International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.16, June 2025

Design and Implementation of a Comprehensive
College Event Management System

Aby Thankachan

Department of Computer Science,
TKM College of Engineering,
Kollam, India

Shijin Kumar
Department of Computer Science,
TKM College of Engineering,
Kollam, India

ABSTRACT

This paper presents the design and implementation of a unified Col-
lege Event Management System aimed at enhancing academic and
cultural activities on campus. The system supports event manage-
ment, emergency alerts, resource allocation, quality assurance, and
peer support, serving students, club heads, faculty, and administra-
tors. Key features include role-based access control, event regis-
tration and certification, real-time notifications, event reviews, and
analytics.

Keywords

Event management system, college, events, quality assurance, aca-
demic environment, resource allocation.

1. INTRODUCTION

Modern educational institutions face increasing challenges in effi-
ciently managing campus activities, maintaining facilities, allocat-
ing resources, ensuring safety, and fostering community engage-
ment. Traditional approaches to event management and campus
operations often involve disconnected systems that lead to commu-
nication gaps, inefficient resource allocation, and reduced engage-
ment. These fragmented solutions typically require separate inter-
faces for event planning, facility maintenance, community interac-
tions, and overall supervision, creating unnecessary complexity for
users and administrators alike.

The proliferation of campus events—from academic lectures and
workshops to social gatherings and club activities—demands a
sophisticated management approach that transcends conventional
methods. Universities and colleges typically host hundreds of
events annually, each requiring coordination among multiple stake-
holders, resource allocation, promotion, registration, and feed-
back collection. Without an integrated system, this process be-
comes cumbersome, error-prone, and resource-intensive. The Col-

Muhammed Bin Shafeeq T.P.
Department of Computer Science,
TKM College of Engineering,
Kollam, India

Sreethi S.
Department of Computer Science,
TKM College of Engineering,
Kollam, India

Shanthanu S. Nair

Department of Computer Science,
TKM College of Engineering,
Kollam, India

Shameem Ansar, PhD

Department of Computer Science,
TKM College of Engineering,
Kollam, India

lege Event Management System addresses these challenges by pro-
viding a centralised platform that combines real-time notifications,
event registration, attendance marking, event scheduling, venue
allotment, certificate repository, maintenance reporting, and peer
support resources. This integration enhances the overall campus ex-
perience while streamlining administrative processes and improv-
ing response times to various campus issues. The system not only
facilitates event-related tasks but also creates a connected campus
ecosystem where information flows seamlessly between different
stakeholders, enabling more efficient operations and fostering a
stronger sense of community.

By implementing this comprehensive system, educational institu-
tions can expect significant improvements in various operational
metrics, including reduced administrative overhead, faster response
times to emergencies and maintenance issues, increased event par-
ticipation, and enhanced community engagement. These benefits
contribute to the institution’s primary goals of providing a safe, pro-
ductive, and enriching educational environment for all community
members.

2. METHODOLOGY

The College Event Management System is built using a monolithic
architecture, powered by Java Spring Boot [5] for the backend,
React [4] for the frontend, and PostgreSQL for storage [6]]. Ad-
ditionally, cloud storage is used for managing media assets. This
architectural choice was made after careful analysis of the sys-
tem’s functional and non-functional requirements. A monolithic
approach was preferred over microservices [2] due to its sim-
pler development and deployment process, which helps in reduc-
ing initial complexity. Since campus event management workflows
are tightly coupled, a monolithic structure ensures better perfor-
mance and easier maintenance, avoiding the overhead of manag-
ing multiple independent services. For the backend, Spring Boot
was selected due to its enterprise-grade capabilities, robust depen-

dency injection framework, built-in security features, and seamless
database integration through Spring Data [1} |5]. It provides pow-
erful transaction management, ensuring data consistency and reli-
ability. Additionally, Spring Security enables JWT-based authenti-
cation and role-based access control (RBAC), ensuring secure ac-
cess to sensitive information [3]. Although Spring Boot requires
more server resources compared to lightweight alternatives such
as Node.js. Its stability, scalability, and maintainability make it a
strong choice for handling complex business logic and event-driven
workflows.

On the frontend, React was chosen due to its component-based
architecture, virtual DOM implementation, and strong community
support [4]]. The virtual DOM optimises re-rendering performance,
making the UI more efficient and responsive. React’s extensive
ecosystem allows integration with state management libraries such
as Redux, enabling efficient data flow and state synchronisation.
Despite React’s steeper learning curve compared to alternatives like
Vue js, its flexibility and long-term maintainability make it an ideal
choice for dynamic and interactive web applications [1].

PostgreSQL was selected for its ACID compliance, strong trans-
actional integrity, and relational capabilities, making it suitable for
structured data such as user profiles, event registrations, and atten-
dance records [6].

To handle media assets such as event photos, promotional mate-
rials, and maintenance documentation, the system utilises cloud
storage solutions. This approach provides high scalability, relia-
bility, and cost-effective storage options, reducing reliance on on-
premises infrastructure. Additionally, integration with content de-
livery networks (CDNs) enhances global accessibility and faster
content delivery. However, cloud storage comes with operational
costs and potential vendor lock-in concerns, requiring careful plan-
ning to ensure long-term cost efficiency and data portability. Secu-
rity is a critical aspect of the College Event Management System.
To protect user data and maintain regulatory compliance, the sys-
tem employs multiple layers of security mechanisms. Data encryp-
tion is implemented for both data at rest and data in transit to pre-
vent unauthorised access. JWT-based authentication ensures secure
user sessions, while role-based access control (RBAC) restricts ac-
cess to sensitive functionalities based on user roles [3]]. Addition-
ally, the system undergoes regular vulnerability scanning to iden-
tify and mitigate security risks. The system is designed to comply
with GDPR (General Data Protection Regulation) standards, en-
suring the privacy and security of user data. Infrastructure provides
high availability, minimising downtime and protecting critical in-
formation.

By integrating cutting-edge technologies and robust security mea-
sures, the College Event Management System ensures high per-
formance, scalability, and reliability, making it a highly effective
and relevant solution for campus event coordination [1]]. The sys-
tem’s performance is driven by Spring Boot’s efficient backend
processing, React’s optimised UI rendering, and PostgreSQL for
data storage. This enables fast event registrations, real-time email
updates, and seamless user interactions. Cloud storage further en-
hances efficiency by handling large media assets without burdening
local infrastructure. Its monolithic architecture simplifies initial de-
velopment while allowing for future modularisation if needed [2]].
Cloud integration and optimised database strategies ensure smooth
performance, even with increasing data loads. Reliability is rein-
forced through JWT-based authentication, role-based access con-
trol (RBAC), and data encryption, ensuring secure and compliant

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.16, June 2025

CJ CLIENT
User Interface
e T
/ BACKEND B\
(\

Controller Layer

Custom Auth
Service

Service Layer

EXTERNAL[SERVICES

JPA or Hibernate

SendGrid Email
Service

Cloudinary
Asset Storage

E DATABASE

Relational
Database

Fig. 1. System architecture.

event management. By streamlining event organisation, enhanc-
ing security, and ensuring seamless user experiences, the College
Event Management System serves as a powerful, future-ready so-
lution that significantly improves campus-wide event coordination
and engagement.

To optimise performance, frequently accessed data such as user
roles and sessions is cached using Redis, reducing the load on the
database.

3. USER AUTHENTICATION AND
AUTHORIZATION FLOW - OVERVIEW

The User Authentication and Authorisation Flow describes how a
secure backend system handles login, access control, and session
management using JWT tokens and Redis [3]. When a user at-
tempts to log in, their email and password are sent to the AuthCon-
troller, which delegates the validation process to the AuthService.
The service loads user details from the database and, if the creden-
tials are valid, generates a JWT access token and a refresh token.
The access token is stored in the client’s memory for API requests,
while the refresh token is stored in a secure HttpOnly cookie. Op-
tionally, the refresh token is also saved in Redis for added security.

For any protected API call, the client includes the access token in
the request. A JWTFilter extracts and validates this token, then sets

the authenticated user in the SecurityContext. Before granting ac-
cess, the system checks the user’s roles and permissions to ensure
they are authorised to perform the requested action [3]]. If the ac-
cess token expires, the client can call the /auth/refresh endpoint to
obtain a new one. The server validates the refresh token (checking
Redis if necessary), and if it’s still valid, a new access token is is-
sued. When the user logs out, both the access and refresh tokens are
blacklisted and stored in Redis to prevent any future use. Addition-
ally, RateLimitFilter is used to monitor the number of API requests
from each user, blocking excessive requests to prevent abuse. The
authentication and authorisation flow is shown in Figure[2]

4. ROOM BOOKING APPROVAL SYSTEM

The Room Booking Approval System is designed to facilitate and
streamline the process of reserving rooms for academic, cultural,
and administrative events within the college. The system ensures
that bookings are handled efficiently, reducing manual intervention
while maintaining transparency and accountability at each step.

The process begins when a user—such as a student, faculty mem-
ber, or event coordinator—submits a booking request through the
system’s interface. This request typically includes essential infor-
mation such as the event title, date, time, duration, and preferred
room or hall, along with any additional requirements. Upon sub-
mission, the system performs an automated conflict check by com-
paring the requested time slot and room with existing reservations.

If a scheduling conflict is detected, such as the room already being
booked or another overlapping event, the system promptly rejects
the request. A rejection email is sent to the user, clearly stating the
reason for the denial. This helps avoid double bookings and allows
users to modify and resubmit their requests if needed.

If no conflicts are found, the request moves to a structured, multi-
level approval process. The first level of approval is handled by the
Faculty Coordinator, who reviews the request for its purpose and
relevance. Once approved, the request is passed on to the Room
Coordinator, who verifies room suitability and availability. If ap-
proved again, it moves to the Security Department, which ensures
that the event adheres to campus safety guidelines.

The final stage of approval is managed by the Office Admin, who
performs an overall review to ensure that institutional policies are
met and all prior approvals are in place.

When all levels of approval are successfully completed, the book-
ing is marked as Fully Approved, and the user receives a confirma-
tion email with booking details. However, if the request is rejected
at any point in the workflow—Dby any of the approvers—it is imme-
diately routed to a rejection path, and the system sends an email to
notify the user of the decision and the reason behind it.

To support better request management, the system also provides a
dedicated dashboard for faculty members and coordinators to view
pending requests. This interface is equipped with features like pag-
ination, sorting, and filtering, making it easy to handle large num-
bers of requests and quickly locate specific entries based on criteria
such as date, requester name, or approval status.

Overall, the Room Booking Approval System promotes efficient
event planning, prevents scheduling conflicts, and ensures that all
room reservations follow a clear and accountable approval process
as the event title, date, time, duration, and preferred room or hall,
along with any additional requirements. Upon submission, the sys-

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.16, June 2025

tem performs an automated conflict check by comparing the re-
quested time slot and room with existing reservations.

Faculty View

Pending
Requests

Submit Booking Pagination
Request Sorting Fitering

Check for
Conflicts

Conflict

Approval Stage
Detected Faculty

Coordinator

Faculty
Coordinator
Approval

[Hs‘smsd

Reject Request Approved

Approved
Send Rejection o

Send Approval
Email Email

Room
Coordinator
Approval

Approved

Security Approval

Approved
Office Admin
Final Approval

Approved

Booking Fully
Approved

Send Final
Approval Email

Aejected

Rejected

Rejected

Rejected

J

Rejection
Scenario

Send Rejection
Notification

Fig. 3. Room booking approval system.

5. PERFORMANCE TESTING AND RESULTS

The proposed College Event Management System was imple-
mented as a full-stack web application using Spring Boot for the
backend, React for the frontend, and PostgreSQL as the database
[} 14,15, 6]. Then the website is hosted on Render, NeonDB is used
for hosting the PostgreSQL database.

(1) Response time test

Objective: Measure the average response time of APIs under
normal usage.

Tool: Postman

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.16, June 2025

Protected AP Calls:

Fig. 2. Authentication and authorisation flow.

Table 1. API performance.

API Endpoint Method Average Response Time
/student/signup POST 2.63 seconds
/faculty/signup POST 1.40 seconds
/auth/login POST 4.50 seconds
/club/create POST 3.60 seconds

Observation: The login API showed the highest latency, poten-
tially due to authentication overhead and searching.

(2) Concurrent user load test

Objective: Evaluate API behaviour under simultaneous access
by multiple users.

Tool: Apache JMeter

Setup: 20 virtual users, 100 requests total to /auth/login

Results:
—Auverage Response Time: 706 ms
—Max Response Time: 4117 ms
—Error Rate: 1.0%
—Throughput: 7.57 requests/sec

Observation: The API handled moderate concurrency with
some delay and a minor error rate.

(3) Spike test

Objective: Test API resilience during sudden user traffic
spikes.

Tool: Apache JMeter

Setup: 200 users sent requests at once to /auth/login

Results:
—Auverage Response Time: 1280 ms
—Max Time: 5923 ms
—Error Rate: 3.5%
—Throughput: 15.2 requests/sec

Observation: Performance degraded with increased error rates
under spike conditions, expected with free tier hosting.

(4) Data-driven API test report - /auth/login endpoint

Objective: To evaluate the performance and stability of the lo-
gin API (/auth/login) under realistic usage by simulating lo-
gins from a diverse set of users using Apache JMeter with a
CSV-driven data source.

Tool: Apache JMeter

Table 2. Performance results (summary report).

Metric Value
Total Requests 10
Average Response Time 840 ms
Minimum Response Time 631 ms
Maximum Response Time 1357 ms
Standard Deviation 251.86 ms
Error Rate 0.0%

Throughput 4.82 requests/sec
Latency (Avg) 276 ms
Average Response Size 1.18 KB

Observations

—AIll 10 login attempts were successful (0% error rate).

—Average response time was 840 ms, which is acceptable
for an authentication APIL.

—Response time variability (StdDev = 251.86 ms) suggests
occasional delays, possibly due to backend factors like
database lookup or server cold starts.

—Throughput was 5 requests/sec, which is fine for moder-
ate usage.

This test confirms that the login API performs well under small
user loads and handles varied inputs correctly.
(5) Throughput shaping test report — /auth/login
Objective: To assess the performance and stability of the
/auth/login API under a controlled throughput rate using
Constant Throughput Timer in Apache JMeter.

Tool: Apache JMeter
Observations
—The response times are stable even under a constant
throughput.

Table 3. Throughput shaping analysis (Ssummary report).

Metric Value
Samples (Requests) 73
Average Response Time 793 ms
Minimum Time 516 ms
Maximum Time 1364 ms
Standard Deviation 185.62 ms
Error Rate 0.0%
Throughput 0.575 requests/sec
KB/sec 0.155
Average Bytes 0.14 KB
Latency (Avg) 276 ms

Table 4. Aggregate report analysis (percentiles).

Percentile Response Time
50th (Median) 793 ms
90th 1028 ms
95th 1152 ms
99th 1345 ms
Min / Max 516 ms / 1364 ms

—The 95th percentile is 1152 ms, which indicates a few
slower requests but nothing critical.

—Error rate is 0%, which shows solid reliability and back-
end resilience.

—Std deviation (186 ms) is acceptable at low traffic vol-
ume.

This test confirms that the login API performs reliably under
shaped, low-frequency traffic. It handles CSV-driven user lo-
gins without error and shows slightly increasing latency at
high percentiles, but nothing alarming. Also, it is suitable
for light-to-moderate login traffic workloads.

Conclusion: While the APIs performed well under normal and
moderate concurrent loads, performance degraded slightly under
spike conditions. Given the limitations of free-tier hosting on Ren-
der, Redis, and Neon DB, the results are reasonable. For production
environments, scaling and optimisation strategies (e.g., caching,
connection pooling, warm starts) would be recommended [1].

6. CONCLUSION

The College Event Management System provides a centralised,
secure, and scalable solution for streamlining event coordination
across college campuses. By integrating multiple modules—such
as user authentication, room booking approvals, real-time notifica-
tions, and role-based access control—the system addresses the core
challenges faced in organising academic and cultural activities. The
use of modern web technologies like Spring Boot and React, com-
bined with a PostgreSQL database and cloud infrastructure, ensures
high performance, flexibility, and ease of maintenance [1, 4, 5, |6].
Through automation, enhanced usability, and strict security proto-
cols, the platform reduces administrative overhead, improves col-
laboration among stakeholders, and fosters a vibrant campus envi-
ronment. Future enhancements could include Al-driven event rec-
ommendations, deeper analytics, and integration with external cal-
endaring systems, further strengthening its impact and adaptability.
Overall, the proposed system stands as a robust and future-ready
tool to support and elevate campus event management in educa-
tional institutions.

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.16, June 2025

7. REFERENCES

[1] G. Thombare, P. Jadhav, S. Dhere, P. Jadhav, and Dr. K. N.
Honwadkar, “Event Management System using React and
Spring,” International Research Journal of Modernization in
Engineering Technology and Science, 2023.

[2] M. Fowler, “Microservices 'S Monoliths,”
martinfowler.com, 2015. [Online]. Available:
https://martinfowler.com/articles/microservices.html

[3] Y. A. Marquis, “From Theory to Practice: Implementing Ef-

fective Role-Based Access Control Strategies to Mitigate In-

sider Risks in Diverse Organizational Contexts,” Journal of

Engineering Research and Reports, vol. 26, no. 5, pp. 138-

154, 2024.

“React — A JavaScript library for building user interfaces,”

React]S.org. [Online]. Available: https://reactjs.org/

“Spring Boot Reference Documentation,” Spring.io.

[Online]. Available: https://docs.spring.io/spring-

boot/docs/current/reference/htmlsingle/

“PostgreSQL Documentation,” PostgreSQL.org. [Online].

Auvailable: https://www.postgresql.org/docs/

[4

—_

[5

—

[6

—_

	INTRODUCTION
	METHODOLOGY
	USER AUTHENTICATION AND AUTHORIZATION FLOW – OVERVIEW
	Room Booking Approval System
	Performance Testing and results
	Conclusion
	References

