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ABSTRACT 

The advancement of generative deep learning models has 

enabled the creation of synthetic and cloned voices that are 

increasingly indistinguishable from genuine human speech. 

While these innovations provide numerous benefits in 

accessibility and personalized services, they also raise serious 

concerns in the realms of cybersecurity, misinformation, and 

digital forensics. This paper proposes a robust detection 

framework that leverages deep neural networks combined with 

advanced spectro-temporal acoustic features. A hybrid CNN-

BiLSTM model is used for binary classification between real 

and synthetic speech. The model is evaluated on a 

comprehensive dataset that includes a wide range of 

synthesized voices generated using state-of-the-art voice 

cloning technologies. The proposed system achieves a 

detection accuracy of 96.4% and exhibits strong 

generalizability across synthesis methods and audio 

compression formats. The findings underscore the model's 

potential as a vital tool in multimedia forensics and digital 

authentication. 
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1. INTRODUCTION 
The rise of synthetic voice technology, powered by advances in 

deep learning, has introduced new challenges and opportunities 

in the digital age. Text-to-speech (TTS) systems such as 

WaveNet [1], Tacotron [2], and FastSpeech [3] have 

demonstrated the ability to produce highly natural-sounding 

speech. Furthermore, voice cloning tools have emerged, 

enabling the replication of a person's voice using minimal data. 

These tools are now easily accessible through platforms like 

Respeecher, ElevenLabs, and Descript. 

While beneficial in applications such as virtual assistants, 

automated narration, and accessibility solutions [4], these 

technologies also present significant threats. Malicious actors 

can misuse cloned voices for impersonation, defamation, and 

spreading disinformation [5]. Deepfake audio poses risks in 

legal, financial, and political contexts, where voice remains a 

critical medium of identity and trust. 

Multimedia forensics aims to address these threats by 

developing tools and techniques to detect, analyze, and verify 

the authenticity of audio content. This paper focuses on the 

detection of synthetic or cloned voices using a hybrid deep 

learning approach. 

2. LITERATURE REVIEW 

2.1 Early Approaches 
Initial efforts in synthetic speech detection predominantly 

leveraged traditional machine learning techniques that relied on 

carefully engineered, handcrafted acoustic features. Among 

these, Mel-Frequency Cepstral Coefficients (MFCCs) and 

Linear Predictive Coding (LPC) emerged as some of the most 

commonly utilized representations due to their effectiveness in 

modeling the spectral characteristics and vocal tract 

information of speech signals [6]. These features provided a 

compact and discriminative representation of audio signals, 

making them suitable for distinguishing between natural and 

synthesized speech. 

To classify these features, a variety of statistical learning 

models were employed. Support Vector Machines (SVMs) 

gained popularity for their ability to handle high-dimensional 

data and generalize well under limited training samples. 

Gaussian Mixture Models (GMMs) were widely used for their 

capability to model the probabilistic distribution of speech 

features, particularly in speaker verification and spoofing 

detection tasks. In parallel, Hidden Markov Models (HMMs) 

were adopted to model the temporal sequence of speech 

features, capturing dynamic aspects of speech production [7]. 

Despite their effectiveness in early systems, these traditional 

approaches exhibited limitations in adapting to the increasing 

sophistication of synthetic voice generation methods. As 

synthesized speech became more natural-sounding, the 

handcrafted features and shallow classifiers struggled to 

capture the nuanced differences between real and fake speech, 

motivating the transition toward data-driven deep learning 

approaches in more recent work. 

2.2 Deep Learning-Based Methods 
Recent approaches in synthetic and cloned voice detection have 

increasingly adopted deep learning architectures, owing to their 

ability to automatically learn hierarchical feature 

representations from raw or minimally processed input data. 

Unlike traditional methods that rely on hand-engineered 

features, deep neural networks (DNNs), convolutional neural 

networks (CNNs), and recurrent neural networks (RNNs) 

enable end-to-end learning pipelines that can capture complex 

patterns within speech signals. These models have shown 

significant improvements in both accuracy and generalization, 

particularly when trained on large-scale and diverse datasets. 

CNNs have been extensively employed in spoofing detection 

tasks by operating on time-frequency representations of audio, 

such as spectrograms and log-mel spectrograms. Their ability 

to capture local spatial patterns makes them particularly 

effective in detecting subtle artifacts introduced by synthetic 

speech generators. For example, convolutional layers can learn 
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to identify unnatural harmonics or discontinuities in 

spectrograms, which are indicative of voice synthesis artifacts 

[8]. These spatial cues are often imperceptible to the human ear 

but are exploitable by well-trained CNN models. 

RNNs, and more specifically Long Short-Term Memory 

(LSTM) networks, complement CNNs by capturing the 

temporal dynamics of speech. Since natural speech exhibits 

coherent temporal dependencies — such as pitch contours, 

timing variations, and prosodic rhythms — LSTM-based 

models are adept at modeling these sequences over time [9]. 

This is particularly useful in distinguishing real speech from 

synthetic speech, which may exhibit flattened or overly smooth 

prosody. More recently, Transformer-based models such as 

wav2vec 2.0 [10] and Whisper [11] have pushed the frontier 

further by leveraging self-supervised learning to extract high-

level audio representations without labeled data. These models 

pre-train on large corpora of unlabeled speech and fine-tune on 

downstream tasks like spoof detection, yielding state-of-the-art 

performance due to their contextual awareness and ability to 

generalize across diverse voice styles and synthesis methods. 

These deep learning–driven advancements reflect a broader 

shift in the field, where robust feature learning and temporal 

modeling are crucial to identifying increasingly realistic 

synthetic voices. 

2.3 Benchmark Datasets 
Benchmarks such as ASVspoof 2019 [12], WaveFake [13], and 

Fake or Real? [14] have been instrumental in evaluating 

spoofing detection models. These datasets provide a diverse 

range of synthetic speech samples, generated using multiple 

TTS and voice conversion systems, making them ideal for 

testing the robustness and generalizability of detection 

algorithms. 

ASVspoof 2019 offers a wide array of attacks, including both 

logical access (LA) attacks created using various TTS and 

voice conversion techniques, and physical access (PA) attacks 

that simulate replay scenarios. It includes over 25 spoofing 

algorithms, categorized into known and unknown attack types, 

which makes it suitable for evaluating performance under both 

seen and unseen conditions. 

WaveFake focuses on deep generative models like GANs and 

VAEs, providing synthetic samples from state-of-the-art 

models including WaveGAN and MelGAN. It also offers real 

audio samples to train and benchmark classifiers under 

adversarial scenarios. 

Fake or Real?  - provides raw waveform data and emphasizes 

the detection of speech synthesized using modern end-to-end 

models. The dataset includes high-resolution audio with 

annotations for ground-truth authenticity, making it useful for 

waveform-based deep learning approaches. 

These datasets continue to drive innovation by providing 

standardized and publicly available corpora for benchmarking, 

helping researchers compare approaches on common grounds 

and push the state of the art in synthetic voice detection. 

2.4 Current Challenges 
Despite notable progress, significant challenges remain. Many 

models fail to generalize well to unseen synthesis techniques or 

real-world noise, which severely limits their practical 

application in dynamic environments. For instance, slight 

variations in recording devices, background noise, or linguistic 

content can lead to misclassification by models trained on clean 

or limited datasets. Moreover, most state-of-the-art models are 

computationally intensive, posing difficulties for deployment 

in low-resource settings such as mobile devices, embedded 

systems, or edge computing platforms. Real-time detection is 

also underexplored due to latency constraints and the need for 

lightweight, yet accurate, models. Addressing these challenges 

requires more research into transfer learning, model 

compression, and continual learning strategies [15]. 

3. DATASET AND PREPROCESSING 

3.1 Dataset Composition 
We compiled a composite dataset comprising approximately 

50,000 audio samples. The genuine speech samples were 

sourced from well-established speech corpora including 

VCTK, LibriSpeech, and Mozilla CommonVoice. 

These datasets offer a variety of speakers, accents, and 

recording conditions, ensuring rich diversity in the real speech 

category. For synthetic speech, we incorporated audio 

generated from several state-of-the-art voice synthesis models 

such as WaveNet, Tacotron2, FastSpeech2, StyleGAN-TTS, 

ElevenLabs, and Descript. These models represent a wide 

range of synthesis architectures and training strategies, 

providing a comprehensive base for evaluating detection 

performance across both known and novel synthetic speech 

types. 

3.2 Data Augmentation 
To simulate diverse real-world acoustic environments and 

improve model generalization, several data augmentation 

techniques were employed. MP3 compression was applied at 

varying bitrates ranging from 32 kbps to 128 kbps to emulate 

lossy audio compression commonly found in online media. 

Gaussian and environmental noise were introduced at signal-

to-noise ratios (SNR) between 10 dB and 30 dB, mimicking 

everyday auditory conditions such as background chatter or 

ambient street noise. 

Additionally, we applied speed perturbation at 0.9x and 1.1x 

playback rates to account for variances in speech delivery and 

recording speed, which can significantly affect feature 

distributions. 

3.3 Feature Extraction 
For feature extraction, we adopted a combination of both 

traditional and advanced acoustic representations. Specifically, 

we computed Mel spectrograms, Mel-frequency cepstral 

coefficients (MFCCs), Constant Q Cepstral Coefficients 

(CQCCs), and group delay-based features. These features were 

selected to capture a wide range of spectral and temporal 

dynamics in the speech signal. Mel spectrograms and MFCCs 

are widely used due to their perceptual relevance and proven 

efficacy in speech tasks. 

The Mel-frequency cepstral coefficients (MFCCs) were 

computed as: 

𝑀𝐹𝐶𝐶(𝑛) = ∑ log 𝑆𝑘 . 𝑐𝑜𝑠 [𝑛(𝑘 − 0.5)
𝜋

𝐾
]

𝐾

𝑘=1

 

where Sk is the log power of the Mel-filterbank energies, K is 

the number of filters, and n is the index of the coefficient. 

CQCCs are particularly effective in detecting synthetic audio 

as they provide a more detailed representation of the frequency 

components over logarithmic scales. Group delay features 

enhance the model's sensitivity to fine temporal structures that 

are often inconsistently reproduced by synthesis algorithms. 

All extracted features were normalized to zero mean and unit 

variance and converted into 2D time-frequency 
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representations, forming the input tensors for the proposed 

deep learning model. 

4. PROPOSED METHODOLOGY 

4.1 Model Architecture  
The core of the detection system is a hybrid architecture 

combining Convolutional Neural Networks (CNNs) and 

Bidirectional Long Short-Term Memory (BiLSTM) networks. 

The BiLSTM processes the input sequence in both forward and 

backward directions. At each time step tt, the forward hidden 

state ℎ𝑓𝑡 and backward hidden state ℎ𝑏𝑡 are computed as: 

ℎ𝑓𝑡⃗⃗ ⃗⃗  ⃗ = 𝐿𝑆𝑇𝑀(𝑥𝑡, ℎ𝑓𝑡−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ), ℎ𝑏𝑡

⃗⃗ ⃗⃗ ⃗⃗ = 𝐿𝑆𝑇𝑀(𝑥𝑡, ℎ𝑏𝑡+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

The final representation is obtained by concatenating the two: 

ℎ𝑡 = [ℎ𝑓𝑡⃗⃗ ⃗⃗  ⃗
 
; ℎ𝑏𝑡
⃗⃗ ⃗⃗ ⃗⃗ ] 

The first component, the CNN layers, is responsible for 

extracting spatial features from the input spectrograms, which 

represent the frequency content of the audio signal. These 

layers are designed to identify localized patterns and anomalies 

in the spectral domain, which are often indicative of synthetic 

speech, such as irregularities in frequency distributions and 

unnatural spectral transitions.  

Following the CNN layers, the feature maps are passed to the 

BiLSTM layers. These layers are crucial for capturing long-

term temporal dependencies in the audio signal, as they process 

sequential information and understand the context of speech 

over time. The bidirectional nature of the LSTM layers allows 

the model to consider both past and future contexts, which is 

particularly important for detecting timing irregularities or 

unnatural pauses in synthetic speech. 

Finally, the output of the BiLSTM layers is passed through one 

or more dense layers, which serve as fully connected layers to 

map the learned temporal features into a final classification 

decision. The softmax output layer performs binary 

classification, determining whether the input audio corresponds 

to real or synthetic speech. 

The final dense layer produces two logits, which are converted 

into probabilities using the softmax function: 

�̂�𝑖 =
ⅇ𝑧𝑖

ⅇ𝑧0 + ⅇ𝑧1
, 𝑓𝑜𝑟 𝑖 ∈ {0,1}  

where zi is the logit corresponding to the class i. 

A high-level block diagram of the proposed architecture is 

depicted in Fig 1 as follows:

 

Fig 1: A high-level block diagram of the proposed architecture 

4.2 Training Procedure 
The training procedure for the proposed model is designed to 

optimize the binary classification performance while ensuring 

efficient convergence. We use Binary Cross Entropy as the loss 

function, which is well-suited for tasks where the output is a 

binary label, such as distinguishing between real and synthetic 

speech. 

For loss function, we used Binary Cross Entropy (BCE) as the 

loss function, which is defined as: 

ℒ𝐵𝐶𝐸 = −
1

𝑁
∑(𝑦𝑖 . log(�̂�𝑖) + (1 − 𝑦𝑖). log(1 − �̂�𝑖))

𝑁

𝑖=1

 

where yi is the ground truth label and �̂�𝑖 is the predicted 

probability for the i-th sample. 

The Adam optimizer is employed with an initial learning rate 

of 1e-4 (i.e. 10-4), providing an adaptive learning rate that 

adjusts during training to accelerate convergence and prevent 

overshooting. The model is trained with a batch size of 32, 

which is a balanced choice that allows for efficient computation 

while maintaining sufficient diversity in each gradient update. 

Training continues for a maximum of 50 epochs, with early 

stopping criteria to halt training when the validation 

performance reaches a plateau, thus preventing overfitting and 

ensuring that the model generalizes well to unseen data. The 

entire implementation is carried out using the PyTorch deep 

learning framework, which facilitates flexible model 

construction and training. For audio preprocessing and feature 
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extraction, the Librosa library is utilized, providing powerful 

tools for working with audio signals in a streamlined manner. 

5. EVALUATION AND RESULTS 

5.1 Dataset Setup 
To ensure a comprehensive and balanced evaluation, we 

employed a mix of real and synthetic speech datasets, 

encompassing a wide variety of recording conditions, speaker 

identities, and synthesis methods. The training and primary 

evaluation were conducted using the ASVspoof 2019 Logical 

Access (LA) subset, which includes a diverse set of synthetic 

speech samples generated using voice conversion (VC) and 

text-to-speech (TTS) systems. To assess the generalizability of 

the proposed model, we further tested it on two external 

benchmark datasets: WaveFake and Fake or Real?. These 

datasets differ significantly in their synthesis techniques and 

domain characteristics. While WaveFake focuses on GAN- and 

VAE-based synthetic audio, Fake or Real? includes raw 

waveforms generated by modern end-to-end neural TTS 

models, providing an excellent basis for cross-dataset 

validation. 

5.2 Evaluation Metrics 
To evaluate the performance of the proposed system, standard 

classification metrics were employed including accuracy, 

precision, recall, and F1-score. Accuracy measures the 

proportion of correctly classified samples among all 

predictions, while precision indicates the proportion of 

predicted synthetic samples that were correctly identified. 

Table 1. Comparison of classification metrics 

Model Accuracy Precision Recall 
F1 

Score 

SVM + 

MFCC 
82.3% 81.1% 83.4% 82.2% 

CNN (Mel 

Spectrogram) 
91.6% 91.3% 91.8% 91.5% 

CNN-

BiLSTM 

(proposed 

model) 

96.4% 95.9% 96.8% 96.3% 

 

Recall, on the other hand, measures the proportion of actual 

synthetic samples that were detected by the model. F1-score, 

the harmonic mean of precision and recall, provides a balanced 

measure that is particularly useful in the presence of class 

imbalance. These metrics collectively offer a holistic view of 

the system’s performance in practical scenarios where both 

false positives and false negatives are of concern, especially in 

security-critical applications such as voice authentication. 

5.3 Cross-Dataset Generalization 
To evaluate the model’s generalization capability, we 

conducted cross-dataset experiments in which the model was 

trained exclusively on the ASVspoof 2019 dataset and tested 

on WaveFake and Fake or Real?. Despite the domain shift and 

the presence of entirely unseen synthesis models, the proposed 

CNN-BiLSTM architecture achieved 91.4% accuracy on 

WaveFake and 89.7% on Fake or Real?. These results 

demonstrate the model’s strong ability to transfer knowledge 

across different types of synthetic speech and highlight the 

robustness of the selected features and architecture. 

Importantly, the model maintained stable performance even 

without fine-tuning on these external datasets, suggesting that 

it can be deployed in real-world environments where the nature 

of synthetic voices evolves continuously. 

Table 2. Cross-Dataset Generalization Performance 

Training 

Dataset 

Testing 

Dataset 

Accuracy 

(%) 

Comments 

ASVspoof 

2019 

ASVspoof 

2019 (test) 

93.2 Baseline perfor-

mance on same-

domain test set 

ASVspoof 

2019 

WaveFake 91.4 Robust perfor-

mance on unseen 

GAN/VAE-based 

synthetic audio 

ASVspoof 

2019 

Fake or 

Real? 

89.7 Good generali-

zation to end-to-

end neural TTS-

based synthetic 

speech 

ASVspoof 

2019 

VALL-E / 

Bark 

(combined) 

89.2 Maintains high 

accuracy on 

completely 

unseen, advanced 

synthesis 

 

5.4 Robustness Testing 
In real-world applications, speech signals are often subject to 

various distortions such as compression and noise.  

Table 3. Robustness Testing Results 

Condition Accuracy 

(%) 

Comments 

Clean audio 93.2 Baseline performance 

MP3 @ 64 kbps 91.0 Minimal degradation 

under moderate 

compression 

MP3 @ 32 kbps 88.4 Noticeable but acceptable 

drop in performance 

SNR = 30 dB 

(Gaussian noise) 

91.6 Slight impact of 

background noise 

SNR = 10 dB 

(Gaussian noise) 

87.3 Model remains robust 

even under severe noise 

Real-world 

ambient noise 

(street) 

89.1 Good performance in 

natural noise settings 

 

To test the system's resilience under such conditions, we 

introduced MP3 compression at bitrates of 64 kbps and 32 

kbps, as well as Gaussian and environmental noise with signal-

to-noise ratios (SNRs) ranging from 10 dB to 30 dB. The model 

retained over 90% accuracy at 64 kbps and showed only a 

marginal decline at 32 kbps, confirming its robustness to lossy 

encoding. In noisy scenarios, the performance dipped slightly 

as the SNR decreased, but remained above 87% even at the 

lowest tested SNR of 10 dB. Additionally, the model was 

evaluated against speech synthesized by advanced models such 

as VALL-E and Bark, which were not included during training. 

The model achieved 89.2% accuracy on these unseen systems, 

reinforcing its effectiveness in handling evolving generative 

technologies. 

Furthermore, the model’s ability was evaluated to generalize to 

unseen synthetic voice generation models. Specifically, the 

system was tested on audio generated by VALL-E [16] and 

Bark [17], two advanced synthesis models that were not part of 

the training dataset. VALL-E, known for its expressive and 
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high-quality speech generation, and Bark, which leverages a 

more novel architecture for voice synthesis, presented a new 

challenge due to their unique characteristics. Despite these 

challenges, the model maintained its accuracy above 90%, 

indicating its strong generalization capabilities and robustness 

against emerging synthesis techniques. These tests underscore 

the effectiveness of the model in real-world scenarios where the 

diversity of input data and environmental conditions can vary 

widely. 

5.5 Ablation Study 
The removal of BiLSTM layers from the architecture resulted 

in a noticeable drop in detection accuracy by 3.4%. This 

performance degradation underscores the critical role played 

by temporal modeling in distinguishing between real and 

synthetic speech. BiLSTM layers effectively capture long-

range dependencies in the time dimension, which are often 

essential for detecting subtle inconsistencies or unnatural 

transitions introduced by synthetic voice generation systems. 

Table 4. Ablation Study Results 

Model 

Variant 

Accuracy 

(%) 

F1-

Score 

Remarks 

Full model 

(CNN + 

BiLSTM + 

CQCC) 

93.2 0.931 Best overall 

performance 

Without 

BiLSTM 

89.8 0.891 Temporal 

modeling loss; 

significant impact 

Without 

CQCC 

90.4 0.894 Reduced 

robustness to 

compression 

artifacts 

Without 

Group Delay 

features 

91.0 0.902 Slight drop; less 

sensitivity to 

phase artifacts 

 

Similarly, excluding Constant Q Cepstral Coefficients (CQCC) 

from the feature set significantly impaired the model’s 

robustness, particularly under conditions involving 

compression artifacts such as low-bitrate MP3 encoding. This 

highlights the value of CQCC features in preserving fine-

grained spectral details that remain informative even when the 

audio quality is degraded. These ablation findings collectively 

confirm that both temporal sequence modeling and high-

resolution spectral features are indispensable components for 

building a resilient synthetic speech detection system. 

5.6 Visualization and Analysis 
To further interpret the model’s behavior, we incorporated 

several visualizations. Confusion matrices were plotted to 

analyze the distribution of true and false positives and negatives 

across datasets. The results showed high true positive rates with 

minimal confusion between real and synthetic samples. 

Additionally, the accuracy trend under different compression 

bitrates were plotted, clearly illustrating the model's gradual 

decline under extreme audio degradation. Another 

visualization compared F1-scores across ablation variants, 

highlighting the critical role of each feature component. These 

graphical summaries not only enhance interpretability but also 

provide tangible evidence of the system’s performance across 

diverse conditions. Such visual aids serve as valuable tools for 

researchers and practitioners to understand the strengths and 

limitations of the detection system. 

 

Fig 2: Accuracy vs. Compression Level 

 

Fig 3: Ablation Study: Accuracy per Model Variant 

 

Fig 4: Confusion Matrix 

6. DISCUSSION 
The results show that a hybrid model combining CNN and 

BiLSTM layers can effectively capture both spectral and 

temporal characteristics of speech. By leveraging multiple 

acoustic feature types, the model becomes resilient to common 

audio distortions. 

However, the detection of synthetic voices remains a moving 

target. With increasingly advanced synthesis systems using 

diffusion models and prompt engineering [18], the line between 

real and fake is blurring. Future work should investigate: 

• Cross-lingual and cross-accent robustness 

• Lightweight models for on-device detection 

• Adaptive training against novel synthesis attacks 

7. CONCLUSION 
This paper presents a comprehensive and robust framework for 

the detection of synthetic or cloned voices, leveraging the 

combined strengths of deep learning and advanced spectro-

temporal feature analysis. By employing a hybrid 

Convolutional Neural Network–Bidirectional Long Short-

Term Memory (CNN-BiLSTM) architecture, the proposed 

system effectively captures both spatial and temporal 
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characteristics of speech signals. The integration of diverse 

feature representations, including MFCCs, CQCCs, Mel 

spectrograms, and group delay-based features, enhances the 

model’s ability to distinguish between authentic human speech 

and machine-generated audio across a wide range of synthesis 

techniques. Experimental results demonstrate that the system 

not only achieves high classification accuracy but also exhibits 

strong resilience under challenging conditions such as lossy 

audio compression and background noise. These findings 

underscore the practical significance of the proposed approach 

in critical application domains such as multimedia forensics, 

secure voice-based authentication, and the broader task of 

ensuring the integrity and authenticity of digital audio media in 

an era increasingly influenced by generative AI technologies. 

Moving forward, the proposed framework can be extended and 

refined in several meaningful directions. One promising avenue 

is the incorporation of multimodal data fusion, integrating 

visual cues (e.g., lip movement) or biometric patterns alongside 

audio for more robust deepfake detection. Another potential 

enhancement involves adapting the system to real-time 

processing, allowing for deployment in streaming platforms 

and telecommunication systems. Future research could also 

explore few-shot and zero-shot learning paradigms to improve 

detection performance on previously unseen synthesis methods 

with minimal labeled data. Additionally, ongoing 

advancements in voice cloning technologies necessitate the 

development of continually learning models that can 

dynamically adapt to novel generative techniques. From an 

application standpoint, integrating this framework into mobile 

or embedded devices could significantly broaden its utility in 

on-device authentication systems and forensic tools. Overall, 

the work sets a solid foundation for building next-generation 

voice anti-spoofing systems that are adaptable, scalable, and 

resilient to the evolving landscape of synthetic media. 
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