Agile for the

development of mobile applications. Mobile-D was introduced

in 2004 by Abrahamsson et al. [26] as a development

methodology inspired on Extreme Programming, Crystal

Methodologies and Rational Unified Process (RUP). It is

recommended to be used by a small, co-located team, working

in a short development cycle. Mobile-D encourages iterations,

after which a functional product is created. Actual Agile

activities within the methodology include: Test-Driven

Development, Continuous Integration, Pair Programming, etc.

5. ESTIMATION MODEL FOR AI,

CLOUD AND MOBILE APPLICATION
As per review on estimation techniques of these above

mentioned categories of software, basic COCOMO were found

to be used in initial stage of projects and later intermediate

COCOMO would be used to estimate cost and effort in such

scenarios.

COCOMO Models (Constructive Cost Model)

This family of models was proposed by Boehm. The models

have been widely accepted in practice. In COCOMO, the size

S code is given in thousands of LOC (KLOC) and the effort is

in person-month.

1. Basic COCOMO : In this model based on software

complexity, three sets of {a, b} are used.

• For simple, well-understood applications, the

values are a = 2.4, b = 1.05

• For more complex systems, a = 3.0, b = 1.15

• For embedded systems, a = 3.6, b = 1.20

2. COCOMO Intermediate And Detailed

COCOMO : In the intermediate COCOMO, an

estimate of the nominal effort is obtained by

using the power function with three sets of {a,

b} with coefficients 'a' that are slightly different

from that of the basic COCOMO.
• For simple applications, a = 3.2, b = 1.05

• For more complex systems, a = 3.0, b = 1.15

• For embedded systems, a = 2.8, b = 1.20

PM = A × SizeE × ∏EMi

 i=1

Where, E = B + 0.01 × Σ SFi

 i=1
The size of the application must be scaled according to the

following five scale factors:

• Precedence (PREC)

• Flexibility of development (FLEX)

• Architecture / Risk Resolution (RESL)

• Team cohesion (TEAM)

• Maturity of the process (PMAT)

Cost factors are the characteristics of software development

that affect the execution of a project considerably. Unlike scale

factors, cost factors are chosen based on their fundamental

principles of linear impact on effort. The main components of

the project costs include:

• Effort costs

• Travel and training expenses.

• Hardware costs

Among the components of project costs, labor costs are the

most difficult to estimate and control the administration costs

and have the most significant impact on total costs.

6. CONCLUSION
In this paper, we have studied characteristics of three categories

of software namely artificial intelligence, cloud and mobile

applications. We have also reviewed process models as well as

the estimation methods for these kinds of software projects.

Since the characteristics are different they cast their effect on

process model and estimation methods. As we can see in the

process model for AI, functional decomposition may be

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.18, June 2025

38

required repeatedly but in the case of cloud application

development it is not required as much. In the same way, if we

compare AI application to that of cloud application it has been

observed that SLA (service level agrement) activities are

required in only cloud application and not in AI application.

Therefore, we can conclude that some activities may be

mandatory in one kind of application and may be optional for

other kind of application development. So the study of process

model for above mentioned application development leads to

minimized version of process model which would be our future

work.

7. REFERENCES
[1] Risener, K. (2022). A Study of Software Development

Methodologies. Computer Science and Computer

Engineering Undergraduate

[2] Amira A. Alshazly, Mustafa Y. ElNainay , Adel A. El-

Zoghabi, Mohamed S. Abougabal, (2020) Ain Shams

Engineering Journal. A cloud software life cycle process

(CSLCP) model.(6).

[3] J.Rashid, 2 T.Mahmood, 3 M.W.Nisar. Technical Journal,

University of Engineering and Technology (UET) Taxila,

Pakistan. A Study on Software Metrics and its Impact

onSoftware Quality. 2313-7770.

[4] Usman, M., Mendes, E., Weidt, F., Britto, R. (2014) Effort

estimation in agile software development: a systematic

literature review. In: Proceedings of the 10th International

Conference on Predictive Models in Software

Engineering(pp. 82-91).

[5] Ekrem Kocaguneli, Ayse Tosun, Ayse Bener. AI-Based

Models for Software Effort Estimation. Conference Paper

in Conference Proceedings of the EUROMICRO ·

September 2010.

[6] Rahul Kumar Yadav and S. Niranjan.(2017) Indian

Journal of Science and Technology, Project Effort

Estimation using COCOMO-2 Metrics with Fuzzy Logic.

Vol 10(29),

[7] Gajender pal, Manish kumar, Kuldeep barala. IJRDO -

Journal of Computer Science and Engineering. A review

paper on cocomo model. ISSN: 2456-1843

[8] ALI IDRI AND ALAIN ABRAN Laïla KJIRI.(2000).

Cocomo Cost Model Using Fuzzy Logic. 7th

International Conference on Fuzzy Theory &Technoloy

Atlantic City, New Jersey, February 27 – March 3, 2000

[9] A G Priya Varshini et al 2021 J. Phys.: Conf. Ser. 1767

012019. .

[10] Mohammed Aljohani and Rizwan Qureshi.(2017).

International Journal of Software Engineering &

Applications (IJSEA), Vol.8, No.6. COMPARATIVE

STUDY OF SOFTWARE ESTIMATION

TECHNIQUES.

[11] Gangwani, D. and Mukherjee, S. (2015) Analyzing the

Impact of Different Factors on Software Cost Estimation

in Today’s Scenario. Journal of Software Engineering and

Applications, 8, 245-251

[12] Saurabh Bilgaiyan, Santwana Sagnika, Samaresh Mishra

and Madhabananda Das. Journal of Engineering Science

and Technology Review · August 2017. A Systematic

Review on Software Cost Estimation in Agile Software

Development

[13] Chirra, S.M.R. and Reza, H. (2019) A Survey on Software

Cost Estimation Techniques. Journal of Software

Engineering and Applications , 12, 226-248

[14] Jaiswal A, Malviya P, Parihar L, et al. Software cost

estimation tool: A App based application, estimate the cost

of software project. Computing and Artificial Intelligence.

2024; 2(2): 1364

[15] Ziema Mushtaq1,*, Sami Alshmrany2, Fahad Alturise3,

and Tamim Alkhalifah. EAI Endorsed Transactions on

Energy Web. Early Size and Effort Estimation of Mobile

Application Development

[16] KRUTI LAVINGIA ∗, RAJ PATEL †, VIVEK PATEL ‡,

AND AMI LAVINGIA.(2024). Scalable Computing:

Practice and Experience, ISSN 1895-1767. SOFTWARE

EFFORT ESTIMATION USING MACHINE

LEARNING ALGORITHMS. Volume 25, Issues 2, pp.

1276–1285

[17] Ashita Malik, Varun Pandey, Anupama Kaushik. I.J.

Intelligent Systems and Applications, 2013, 05, 68-75. An

Analysis of Fuzzy Approaches for COCOMO II

[18] Zarour, A. & Zein, S. (2019). Software development

estimation techniques in industrial contexts: An

exploratory multiple case-study. International Journal of

Technology in Education and Science (IJTES), 3(2), 72-

84.

[19] Rohit Kumar Sachan∗, Ayush Nigam, Avinash Singh,

Sharad Singh, Manjeet Choudhary, Avinash Tiwari and

Dharmender Singh Kushwaha.(2016). Twelfth

International Multi-Conference on Information

Processing-2016 (IMCIP-2016). Optimizing Basic

COCOMO Model using Simplified Genetic Algorithm.

[20] Ziema Mushtaq, Abdul Wahid.(2018). IOSR Journal of

Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p):

2278-8719. Cost Estimation for Mobile Application

Development: Review.

[21] Chaudhary hamza rashid 1, imran shafi 2, jamil

ahmad.(2023).IEEE ACCESS. Software Cost and Effort

Estimation: Current Approaches and Future Trends.

Digital Object Identifier

10.1109/ACCESS.2023.3312716.

[22] Khin shin thant, hlaing htake khaung TIN (2023).

Innovare Journal of Engineering and Technology.

Learning the efficient estimation techniques for successful

software project management. Vol 11, 2023

[23] Chirra, S.M.R. and Reza, H. (2019) A Survey on Software

Cost Estimation Techniques. Journal of Software

Engineering and Applications , 12, 226-248.

[24] Ronald Jabangwe a, Henry Edison b, Anh

Nguyen Du.(2018). Journal of Systems and Software

Volume 145, November 2018, Pages 98-111. Software

engineering process models for mobile app development:

A systematic literature review.

[25] Constanze Hasterok and Janina Stompe.(2022).

Automatisierungstechnik 2022; 70(9): 777–786. PAISE®

– Process model for AI systems engineering

[26] Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T.,

Jäälinoja, J., Korkala, M. Koskela, J., Kyllönen, P., Salo,

O.: Mobile-D: An Agile approach for mobile application

IJCATM : www.ijcaonline.org

https://www.sciencedirect.com/journal/journal-of-systems-and-software
https://www.sciencedirect.com/journal/journal-of-systems-and-software/vol/145/suppl/C

