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ABSTRACT 
Automated unsupervised feature selection extracts relevant and 

non-redundant features from high-dimensional data through 

algorithms that examine the dataset's intrinsic structure. The 

goal of automated unsupervised feature selection is to identify 

relevant and non-redundant features in high-dimensional data 

to enhance model performance and clarity. In data pre-

processing, Weighted Graph Formation (WGF) creates a graph 

where features are represented as nodes, and edges are 

weighted based on feature similarity or relevance, helping 

identify relevant and non-redundant features for automated 

unsupervised feature selection in high-dimensional data. The 

Unified Dense Subgraph Detection Algorithm (UDSDA) 

detects dense subgraphs in a weighted graph to uncover clusters 

of relevant and non-redundant features in high-dimensional 

data, facilitating automated unsupervised feature selection by 

emphasizing the most meaningful feature connections. The 

Shrinking and Expansion Algorithm (SEA) refines feature 

subsets by shrinking irrelevant features and expanding relevant 

ones, improving the identification of non-redundant and 

relevant features in high-dimensional data for automated 

unsupervised feature selection. Normalized Mutual 

Information (NMI) quantifies the relationship between feature 

subsets, aiding in the identification of relevant and non-

redundant features in high-dimensional data by assessing the 

shared information for automated unsupervised feature 

selection. The result shows that with a feature selection 

accuracy score of 0.92, precision of 0.91, recall of 0.93, F1 

score of 0.92, training time of 5, and testing time of 1. Without 

feature selection accuracy score of 0.88, the precision of 0.87, 

the recall of 0.89, the F1 score of 0.88, training time of 10, and 

testing time of 2, implemented using Python Software. The 

future scope of automated unsupervised feature selection 

includes advancing algorithms for large-scale high-

dimensional data, enhancing accuracy, and improving the 

ability to handle diverse datasets across different fields. 

Keywords  
Weighted Graph Formation, Normalized Mutual Information, 

Shrinking and Expansion Algorithm, Unified Dense Subgraph 

Detection Algorithm, Feature Selection, High-Dimensional 

Data.  

1. INTRODUCTION 
In recent years, the exponential development of information 

across various domains has brought to the forefront the 

challenges associated with high-dimensional datasets. These 

datasets, characterized by a large number of features, can 

complicate data analysis, increase computational costs, and 

degrade model performance due to the curse of dimensionality 

[1-2]. Feature selection has emerged as a critical pre-processing 

step to enhance model interpretability and performance by 

identifying a subset of relevant and non-redundant features. 

This paper addresses the need for an automated, unsupervised 

approach to feature selection, which is useful when labelled 

data is scarce or unavailable [3-4]. The primary problem 

statement revolves around the difficulty in managing high-

dimensional datasets, where unrelated or dismissed structures 

can obscure underlying patterns and relationships in the data 

[5-6]. Traditional feature selection methods often rely on 

supervised learning, which may not be feasible in all scenarios 

when dealing with unlabelled data. Existing unsupervised 

methods can struggle to discriminate between relevant and 

irrelevant features without introducing bias or overlooking 

information [7-8]. This paper aims to fill this gap by proposing 

an automated unsupervised feature selection framework that 

utilizes advanced statistical techniques to streamline the feature 

selection process. The motivation for this research stems from 

the increasing need for efficient data analysis tools that can 

operate without human intervention [9]. As data becomes more 

complex and voluminous, the ability to automate feature 

selection processes will empower analysts and researchers to 

extract meaningful insights without extensive manual 

oversight.  

This automated approach can decrease the period and assets 

necessary to prepare data for modelling, thus facilitating 

quicker decision-making in various fields such as finance, 

healthcare, and social sciences [10]. The proposed solution 

involves the development of an unsupervised feature selection 

algorithm that leverages intrinsic data structures and 

relationships. By employing techniques such as gathering, 

dimensionality decrease, and correlation analysis, the 

algorithm identifies features that contribute to the data's 

variance while filtering out those that are redundant or 

irrelevant [11-12]. This process ensures that the selected 

features retain their informational value, enhancing the model’s 

predictive capabilities. The results of this research make 

evident the success of the proposed automated USFSM. 

Experiments conducted on benchmark datasets show that the 

algorithm outperforms existing USM in terms of both feature 

relevance and redundancy reduction [13-14]. Also, the selected 

feature sets lead to improved performance in subsequent 

modelling tasks, validating the approach's utility in real-world 

applications. The framework’s capacity to select structures 

created on the integral edifice of the data makes it a useful 

device for various high-dimensional datasets [15-16]. The 

objective of this study is twofold: first, to present a robust, 

automated framework for USFS that addresses the limits of 

present techniques, and second, to provide empirical evidence 
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of its effectiveness through comprehensive evaluations across 

diverse datasets [17-18]. By achieving these objectives, the 

research aims to contribute to the field of data science, 

equipping practitioners with an effective tool for tackling the 

challenges posed by high-dimensional data. In due course, the 

work aspires to advance our consideration of structure selection 

processes and encourage exploration into automated 

methodologies that enhance data analysis efficiency and 

accuracy [19-20]. This research represents a step forward in the 

search for efficient structure choices in high-dimensional 

spaces. The proposed automated USFS framework not only 

simplifies the feature variety procedure but also ensures the 

identification of relevant, non-redundant features critical for 

robust data analysis and modelling. The remaining sections are 

arranged as follows: The literature review was described in 

Section 2, the proposed technique was described in Section 3, 

the results were discussed in Section 4, and the paper's 

conclusion was described in Section 5. 

2. LITERATURE SURVEY 
This literature survey explores existing methodologies and 

advancements in automated unsupervised feature selection for 

identifying relevant, non-redundant features in high-

dimensional datasets. Ghosh et al. [21] developed a novel 

method using sparse autoencoders to select features in an 

unsupervised manner. The proposed approach demonstrated 

improved performance on benchmark datasets by minimizing 

redundancy while maximizing the relevance of selected 

features. While the method shows promise, the authors 

highlight a lack of scalability to enormously large datasets, 

suggesting a need for more efficient implementations. Yang et 

al. [22] proposed a graph-based framework that utilizes the 

intrinsic relationships among features to perform unsupervised 

selection. This method outperformed traditional techniques in 

identifying informative subsets of features across multiple 

datasets. The paper notes a limited ability to handle noisy data, 

indicating that future work should focus on integrating noise-

reduction techniques. Chen et al. [23] introduced a kernel-

based method that incorporates density estimation to identify 

relevant features in high-dimensional spaces. Results indicated 

superior feature selection capabilities related to present 

methods, in complex datasets. The authors point out that the 

method's effectiveness is contingent on kernel choice, thus 

warranting further exploration into adaptive kernel selection. 

Patel et al. [24] investigated the use of ensemble learning 

techniques to enhance the robustness of USFSM. The ensemble 

approach yielded a more stable and accurate selection of 

features across different types of datasets. While the method 

improved robustness, the authors noted a significant 

computational overhead, suggesting a need for more efficient 

ensemble strategies. Lee et al. [25] aimed to leverage 

variational inference to perform USFS by estimating the 

posterior distribution of feature relevance. This innovative 

approach resulted in a marked increase in feature selection 

accuracy in datasets with complex structures. The paper 

identifies a lack of generalizability across various data types, 

advocating for additional studies to assess performance across 

diverse domains.  

Zhao et al. [26] proposed a reinforcement learning framework 

to select topographies based on their involvement in data 

clustering. The method showed substantial improvements in 

clustering performance and feature relevance over standard 

unsupervised methods. The approach requires extensive 

computational resources and training time, indicating a need for 

optimization in real-time applications. Liu et al. [27] introduced 

a multi-view learning approach that integrates different 

perspectives of the data for better feature selection. The results 

demonstrated enhanced feature selection by utilizing diverse 

data views, leading to improved predictive performance. The 

paper highlights a challenge in synchronizing feature selection 

across views, suggesting further investigation into integration 

methods. Zhang et al. [28] explored the use of hierarchical 

clustering techniques to guide unsupervised feature selection 

processes. The suggested method outstripped existing 

unverified feature choice methods, revealing meaningful 

features through cluster analysis. The authors noted that the 

method struggles with very large datasets, proposing future 

work to improve scalability. Koren et al. [29] employed 

information-theoretic criteria to identify relevant features 

without labelled data. The planned process displayed superior 

performance in retaining pertinent information, even though 

decreasing severance in designated features. The reliance on 

information-theoretic measures limits applicability in datasets 

with high noise levels, necessitating further refinement. Wu et 

al. [30] investigated the potential of self-supervised learning 

frameworks to facilitate effective FSHD data. This novel 

approach yielded significant improvements in feature quality 

and model performance on various tasks. The paper points to 

challenges in the scalability of self-supervised approaches, 

indicating a necessity for extra effective algorithms in real-

world scenarios. 

3. RESEARCH PROPOSED 

METHODOLOGY 
The automated unsupervised feature selection focuses on 

identifying relevant and non-redundant features in high-

dimensional data. The diverse dataset from Kaggle, 

encompassing various domains like genomics and image 

processing, will be collected to facilitate analysis. The data will 

undergo rigorous pre-processing, including cleaning, 

imputation of missing values, and normalization to ensure 

uniformity among features. A feature affinity matrix will be 

constructed using metrics such as Normalized Mutual 

Information (NMI) to evaluate feature relationships. The 

Unified Dense Subgraph Detection Algorithm (UDSDA) will 

be employed to identify compact clusters of features, revealing 

redundancies. This process is enhanced by comparing it with 

the SEA to optimize feature selection. To refine the feature set, 

improving model accuracy and interpretability while 

minimizing noise. The effectiveness of this approach will be 

assessed using parameters that allow for a complete assessment 

of the model's performance against existing techniques, 

contributing to more informed decision-making in various 

applications. 
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Fig 1: Block Diagram of the Proposed Work 

Figure 1 displays the block diagram for the proposed 

methodology in automated unsupervised feature selection, 

illustrating a structured flow from data collection to the 

outcome. It begins with Data Collection, where a high-

dimensional dataset from Kaggle is sourced, encompassing 
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diverse features across various domains. Data Pre-processing 

involves cleaning the data by setting disappeared standards and 

normalizing features to ensure consistency. This prepares the 

dataset for analysis. The Feature Affinity Matrix Construction 

employs metrics like Normalized Mutual Information (NMI) to 

evaluate feature relationships, forming a weighted graph to 

reflect affinities. The Feature Selection Process utilizes 

algorithms such as Unified Dense Subgraph Detection 

(UDSDA) to identify relevant and non-redundant features 

while comparing results with the SEA. To concentrate on 

filtering the feature set to enhance model accuracy, reduce 

complexity, and improve interpretability, supporting informed 

decision-making in various applications. 

3.1 Data Collection 
The dataset used in this study is a high-dimensional collection 

containing hundreds to thousands of features across multiple 

domains such as genomics, image processing, and text data. 

These datasets offer a rich variety of features, each representing 

specific attributes or measurements critical to the respective 

domains. The diversity and scale of the dataset make it an ideal 

resource for exploring feature relevance, redundancy, and noise 

reduction. Designed to challenge algorithms, it requires models 

to identify the most pertinent structures while preserving the 

integrity of the data. The dataset is well-suited for 

benchmarking machine learning algorithms and developing 

new methodologies, particularly in classification and 

knowledge acquisition tasks. To enhance the robustness and 

generalizability of our findings, we have expanded the 

evaluation to include results across a variety of datasets and 

scenarios, ensuring the methods apply to a wide range of real-

world applications. 

3.2 Data Pre-Processing 
The Pre-processing in Automated Unsupervised Feature 

Selection for Identifying Relevant and Non-Redundant 

Features in High-Dimensional Data, a sequence of vital 

techniques is employed to enhance data quality and optimize 

feature analysis. The dataset undergoes a thorough cleaning 

process to address any missing values. This is attained over 

various imputation methods, such as mean, median, or mode 

substitution, which help maintain the integrity of the dataset 

and ensure that subsequent analyses are based on complete 

information. Following data cleaning, normalization or 

standardization techniques are applied to scale the features 

consistently. This confirms that all structures contribute equally 

to similarity assessments, preventing any single feature from 

influencing the results due to differences in scale. After 

preparing the data, a feature affinity matrix is constructed using 

metrics like Normalized Mutual Information (NMI), which 

evaluates the relationships and dependencies between features. 

Weighted Graph Formation (WGF) is utilized to make a 

weighted graph where the weights represent the affinity 

between features, using NMI or more advanced metrics. This 

matrix serves as a foundation for the subsequent steps in the 

analysis, enabling more robust feature selection by reflecting 

the affinities among the high-dimensional data attributes. The 

representative features are extracted from these clusters using 

criteria like the Laplacian Score, allowing for the selection of 

the utmost pertinent structures while reducing noise and 

redundancy in the dataset. 

3.2.1 Weighted Graph Formation (WGF) 
Weighted Graph Formation is a vital stage in data pre-

processing for Automated Unsupervised Feature Choice in 

high-dimensional datasets. In this method, each feature is 

represented as a node in a graph, with edges connecting 

structures created based on their similarity or correlation. The 

edges are assigned weights that reflect the asset of the 

association among features, where higher weights indicate 

stronger connections. This graph helps capture the 

interdependencies between features, making it easy to identify 

redundant and irrelevant features during the selection process. 

The weights can be calculated using numerous methods, such 

as mutual information or cosine similarity, depending on the 

dataset's nature. By constructing the graph, it is possible to 

analyse the relations among structures, revealing groups or 

clusters that exhibit high correlation. These correlated or 

redundant features can then be removed, reducing the dataset’s 

dimensionality. After the graph is created, unsupervised feature 

selection algorithms, like graph-based clustering or community 

detection, are applied to recognize the utmost pertinent 

structures. This approach improves feature selection efficiency 

by focusing on significant features and eliminating redundant 

ones, leading to improved model presentation. A weighted 

graph is formed by calculating feature relationships using 

equations 1-4. Each edge weight signifies the strength of 

similarity, guiding the identification of redundant features in 

high-dimensional datasets. This methodology enhances model 

performance by facilitating efficient feature selection and 

dimensionality reduction through graph analysis.  Cosine 

Similarity for Pairwise Feature Comparison: The cosine 

comparison among two features 𝑥𝑖 and 𝑥𝑗  is computed as: 

𝑆(𝑥𝑖 , 𝑥𝑗)  =
𝑥𝑖 .𝑥𝑗

|𝑥𝑖||𝑥𝑗|
                                                             (1) 

Where 𝑥𝑖 and 𝑥𝑗  are the feature vectors, |𝑥𝑖| and |𝑥𝑗| are the 

magnitudes (norms) of the feature vectors. It quantifies the 

angle between the feature vectors, with a value closer to 1 

indicating a stronger correlation between features. Euclidean 

Distance for Measuring Feature Similarity: Euclidean distance 

is another measure of similarity between features 𝑥𝑖 and 𝑥𝑗 . It 

is given by: 

𝐷(𝑥𝑖 , 𝑥𝑗)  =  √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2𝑛
𝑘=1                                           (2) 

Where 𝑥𝑖𝑘 and 𝑥𝑗𝑘 signify the standards of the 𝑘-th dimension 

of features 𝑥𝑖 and 𝑥𝑗 . A smaller distance indicates a stronger 

similarity between features. Mutual Information for Feature 

Dependency: Mutual information 𝐼(𝑥𝑖 , 𝑥𝑗) counts how much 

one feature reduces the hesitation of the other: 

𝐼(𝑥𝑖 , 𝑥𝑗) =  ∑ 𝑝(𝑥𝑖 , 𝑥𝑗)𝑥𝑖,𝑥𝑗
 𝑙𝑜𝑔

𝑝(𝑥𝑖,𝑥𝑗)

𝑝(𝑥𝑖)𝑝(𝑥𝑗)
                              (3) 

Where 𝑝(𝑥𝑖 , 𝑥𝑗) is the united probability distribution of 𝑥𝑖 and 

 𝑥𝑗, 𝑝(𝑥𝑖) and 𝑝(𝑥𝑗) are the marginal distributions of 𝑥𝑖 and  𝑥𝑗. 

This helps quantify the dependence among features, identifying 

those that are related. Edge Weight Assignment in Graph 

Construction: After calculating similarity or mutual 

information, the weight  𝑤𝑖𝑗 for the edge between features 𝑥𝑖 

and  𝑥𝑗 is determined as: 

𝑤𝑖𝑗 = {
𝑆(𝑥𝑖 , 𝑥𝑗) 𝑖𝑓 𝐼(𝑥𝑖 , 𝑥𝑗) ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                      (4) 

Where 𝑤𝑖𝑗 represents the edge weight between features 𝑥𝑖 and 

𝑥𝑗 , The threshold determines whether the edge should be 

retained or discarded. These equations underpin the Weighted 

Graph Formation process in Automated Unsupervised Feature 

Selection. They facilitate the calculation of feature 

relationships, the assignment of edge weights, and the 

construction of a feature graph. This process helps identify the 

pertinent and non-redundant structures, improving model 
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presentation by focusing on the utmost useful structures while 

reducing dimensionality. 
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Fig 2: Weighted Graph Formation 

Figure 2 presents a weighted graph, where each edge 

connecting two nodes has a weight representing the cost or 

distance between them. The graph includes five nodes and 

seven edges, each assigned a specific weight. For instance, the 

edge between nodes 0 and 3 weighs 7, while the edge between 

nodes 1 and 2 weighs 1. These weights can signify different 

relationships or metrics, depending on the application. In 

transportation networks, they may represent distances or travel 

times, whereas in social networks, they might reflect the 

strength of connections between individuals. The creation of 

weighted graphs in modelling complex systems and solving 

optimization problems. Algorithms such as Dijkstra’s and 

Bellman-Ford use edge weights to recognize the utmost 

efficient paths between nodes. These graphs are also essential 

for tasks like resource allocation, network flow management, 

and clustering. In areas like computer science, logistics, and 

social network analysis, weighted graphs are utilized to 

simulate various real-world scenarios by adjusting edge 

weights, allowing for different conditions and constraints to be 

modelled. This flexibility makes weighted graphs a powerful 

and versatile tool for an extensive choice of real-world 

applications, from route optimization to network design and 

beyond. 

3.3 Relevant, Non-Redundant Features in 

High-Dimensional Data 
Identifying pertinent and non-redundant structures in high-

dimensional data is a critical task in ML and information 

analysis, as the difficulty of datasets increases. High-

dimensional data often contains numerous features, many of 

which may be irrelevant or redundant, complicating the 

analysis and leading to decreased model performance. The 

process begins by assessing the effect of each structure, 

focusing on those that contribute meaningfully to the 

underlying patterns in the data. The feature affinity matrices, 

which use metrics like Normalized Mutual Information (NMI), 

are employed to evaluate the relationships among features, 

helping to reveal dependencies and correlations.  The Unified 

Dense Subgraph Detection Algorithm (UDSDA) is used to 

identify compact clusters of features in high-dimensional data, 

revealing redundant features and enhancing the method of 

choosing pertinent, non-redundant attributes for improved 

model performance. To extract a subset of structures that are 

together pertinent and non-redundant, thereby improving 

model accuracy, reducing computational complexity, and 

enhancing interpretability. Comparison with the SEA to 

recognize the utmost compact dense subgraphs for redundant 

feature detection. This streamlined feature choice method is 

essential for effective knowledge acquisition and decision-

making across various applications in areas such as healthcare, 

economics, and social sciences. 

3.3.1 Unified Dense Subgraph Detection 

Algorithm (UDSDA) 
The Unified Dense Subgraph Detection Algorithm is an 

important method in Automated Unsupervised Feature 

Selection for identifying relevant and non-redundant features in 

high-dimensional datasets. This algorithm focuses on locating 

dense subgraphs within a feature graph, where nodes represent 

features and edges indicate the relationships or similarities 

between them. The purpose is to recognize groups of features 

that are correlated or have strong interdependencies. By 

detecting these dense subgraphs, the algorithm highlights 

clusters of features that are often redundant and do not add 

unique information to the dataset. Features within these 

subgraphs tend to be similar to one another, and their removal 

helps reduce dimensionality, thereby improving the efficacy of 

ML models. The algorithm employs graph-theoretical 

techniques to identify compact subgraphs with high internal 

connectivity and weak external connectivity, signifying that 

features within these subgraphs are closely related. After 

detecting the dense subgraphs, the algorithm selects a single 

feature from each group, ensuring the retention of only 

relevant, non-redundant features. This process improves the 

representational power of the feature set, reducing noise and 

improving model presentation by concentrating on essential 

and informative features. 

Table 1. Algorithm for UDSDA 

Algorithm 1: Unified Dense Subgraph Detection 

Algorithm 

Step 1 Initialize the graph 

   - Create a graph where each feature is a node. 

   - Calculate the similarity or relevance between features 

to create weighted edges between the nodes. 

Step: 2 Compute the density of all possible subgraphs 

   - For each subgraph, calculate its density using the 

formula:  

     Density = (Number of edges in the subgraph) / (Amount 

of nodules in the subgraph). 

   - Store the density values of all subgraphs. 

Step: 3 Identify dense subgraphs 

   - Set a threshold for the minimum density value to 

consider. 

   - Select subgraphs with density values greater than or 

equal to the threshold. 

   - Sort the selected subgraphs by their density, in 

descending order. 

Step: 4 Refine selected subgraphs 

   - For each dense subgraph: 

     - Evaluate the relevance of individual nodes. 

     - Remove nodes or edges that contribute little to the 

overall density  

Step: 5 Output the final dense subgraphs 

   - Return the refined dense subgraphs, which represent 

clusters of relevant and non-redundant structures. 

Table 1 of the UDSDA outlines the steps involved in the 

method of identifying dense subgraphs. The table begins with 

the creation of a graph, where each feature is signified as a 

node, and edges are weighted based on the relevance or 

similarity between features. This graph structure helps capture 
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the relations among structures. The next step in the table 

explains how the density of all potential subgraphs is calculated 

using a formula that incorporates both the number of edges and 

nodes in the subgraph. This calculation identifies which 

subgraphs are dense and meaningful. After computing the 

density, a threshold is established to exclude subgraphs that do 

not meet the minimum density criteria. The remaining dense 

subgraphs are then sorted by density in descending order to 

prioritize the most relevant clusters. The table also details the 

refinement step, where irrelevant or less significant nodes and 

edges are removed to enhance the precision of feature selection. 

The final output consists of the refined dense subgraphs, 

representing groups of relevant and non-redundant features, 

ready for analysis. This method extracts features from high-

dimensional data, aiding in the recognition of meaningful 

patterns. 

Initialize

Compute

Identify

Refine

Output
 

Fig 3: Unified Dense Subgraph Detection Algorithm 

Figure 3 outlines the steps of the UDSDA, aimed at identifying 

relevant and non-redundant features in high-dimensional data. 

The Initialize step creates a graph where each feature 

corresponds to a node, and relationships between structures are 

utilized to define weighted edges. This sets up the structure that 

represents the structures in the dataset. Next, in the Compute 

phase, the algorithm calculates the density of all possible 

subgraphs. By considering together the number of edges and 

nodes, it determines which subgraphs exhibit high density, 

indicating strong relationships between features and identifying 

those most likely to be relevant. During the Identify step, a 

threshold is useful to choose subgraphs that meet the minimum 

density requirement. This ensures that only the most significant 

subgraphs are retained, filtering out irrelevant or redundant 

ones. The Refine phase further enhances the process by 

evaluating the importance of features within the selected 

subgraphs. Unrelated or dismissed structures are removed, 

refining the feature set to include only those that subsidize 

expressively to the study. Finally, in the Output phase, the 

procedure yields the refined subgraphs, containing the pertinent 

and non-redundant structures, ready for further analysis or 

modelling. 

Redundancy Of A Cluster: A large cluster 𝐶 and all of its lower-

dimensional projections could be assigned low-cost values if 

interestingness is based on size. Selecting all projections along 

with 𝐶 based on interestingness alone leads to a poor overall 

result. One gets very many redundant clusters, while 𝐶 would 

be sufficient. This study, therefore, takes a high-dimensional 

data for redundancy elimination and compares a cluster with 

other clusters. While the interestingness is a local measure 

based on the cluster itself, the redundancy takes other clusters 

into account. 

Existing projected and subspace clustering algorithms do not 

address redundancy handling adequately. Projected clustering 

simply forces the result to be non-redundant by assigning each 

object to a single cluster at the cost of missing overlapping 

clusters. Subspace clustering algorithms, in contrast, either use 

no or a mere local approach to check the redundancy. If the 

clusters cover nearly the same objects, one of them is 

redundant. The problem with this local approach is illustrated 

in Figure 3. 

 

Fig 4: Dimensional Data Redundant Clusters 

Obviously, in both subfigures, the cluster 𝐶2 is redundant 

because it is induced by the other clusters 𝐶1, resp. 𝐶1𝑎, 𝐶1𝑏. A 

local approach could identify the redundancy in the left figure. 

Cluster 𝐶2 is redundant, as it covers 𝐶1 and only a few 

additional objects. In the right figure, the fraction of points 

shared by 𝐶1𝑎 and 𝐶2 as well as by 𝐶1𝑏 and 𝐶2 is small, and the 

cluster 𝐶2 is misleadingly classified as non-redundant. This 

mistake is the result of the local view on redundancy, i.e. for 

each check, only a pairwise comparison of clusters is 

performed.  

This study uses high-dimensional data for the redundancy 

checks, i.e. uses all clusters at the same time to judge the 

redundancy of another cluster. This approach results in more 

accurate decisions. As one can see from the above example, the 

redundancy of a cluster is linked to the coverage of data. If a 

set of clusters shares data with a cluster 𝐶, 𝐶 is a redundant 

cluster. In other words: A cluster is redundant if it does not 

cover much new data. The cluster 𝐶2 Figure 3(b) is redundant 

because, concerning the two other clusters, only a few new data 

points are covered. The same holds for the cluster 𝐶2 in Figure 

4(a). The fact that this study considers all clusters for the 

redundancy checks yields a global redundancy model. Thereby, 

this study identifies in both subfigures the cluster 𝐶2 as 

redundant. 

3.3.2 Shrinking and Expansion Algorithm (SEA) 
The SEA is an approach used in Automated Unsupervised 

Feature Selection to identify relevant and non-redundant 

features in high-dimensional data. The algorithm works 

through iterative adjustments of the feature set size, starting 

with a larger set of structures and narrowing it down by 

eliminating those that are irrelevant or redundant. In the 

shrinking phase, features with low relevance or those that are 

extremely related to others are removed, decreasing the 

dimensionality of the dataset. During the expansion phase, 

features that add meaningful information or improve the data's 
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representational quality are reintroduced. This ensures that only 

the most significant features are kept while maintaining 

diversity and reducing redundancy. By alternating between 

shrinking and expanding, the algorithm effectively manages the 

balance between eliminating unnecessary features and 

retaining those that contribute to the model's performance. This 

iterative process helps isolate non-redundant features that hold 

valuable information, thus enhancing model efficiency and 

accuracy. The algorithm adapts to the dataset's structure, 

refining the feature set for optimal data representation and 

improving the effectiveness of ML models. 

Table 2. Shrinking and expansion algorithm 

Algorithm 2: SEA 

Step 1: Initialize feature set 

   - Start with all features. 

   - Give each feature a relevance score. 

Step 2: Shrink irrelevant features 

   - Check each feature's importance. 

   - Remove features with low relevance. 

Step 3: Expand relevant features 

   - Find new features or interactions that add value. 

   - Add features that improve performance. 

Step 4: Refine feature set 

   - Recalculate relevance scores for remaining features. 

   - Remove features that are still irrelevant or redundant. 

Step 5: Output final feature set 

   - Return the final set of relevant, non-redundant features. 

 
Table 2 of the SEA outlines the steps and criteria used for 

selecting relevant features. It begins by detailing how relevance 

scores are assigned to each feature created based on its 

influence on the dataset, with these scores calculated using 

statistical or model-based methods. The table then explains 

how features with low relevance are identified and removed, 

reducing the dataset’s complexity by eliminating unimportant 

features. In addition to removing irrelevant features, Table 2 

describes how the algorithm expands the feature set by 

identifying new features or interactions that can improve the 

model's performance. If these new features show the possibility 

to improve the model, they are added to the feature set. 

Afterwards, the relevance scores of the remaining features are 

recalculated, and redundant or still irrelevant features are 

removed. The outcome is a refined feature set that includes only 

the utmost pertinent and non-redundant features, ready for 

analysis or modelling. Table 2 shows how the SEA algorithm 

helps streamline high-dimensional data, converting it into a 

more focused, efficient set of structures that improve both 

model performance and analysis efficiency.  

Initialize

Shrink

Expand

Refine

Output
 

Fig 5: Shrinking and Expansion Algorithm 

Figure 5 of the SEA illustrates the process of selecting relevant 

and non-redundant features from high-dimensional data. The 

process begins with the inclusion of all features, each assigned 

an initial relevance score based on its influence on the dataset. 

During the computing phase, the algorithm evaluates the 

prominence of each structure using statistical or model-based 

methods to determine its relevance. In the identification phase, 

features that are deemed irrelevant or redundant, based on their 

calculated scores, are removed, leaving only the more valuable 

features. The refinement phase involves reassessing the 

relevance of the remaining features and considering the 

inclusion of new features or interactions that could further 

increase the model’s recital. Finally, in the output phase, the 

algorithm produces a refined set of pertinent and non-redundant 

structures, ready for further analysis or model training. This 

method confirms that only the utmost impactful structures 

remain, optimizing both the quality and efficiency of the model. 

By decreasing the quantity of structures while retaining the 

essential ones, the algorithm minimizes computational 

complexity and enhances the accuracy of the ML models.  

3.4 Unsupervised Feature Selection 
Unsupervised feature selection process of identifying pertinent 

and non-redundant structures in high-dimensional data. Unlike 

supervised methods, which rely on considered information, 

unsupervised feature selection focuses on discovering intrinsic 

patterns within the dataset itself. This approach is valued when 

dealing with high-dimensional datasets, where the danger of 

overfitting and computational inefficiency increases. The 

purpose is to sift through numerous features to uncover those 

that contribute to the data structure while filtering out irrelevant 

or redundant attributes. Techniques such as feature affinity 

matrices, which evaluate feature relationships using metrics 

like Normalized Mutual Information (NMI), are integral to this 

process, allowing for a detailed analysis of inter-feature 

dependencies. Employing algorithms like UDSD can identify 

clusters of related features, aiding in the elimination of 

redundancy. Unsupervised feature selection enhances model 

accuracy, reduces complexity, and fosters more interpretable 

results, making it a component in numerous presentations 

ranging from bioinformatics to image processing and beyond. 

This method contributes to efficient knowledge acquisition and 

informed decision-making in data-driven environments. 

3.4.1 Normalized Mutual Information (NMI) 
NMI is a metric utilized in unsupervised feature selection to 

evaluate the dependency between features in high-dimensional 

datasets. NMI measures how much information is shared 

between two features, indicating how much one feature can 

explain another. This measure helps in selecting relevant 

features while reducing redundancy. In Automated 

Unsupervised Feature Selection, NMI is utilized to regulate the 

degree of similarity between features. A high NMI value 

suggests a strong relationship between features, meaning they 

may be redundant, whereas a low NMI value indicates that the 

features provide distinct information. Using NMI features with 

high correlation can be removed, leaving only those that 

contribute unique, valuable data. One benefit of NMI is its 

normalization, which ensures the value remains between 0 and 

1. This normalization allows for consistent comparison across 

different datasets, regardless of their size or the measure of the 

features. In feature selection, NMI can be utilized to make a 

feature graph, where edges represent the strength of 

relationships between features. By selecting features with low 

mutual information, the method isolates a relevant, non-

redundant subset, improving model presentation and 

decreasing computational load. 
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NMI in unsupervised feature selection by quantifying the 

association among two features through shared information, 

while normalizing to eliminate dependency on feature 

distributions. Below are the equations for calculating NMI: 

Mutual Information (MI): 

𝐼(𝑋; 𝑌)  =  ∑ ∑ 𝑝(𝑥, 𝑦)𝑦𝜖𝑌𝑥𝜖𝑋 𝑙𝑜𝑔 (
𝑝(𝑥,𝑦)

𝑝(𝑥) 𝑝(𝑦)
)                       (5) 

This equation measures the shared information between 

features 𝑋 and 𝑌. Here, 𝑝(𝑥, 𝑦) represents the joint probability 

of 𝑥 and 𝑦, while 𝑝(𝑥) and 𝑝(𝑦) represent the marginal 

probabilities of each feature. An important change among the 

joint and marginal probabilities indicates a strong relationship 

between the features, resulting in higher mutual information. 

Entropy of X: 

𝐻(𝑋)  =  − ∑ 𝑝(𝑥)𝑥𝜖𝑋 𝑙𝑜𝑔 𝑝(𝑥)                                           (6) 

This equation calculates the entropy of feature 𝑋, which 

amounts to the improbability or chanciness in its distribution. 

A higher entropy suggests greater variability in the feature’s 

values. Entropy of Y: 

𝐻(𝑌)  =  − ∑ 𝑝(𝑦)𝑦𝜖𝑌 𝑙𝑜𝑔 𝑝(𝑦)                                           (7) 

This equation calculates the entropy of feature 𝑌, quantifying 

the uncertainty or variation in its distribution. NMI: 

𝑁𝑀𝐼(𝑋, 𝑌)  =  
𝐼(𝑋; 𝑌)

√𝐻(𝑋) 𝐻(𝑌)
                                                     (8) 

NMI normalizes mutual information by dividing it by the 

geometric mean of the entropies of 𝑋 and 𝑌. This ensures that 

the measure is independent of feature distributions, allowing 

for fair comparisons. Higher NMI values indicate a stronger 

relationship between features. NMI quantifies the shared 

information between features, normalizing for variability, 

which helps identify pertinent and non-redundant structures in 

high-dimensional datasets for improved analysis. 

X Y

H(X) H(Y)

H(X|Y) H(Y|X)I(X;Y)

 

Fig 6: Normalized Mutual Information  

Figure 6 illustrates how NMI measures the shared information 

between two variables, X and Y. Mutual information captures 

the decrease in improbability around one mutable assumed 

information about the other, assessing the relationship between 

them. Mutual information alone may be influenced by the 

varying distributions of X and Y. To eliminate this bias, NMI 

normalizes the mutual information by considering the 

individual entropies of both variables. This normalization 

ensures a more balanced and fair comparison of their shared 

information. An NMI value of zero indicates no shared 

information, meaning the variables are independent. A value 

approaching 1 implies a strong correlation between the two 

variables, with substantial shared information. This makes NMI 

particularly useful in feature variety for high-dimensional 

datasets, as it helps identify structures that are extremely 

relevant and non-redundant by highlighting those that provide 

significant information when considered together. By 

calculating the NMI, it is possible to determine which features 

contribute to the analysis, improving the efficiency and 

accuracy of the model. 

4. EXPERIMENTATION AND RESULT 

DISCUSSION 
This study evaluates several feature selection algorithms aimed 

at identifying relevant and non-redundant structures in high-

dimensional data. To ensure a comprehensive assessment, 

multiple datasets were utilized, focusing on key performance 

metrics such as accuracy, computational efficiency, and the 

number of selected features. The analysis emphasizes the 

combined impact of Weighted Graph Formation (WGF), 

Unsupervised Dimensionality Sensitive Data Analysis 

(UDSDA), and Subset Evaluation Algorithm (SEA) on feature 

selection effectiveness. In this approach, WGF creates a 

weighted graph that captures feature dependencies, while 

UDSDA clusters features based on their inherent similarities. 

SEA refines the feature subsets by eliminating irrelevant or 

redundant features, thereby enhancing the quality of the 

selected features. Normalized Mutual Information (NMI) was 

employed as a metric to quantify both the redundancy and 

relevance of the selected features, providing an objective means 

of evaluation. The experimental results highlight that this 

combined method significantly reduces dimensionality, 

eliminates redundant features, and maintains high model 

performance on test data. It also shows improved 

computational efficiency, making it suitable for handling large-

scale datasets. The proposed approach not only boosts accuracy 

but also enhances model interpretability, thus offering a 

promising solution for the challenges of high-dimensional data 

analysis. Overall, the results demonstrate the potential of 

automated unsupervised feature selection in improving both 

accuracy and the interpretability of high-dimensional datasets. 

 

Fig 7: Correctly Clustered Data and Normalized Mutual 

Information 

Figure 7 shows the relationship between the percentage of 

correctly clustered data and normalized mutual information. 

Normalized Mutual Information (NMI) is a metric used to 

compare two clusters of data or communities and evaluate the 

performance of classification and clustering algorithms. The 

NMI score value of 0.90 is the highest value of another 

clustered data; 90% of elements are correctly clustered. 

Clustered data is a collection of data points that are grouped 

into separate clusters based on their similarities. The goal of 

clustering is to group data into separate groups based on given 

criteria. NMI is a normalization of the Mutual Information (MI) 
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score, which is scaled between 0 (no mutual information) and 

1 (perfect correlation). NMI is an external metric, so it requires 

the availability of class labels for computations. This means 

that the ground truth is needed when using NMI. 

 

Fig 8: Model Performance Comparison 

Model performance comparison is the process of evaluating 

and comparing different models to determine which one is best 

for a given dataset or research question. The common technique 

involves using metrics such as accuracy, false positive rate, and 

precision. Figure 8 shows the model performance comparison, 

such as accuracy, precision, recall, F1 score, training time, and 

testing time. Comparison with feature selection and without 

feature selection. With a feature selection accuracy score of 

0.92, precision of .091, recall of 0.93, F1 score of 0.92, training 

time of 5, and testing time of 1. Without feature selection 

accuracy score of 0.88, the precision of 0.87, the recall of 0.89, 

the F1 score of 0.88, the training time of 10, and the testing time 

of 2. Testing time without feature selection is the highest score 

in other performance metrics. 

 

Fig 9: Training and Cross-Validation Score  

Figure 9 displays the training and cross-validation scores. The 

cross-validation involves partitioning a dataset into multiple 

subsets for training and validation, iteratively switching the 

validation set, while train-validate-test is a simpler approach 

with a single split into training and validation sets, leaving a 

separate test set for final model evaluation. The rate of training 

score was 0.95, and the cross-validation score was 0.86. 

Comparing the training score and cross-validation score is the 

highest amount of training score is. Train score is a method to 

measure the accuracy of the suggested model.  In this case, an 

average score of approximately 0.95 suggests a strong 

performance. This study used 5 folds for cross-validation, so 

this study has 5 individual scores. Stratified k-fold cross-

validation is a method of cross-validation that ensures that the 

proportion of samples for each class is roughly the same in each 

fold. 

 

Fig 10: Precision and Recall Curve 

Figure 10 shows performance metrics such as precision and 

recall, the Precision-Recall Curve and thresholding are 

essential tools for understanding and optimising the balance 

between precision and recall in classification tasks. Precision 

and recall are critical metrics for evaluating the performance of 

classification models, mainly when the consequences of false 

positives and false negatives vary significantly. By analysing 

the PR curve and selecting appropriate thresholds, you can 

enhance model performance according to your application’s 

specific needs and priorities. The Precision and recall curve 

range 1.0 is the highest value, whether the maximise recall and 

precision or strike a balance with the F1 score, these techniques 

provide valuable insights into how your model performs across 

different decision boundaries.   

 

Fig 11: Receiver Operating Characteristic for Different 

Features 

Figure 11 shows the receiver operating characteristic and the 

relationship between false positive rate and true positive rate. It 

compares test accuracy over different features for positivity. A 

ROC curve is a graph that shows how well a binary classifier 

model performs at different feature values. It plots the true 

positive rate (TPR) against the false positive rate (FPR) for each 

threshold setting. ROC curve (area =0.89), true positive rate 

range 0.0 to 1.0 and false positive rate range from 0.0 to 1.0. A 

ROC space is defined by FPR and TPR as x and y axes, 

respectively, which depict relative trade-offs between true 

positive (relevant) and false positive (non-relevant). TPR is 

equivalent to sensitivity, and FPR is equal to 1 − specificity. 

The ROC graph is sometimes called the sensitivity vs (1 − 

specificity) plot. 
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Fig 12: Confusion Matrix for Relevant and Non-

Redundant Features 

Figure 12 presents the confusion matrix for the predicted labels 

versus the true labels and provides a detailed breakdown of the 

model's classification performance across two classes for class 

0 and class 1. True Positives (4), False Negatives (110), False 

Positives (20), and True Negatives (18). True Positives 

represent correctly predicted positive instances, while False 

Negatives indicate cases where the model failed to detect 

positives, classifying them as negative. False Positives show 

negative cases mislabelled as positive, and True Negatives are 

the correctly identified negative instances. This confusion 

matrix helps evaluate model performance by highlighting both 

accurate and misclassified predictions. A higher number of 

false negatives and false positives may indicate challenges in 

the model’s ability to distinguish between classes. The matrix 

provides important insights into the model’s performance, 

guiding further improvements through performance metrics 

and offering a detailed understanding of classification 

accuracy. 

 

Fig 13: Correlation Matrix for Selected Features  

Figure 13 displays the correlation matrix for Selected Features, 

the model revealing a detailed breakdown of its classification 

performance across multiple classes. The correlation matrix 

measures the linear relationship between pairs of features in a 

dataset. It indicates how strongly and in what direction two 

features are related. A correlation value ranges from -1 to 1, 

where -1 indicates a strong negative correlation, 0 indicates no 

correlation, and 1 indicates a strong positive correlation.  The 

matrix illustrates the number of true positives, false positives, 

and false negatives for each class, providing insights into the 

relevant and non-redundant features. Various features such as 

PPE, EEG, RPDE, numPulses, maenPeriodPulses, 

stdDivPeriodPulses, gender and class. The important features 

are identified, filtered, and selected, where the relevant features 

are added and the redundant features are removed. 

 

Fig 14: Distribution of Target Class  

Figure 14 shows the distribution of the target column (0: refers 

to the number of relevant features that will not make the 

transaction, and 1: refers to the non-redundant features). 

Redundant features are those that are correlated with other 

features and not relevant in the sense that they do not improve 

the discriminatory ability of a set of features. Class 0 target 

count 200, and class 1 target count 550. High-dimensional data 

refers to datasets with a large number of features or covariates, 

often exceeding the number of independent samples. This type 

of data is common in statistical research and poses challenges 

in variable selection and model selection due to its complexity 

and size.  

5. RESEARCH CONCLUSION 
The study confirms that automated unsupervised feature choice 

is an effective approach for identifying relevant and non-

redundant features in high-dimensional data, addressing the 

issues of dimensionality and redundancy. By combining 

techniques like Weighted Graph Formation (WGF), Unified 

Dense Subgraph Detection Algorithm (UDSDA), SEA, and 

Normalized Mutual Information (NMI), the method selects 

feature subsets that increase model presentation and reduce 

complexity. The approach proves to be active in handling large 

datasets, enhancing both computational efficiency and 

interpretability. WGF captures feature relationships through a 

weighted graph, while UDSDA detects dense subgraphs 

representing meaningful clusters. SEA refines these clusters by 

removing irrelevant features, and NMI helps assess the 

relevance and redundancy of the designated structures. The 

results emphasize the method's potential for diverse 

applications, ML, data mining, and pattern recognition. By 

reducing dimensionality and improving accuracy, automated 

unsupervised feature selection becomes a valued device for 

data analysis in high-dimensional settings. Its ability to process 

large-scale datasets establishes its usefulness in real-world 

scenarios where huge amounts of information require effective 

analysis and interpretation. 
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