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ABSTRACT

Knowledge of system security becomes more and more important
as ever-evolving network threats arise. Intrusion detection, a cru-
cial component of cybersecurity, recognizes unusual activity based
on traffic patterns. However, harmful cyberattacks can frequently
hide enormous amounts of legitimate data in unbalanced network
traffic. Generative Al models can be utilized to address this im-
balance by generating synthetic data that can improve the devel-
opment of machine learning models. Traditional intrusion detec-
tion systems (IDS) often struggle with imbalanced data, where
benign traffic overwhelmingly outnumbers malicious traffic. This
imbalance can lead to poor detection rates for rare but signifi-
cant attacks. To overcome this challenge, a novel approach is pro-
posed using a Generative Adversarial Variational Auto-Encoder
(GAVAE) to improve the detection of intrusions in imbalanced net-
work traffic. By combining the probabilistic latent space learning
of Variational Auto-Encoders (VAEs) with the adversarial training
framework of Generative Adversarial Networks (GANs), the pro-
posed method generates high-quality synthetic samples of minor-
ity classes. These synthetic samples augment the training dataset,
leading to a more balanced distribution and increased throughput
of the intrusion detection model. The proposed model was eval-
uated on the UNSW-NB15 and NSL-KDD data sets. The experi-
mental results demonstrate that the proposed GAVAE model sig-
nificantly improves the detection capabilities compared to tradi-
tional methods, offering a robust solution for network security.
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1. INTRODUCTION

Network security is becoming more complex due to the emergence
of modern Internet technologies such as file sharing, mobile pay-

ment systems, and the growing presence of devices on the Inter-
net of Things (IoT) [1} 12} 3]]. Specifically, the requirement for net-
work security is increasing because of the necessity to safeguard
private data, a rise in hacking occurrences, a rise in the conversion
of personal computers into zombie PCs in response to the growth
in open information system users, the quick information sharing
among hackers, and the sharp rise in Internet usage. As a result,
a network intrusion detection system (NIDS) is now a key part of
network security and computing.

An irregularity in a network is the sign of an intrusion or threat.
Hackers utilize bugs in software such as buffer overflows and poor
security standards among other network vulnerabilities to their ad-
vantage, weakening the security of the network. Hackers, often
ordinary Internet users, attempt to steal or compromise sensitive
data from a victim’s system. These intruders may include exter-
nal attackers or authorized users with limited privileges seeking to
gain higher access rights. Intrusion detection techniques are gen-
erally classified into two main types: anomaly detection and sig-
nature detection. By comparing the network’s packet flow with the
previously established, configured known signatures of known at-
tacks, signature-based detection keeps an eye on known threats. On
the other hand, attacks are identified using the anomaly detection
technique, which compares events that indicate a departure from
the authorized user parameters with those that have been set [2].
When malicious activity occurs on a network, the intrusion detec-
tion system (IDS) creates logs and notifies the network administra-
tor [2 13} 14]].

One important safeguard for protecting computers and network in-
frastructures against misuse is intrusion detection [3]. Intrusion de-
tection systems (IDS) typically operate using two main techniques:
anomaly detection, which monitors and flags activities that deviate
from established normal patterns, and signature-based detection,
which identifies threats by matching them to a database of known
attack signatures. To improve detection accuracy—especially for
unknown threats—and to minimize false positives when recogniz-
ing familiar attack patterns, recent research has focused on hy-
brid detection methods. These combine both anomaly-based and
signature-based approaches to enhance overall system security [4].



Despite their widespread acceptance, about 80 % of IoT devices
are susceptible to various cyberattacks [4]. They are susceptible
to various attacks, such as denial-of-service (DDoS), unauthorized
device access, data breaches, identity theft, and man-in-the-middle
exploits. Robust security methods that can identify both known and
new attacks must be considered in order to protect critical systems
critical to security against attackers [4} |5l |6]. Primarily, intrusion
detection systems (IDSs) are the first line of defense in the CPS
domain. They are in charge of monitoring system data and network
traffic for malicious activity and sending out alarms.
Subsequently, researchers applied machine learning methods to
identify intrusions [1]. At that time, however, these techniques were
not widely adopted due to constraints in computational power and
data storage capabilities. The rapid progress in computing and the
growing influence of artificial intelligence (AI) have led researchers
to incorporate machine learning techniques into network security to
improve threat detection and system protection. They have obtained
certain outcomes [2, 13} 4].

To identify anomalies in the network, an IDS integrated with ma-
chine learning model will support to achieve an improved accuracy
[7]. While IoT, Big Data, Cloud computing, and Industry 4.0, are
some of the rising IT developments in CPS that are gaining pop-
ularity, they are also creating new risks [8]]. In addition, new ar-
chitectural arrangements are making the model more complex be-
cause of unidentified emergent behavior [9]. It is necessary to de-
ploy each IDS individually to examine how they interact with this
complicated system; yet, the model training is being hampered by a
lack of data. Furthermore, the majority of these publicly accessible
datasets are imbalanced, meaning that certain categories of attack
data are scarce relative to normal data.

To overcome the limitations of current systems, the proposed ap-
proach introduces an intrusion detection system (IDS) enhanced by
a generative adversarial network (GAN), aiming to reduce dataset-
related constraints associated with emerging technologies. Due to
their lack of extensive training datasets and technological limita-
tions for processing large amounts of data, traditional artificial neu-
ral networks (ANNSs), which were previously used to do this task,
are no longer useful. Due to the unique features of the present inter-
net, it has been decided to use the capabilities of contemporary ar-
tificial neural networks (ANN) to detect security intrusions. In this
paper, the suitability of generative adversarial networks (GANs) is
examined for detecting security breaches in large-scale cyber de-
vice networks.

In this work, the popular techniques’ limited ability to self-learn
in the current intrusion detection systems and the absence of com-
prehensive and reliable datasets mean that they are unable to fully
solve all intrusion detection tasks for m2m networks. A relatively
recent class of artificial neural networks called Generative Adver-
sarial Networks (GAN) is primarily focused on producing specific
data [7]]. The GAN is made up of two neural networks that work to-
gether: the generator (G), which creates artificial data, and the dis-
criminator (D), which evaluates these data by comparing them to
real samples. These networks engage in a competitive process—G
strives to generate data that closely resembles real inputs, while D
enhances its ability to detect fake data. The information flow from
G to D is known as the channel, and the feedback path from D back
to G is called the return path. The main objective of GAN-based
models is to gain a complete understanding of the hidden patterns
within the data. This makes them especially useful for addressing
challenges related to insufficient or incomplete datasets.
Compared to conventional ANNs, GANs offer several significant
advantages. They can efficiently detect and classify unusual net-
work behaviors and generate additional synthetic anomalies to im-
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prove the quality of flagged data. GANs also produce samples
more rapidly than fully visible belief networks—such as Neural
Autoregressive Distribution Estimation (NADE), Pixel Recurrent
Neural Networks, or WaveNet—because they do not require step-
by-step generation of each sample component. Unlike Boltzmann
machines, which depend on Monte Carlo methods to approximate
gradients of the log partition function, GANs can be trained without
such complex estimations, making them easier to implement. Fur-
thermore, unlike variational autoencoders, GANs avoid introducing
deterministic bias during training.

In real-world network environments, the vast majority of traffic
originates from legitimate user activity, while malicious attacks
represent only a small portion. This leads to a significant imbal-
ance in data categories, where normal traffic overwhelmingly dom-
inates. Such an uneven distribution creates challenges for intrusion
detection systems, as cyberattacks can easily be masked within
the large volume of routine traffic. This makes accurate classifi-
cation difficult, often resulting in misidentification, and hampers
the ability of machine learning models to learn the characteristics
of the minority (attack) classes effectively [S]. Leveraging adap-
tive learning to distinguish between typical and abnormal behavior
using large datasets can enhance real-time intrusion detection ca-
pabilities. However, despite these efforts, classification imbalances
continue to hinder the accurate multi-class detection of network
threats.

In this work, a unique generative adversarial variational autoen-
coder (GAVAE) approach is proposed to address the issue of class
imbalance in network traffic when faced with unbalanced data. This
method effectively addresses data imbalance and strengthens the
classification model’s ability to learn difficult examples. To assess
the performance of the proposed approach, experiments were con-
ducted on two widely used benchmark datasets, utilizing both deep
learning techniques and conventional machine learning methods.
The key contributions of this work are outlined below.

—To perform a thorough analysis and data cleaning on two bench-
mark datasets: the traditional NSL- KDD and UNSW-NBI15.

—To handle the problem of class imbalance in intrusion detection
and enhance the model’s capability to distinguish between dif-
ferent classes during training, this study introduces an innova-
tive approach called GAVAE. This method reduces the number
of majority class samples while increasing the minority class in-
stances within the difficult subset of the data.

The rest of the article is presented as below. The relevant work in
the area of intrusion detection is analyzed in Section II. Section
IIT suggests a modified model and provides necessary background
data. The intrusion detection system suggested is described thor-
oughly in Section IV. Section V displays the results and discussions
for the suggested model in comparison to the most advanced clas-
sification models and established approaches. In Section VI, this
article concludes with the conclusion.

2. RELATED WORK

Intrusion Detection Systems (IDS) are classified into two main
types: Host-Based and Network-Based. Host-based Intrusion De-
tection System (HIDS) is used by administrators to monitor and an-
alyze the behavior and events occurring on a specific host or device.
A key benefit of HIDS is its capability to analyze encrypted data as
it moves across a network. However, managing HIDS can be chal-
lenging since each host requires individual configuration and over-
sight. Moreover, some denial-of-service attacks may disable HIDS.
In contrast, Network-based Intrusion Detection System (NIDS) is a
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hardware- or software-based system strategically positioned within
a network to monitor traffic without directly interacting with the
devices it oversees.

Network-Based Intrusion Detection Systems (NIDS) function with
two interfaces: one for management and reporting, and another for
network traffic monitoring. One of the main benefits of NIDS is its
capability to oversee extensive networks with minimal hardware
deployment. Moreover, since NIDS typically operate discreetly,
they provide an added layer of security by remaining hidden from
potential attackers. However, a significant drawback is their strug-
gle to precisely identify attack vectors when network traffic is ex-
ceptionally high.

The data-level based network intrusion detection model is exam-
ined in [2]. This study systematically develops three data-driven
research approaches: a data augmentation method utilizing a vari-
ational autoencoder (VAE), a balancing strategy employing a con-
ditional VAE, and a combined technique that integrates conditional
VAE with random under-sampling to address data imbalance. The
deep-learning-based IDS is integrated with the three data-level-
based schemes. An unsupervised deep learning approach com-
bined with a semi-supervised learning strategy is utilized to iden-
tify anomalous network traffic or intrusions from flow-based data
is used in [3]. More precisely, flow features were used to iden-
tify unknown attacks using Autoencoder and Variational Autoen-
coder algorithms. The experimental findings demonstrate that Vari-
ational Autoencoder outperforms Autoencoder and One-Class Sup-
port Vector Machine in most cases.

To identify intrusions within imbalanced network traffic, [4] ex-
plores the use of both deep learning and traditional machine learn-
ing methods. A new technique called the Difficult Set Sampling
Technique (DSSTE) is introduced to address the issue of class im-
balance. Furthermore, [5] describes an intrusion detection model
using CNN architecture. Prior to training, the network traffic data
is balanced using the SMOTE-ENN (Synthetic Minority Over-
sampling Technique combined with Edited Nearest Neighbors)
method. The NSL-KDD dataset is used to analyze the performance
of the proposed model.

Three categorization strategies were employed in the work of Alka-
sassbeh and Almseidin [6] to address the low accuracy problems
that are frequently encountered by IDS that use artificial neural
networks with fuzzy clustering for handling infrequent attacks. By
dividing the heterogeneous training data set into homogeneous sub-
sets, they were able to successfully increase accuracy while lower-
ing the complexity of each training set. The suggested work used
J48 trees, Multilayer Perceptron (MLP), and Bayes network tech-
niques, with J48 trees providing the best accuracy. Their inability
to use feature selection to eliminate all unnecessary, redundant, and
undesirable features is a significant flaw in their work.

By utilizing a voting classifier to combine the output of several su-
pervised and unsupervised machine learning methods, Marilyn Z.
and Chung-Horng L. [7] developed an ensemble-based approach
to IDS. The study improves the performance and accuracy of the
available intrusion detection systems. This research enhances the
effectiveness and precision of existing intrusion detection systems.
The authors opted for the Kyoto2006+ dataset, which, while older,
is considered more reliable than the widely used KDDCup *99
dataset. As a result, their approach aims to achieve a certain level of
accuracy. However, in some cases, the recall rate is relatively low,
suggesting an elevated false negative rate (FPR).

To overcome the limitations of individual classifiers, [8] introduces
an ensemble-based method. This approach features a scalable and
efficient ensemble model that relies on majority voting, enabling
real-time analysis of network traffic and early detection of po-
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tential threats. An efficient model was created by taking into ac-
count the characteristics of current machine learning techniques.
In [8]], the proposed intrusion detection methodology is based on
ensembles. The suggested model uses decision trees, logistic re-
gression, and naive Bayes as voting classifiers. The effectiveness
of the model was assessed using a number of well-known, cutting-
edge approaches currently in use. Additionally, an analysis of the
suggested model’s efficacy was conducted using the CICIDS2017
dataset. The outcomes show a notable increase in accuracy.

A technique to assess the danger of adversarial assaults on ML-
based IDS that makes use of generative adversarial networks and
active learning is proposed in [[11]. This approach gets around these
drawbacks by showing how to compromise an IDS with sparse
training data and presuming that the only thing known about the
IDS model beforehand is its binary classification. Conventional ma-
chine learning methods often face challenges such as data imbal-
ance and redundant features when processing complex and large-
scale network data. These issues contribute to poor detection ac-
curacy, increased false alarm rates, and inadequate real-time per-
formance in intrusion detection systems. To tackle these prob-
lems, [12] proposes a Convolutional Neural Network-based Intru-
sion Detection Method focused on addressing data imbalance, re-
ferred to as CNNIDM-DI. Conventional statistical learning tech-
niques, including Naive Bayes [7]], Decision Trees [8} 9} 10|, Ran-
dom Forests [9, 10} [11} 12} [13} [14]], and Support Vector Machines
[1OL 1114 1124 [13) [14], are used in the majority of previous works
to develop intrusion detection. Numerous research efforts have ap-
plied neural network models to intrusion detection, including Mul-
tilayer Perceptrons [[15], Convolutional Neural Networks (CNNs)
[16], and Recurrent Neural Networks (RNNs) [[17], inspired by the
significant advancements achieved through deep learning. More-
over, Aljawarneh et al. [18]] introduced a hybrid approach that in-
corporates feature selection, resulting in improved accuracy for in-
trusion detection systems.

The efficacy of most intrusion detection systems is hampered by
class-imbalanced data, despite the significant advancements gained
in previous approaches [19]. Class imbalance poses a major chal-
lenge in intrusion detection when the number of attack instances is
significantly lower than that of normal traffic. Deep learning ap-
proaches, which often deliver results on par with or better than
human performance, have seen widespread adoption in fields like
computer vision, natural language processing, speech recognition,
pharmaceutical research, and cybersecurity. Popular deep learning
architectures employed in these areas include CNN, Long Short-
Term Memory (LSTM) networks, and Generative Adversarial Net-
works (GANs) [8l 9L 10} [11]. These technologies still have a lot
of issues, though. First, there is an imbalance in the sorts of attack
traffic due to the quick advancement of network technology and
traffic data.

Conventional classification methods struggle to achieve high detec-
tion accuracy when working with imbalanced datasets. Addition-
ally, they relied on advanced technologies such as Al which has
led to an increase in unidentified attacks, posing a greater threat to
the security of the networks. Although conventional classifiers ef-
ficiently detect known threats, their ability to recognize previously
unseen attacks remains limited. Furthermore, the rapid expansion
of IoT devices and the widespread use of cloud computing have
significantly increased both the volume and complexity of network
traffic, making it more difficult for traditional methods to differen-
tiate between legitimate and malicious behavior.

In summary, although existing deep learning models have demon-
strated promising performance in network intrusion detection, they
often fail to accurately detect rare or unknown attacks. To overcome
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these limitations, a new hybrid intrusion detection framework is
proposed. To generate novel attack samples, this approach involves
combining encoded latent vectors with corresponding attack data
and sending them to a decoder. The model leverages GAVAE to
learn the latent features of intrusion data, helping to balance the
data set and improve the variety and quality of the training samples.
In order to create a DNN classifier, the GAVAE encoder also in-
cludes a softmax layer. Lastly, the DNN classifier efficiently identi-
fies unknown threats from the network attack data by automatically
examining high- level abstract feature representation.

3. BACKGROUND

The ideas of autoencoders and GAN, which are essential parts of
the anomaly detection method, are briefly explained in this section.

3.1 Auto-Encoder

One of the core deep learning models in artificial neural network
called the autoencoder [20L121]], is trained by an unsupervised learn-
ing procedure. Restoring the output to the original input as closely
as feasible is the aim of autoencoders. Therefore, in order to re-
duce the reconstruction error, the parameters are gradually updated
throughout the training phase. An autoencoder consists of two fun-
damental components: an encoder and a decoder, as illustrated in
Fig[T] The encoder is primarily responsible for reducing the dimen-
sionality of the input data by transforming it into a latent represen-
tation. In contrast, the decoder functions as a reconstruction mech-
anism, capable of generating new data or removing noise from raw
input. The process of converting input data (x) into its correspond-
ing latent space representation using the encoder is described in
Eq.1.

z= f(aW +b) (1)

where W represents the weight matrix and b denotes the bias vector,
while f refers to the activation function used by the encoder. On the
other hand, the decoder’s job is to as closely as possible rebuild the
representation z into the matching input data (Eq.2)(i.e., ).

T =g(zW'+V¥) )

Here, g denotes the activation function applied by the decoder,
while and b’ represent the decoder’s weight matrix and bias
vector, respectively. As a result, training the autoencoder to reduce
reconstruction error Lgg as shown in Eq.3.

(2,5 W, W) = |z — &[> = |z — g (W' @W +b) + 0)||* 3)

One of the primary functions of an autoencoder is to transform
high-dimensional input data into a lower-dimensional form that re-
tains the most essential and relevant features. Representing high-
dimensional input data as lower-dimensional information (summa-
rized yet relevant information) is one of the autoencoder’s core
functions. Here, autoencoders are used to extract features from the
input data (i.e., reduce its dimension). Although high- dimensional
data is typically projected into a lower dimensional space using
PCA, the autoencoders are used to perform nonlinear transforma-
tions on complicated data sets.

3.2 Generative Adversarial Networks

Generative models aim to replicate the probability distribution of
a training dataset to create synthetic data that closely resembles
real data. Among these models, Generative Adversarial Networks
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Fig. 1. Auto-Encoder architecture

(GANSs) [4] have recently gained significant interest. As a result,
numerous variations of GANs have been developed to improve both
performance and functionality [22,123]. A typical GAN, illustrated
in|Z|consists of two neural networks: a generator (G) and a discrimi-
nator (D). The generator’s role is to produce realistic synthetic data,
while the discriminator attempts to differentiate between genuine
and generated samples. In essence, the training process involves a
competitive dynamic between these two networks, each working to
outperform the other.

In order to produce synthetic data that is nearly identical to the real
data (training data), generative models are intended to mimic the
probability distribution of a training data set. Among these gen-
erative models, GAN research [4]] has attracted a lot of attention
lately. As a result, several GAN models have been put out in an
effort to enhance functionality and performance [22} 23} 4]. Two
models based on neural networks make up a GAN model as shown
in Fig.[2]a generator G and a discriminator D. While the discrimina-
tor D seeks to distinguish between real and fake data, the generator
G seeks to produce synthetic data (fake data) that is similar to the
real data. Put another way, during the training process, these two
elements have competing goals.

Real

dataset ata
B [F—

Fig. 2. Architecture of Generative adversarial Network

Fake

Formally speaking, it has been defined p, and Py, as the prob-
ability distributions of the real data and the latent code, respectively.
Then, a GAN’s objective function V(D, G), which is made up of a
discriminator D and a generator G, is a minimax game and may be
expressed in the Eq. 4 as follows:

V(D,G) = mén max Expyu 108 Do, (%))

+ Ez~pz [lOg (1 - D9D (GOG (Z)))]

“
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where the model parameters of D and G are indicated by
Op and Og respectively. As a result, the generator learns to pro-
duce synthetic data that can increase the likelihood of being classi-
fied as real by the discriminator, while the discriminator is trained
to assign higher confidence scores to genuine data. Through contin-
uous iterations of this adversarial training process, both networks
improve their performance until they eventually reach a state of
equilibrium, where neither can further enhance its results.

3.3 Generative Adversarial Auto- Encoder

Fig. (] illustrates the structure of the Generative Adversarial Auto-
Encoder (GAAE). Since the Adversarial Auto-Encoder (AAE)
shares functional similarities with the Variational Auto-Encoder
(VAE), the latent variable z in the Auto-Encoder is constrained to
follow a specified distribution method. In the case of AAE, z can be
declared and sampled as input for the discriminator. Unlike VAE,
which optimizes the evidence lower bound (ELBO), AAE employs
a Generative Adversarial Network (GAN) to align the encoder’s
output distribution ¢(z | =) with the target prior p(z). The discrim-
inator is modeled to discriminate between samples drawn from the
true prior p(z) and the encoder-generated latent representations z.

)
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! difference
Latent |

Encoder, vanablcs
A Decoder
.

x GAN Generator
X — b £ e x

4,(z]x) P(x12)

Reconstructed
input

Input
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Fig. 3. Adversarial Auto-Encoder Framework

The regularized adversarial auto-encoder incorporates label infor-
mation directly into the adversarial training process. To give the
latent variables a better fit distribution, the discriminator network
receives the one-hot label. As shown in Fig.3, incorporating a one-
hot encoded label into the decoder’s input effectively transforms
the training process from unsupervised to supervised. In the GAAE
framework, the hidden variable z is combined with the one-hot la-
bel y and used together as input to the decoder. Next the network
is tuned to acquire the output label-independent latent distribution.
While this is not achievable in AAE, new attack samples can be
created with the designated labels in GAAE.

3.4 Proposed GAVAE Intrusion Detection Framework

The proposed Generative Adversarial Variational Autoencoder
(GAVAE) is illustrated in Fig. EL which combines the benefits
of VAE and GAAE. The primary distinction between the GAAE
model and its predecessor is that the former employs AE to charac-
terize the latent distribution of attack samples, whilst the latter uses
VAE.

Furthermore, both the discriminator and the decoder are adjusted
by using one-hot encoded class vectors. Its primary objective is
to control how independent the latent variables are from the class
labels. The conditional distribution (g(z | z), y) allows the decoder
to generate attack samples corresponding to a specific label y. The
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proposed system consists of four stages: Preprocessing, Training
GAVAE , Data Augmentation, and Intrusion detection.

3.5 Preprocessing

The system uses the preprocessing module, which consists of three
subprocesses, to purify a given raw data source before creating and
training Al models. 1) Feature scaling; 2) One-hot encoding; and
3) outlier analysis. In the outlier analysis phase, the system filters
out abnormal data points that might negatively impact the model’s
training performance. Outliers are typically found by using reli-
able metrics of size to quantify the statistical distribution of the
data sets. To identify outliers, several commonly used robust mea-
sures of scale are available, including the median absolute deviation
(MAD) and the interquartile range (IQR). Among these, MAD was
selected. The MAD of a numerical property A = x1, x2,..., Xn is
defined (Eq.5) as follows:

MAD = median (|z; — median(A)|)

It is assumed that the data set’s numerical properties have a normal
distribution. Consequently, 1.4826 x MAD is a consistent estima-
tor ’q’ for estimating the standard deviation. Using this estimator,
it has been concluded that values more than ( 10 x & are considered
outliers for a given numerical attribute. Naturally, outlier analysis is
carried out separately for each class and solely on the numerical at-
tributes. Keep in mind that eliminating outliers should come before
scaling features because the latter can hide outlier-related informa-
tion. The system converts nominal qualities into one-hot vectors
after removing the outliers. Each categorical attribute is encoded
using a binary vector whose length matches the number of possi-
ble attribute values. The position representing the actual value is
set to 1, while all other positions are assigned a 0. For instance, the
attribute “’protocol,” which is frequently present in network traffic
data, is converted into a binary vector of length three when the val-
ues TCP, UDP, and ICMP are present. The resulting values are then
represented as [1, 0, 0], [0, 1, 0], and [0, O, 1], respectively. The
system scales the numerical properties in conjunction with the one-
hot encoding procedure. Scaling for numerical features can often
be attributed to normalization and standardization [24]. Between
the two strategies, the min-max normalization strategy 2 was se-
lected. For a numeric attribute A, the normalization function f4 ()
that maps Vx € A into the range [0, 1] is defined in Eq.6:
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T; —minz;

flz)=2; = forz; € A 6)

maxz; — minw;

where the symbol x; stands for the i™ value (or element) of set A
value. Generally speaking, feature extraction (PCA, Pearson cor-
relation coefficient, etc.) is taken into consideration at this stage
in deep learning-based approaches in order to feed the model
with as many informative features as possible. As a result, fea-
ture extraction can have a major impact on how well models per-
form in anomaly detection. Computational feature extraction is ex-
cluded from consideration, since the framework integrates an au-
toencoder model capable of learning representations without the
need for manual feature extraction. It should be noted that, in the
proposed framework, there was no noticeable difference between
the model with and without a computational feature extraction ap-
proach. Later on, a thorough explanation of how to use the autoen-
coder as a feature extractor is provided.

4. TRAINING GAVAE

The training procedure for the proposed GAVAE involves the fol-
lowing steps for each minibatch: First, the Variational Autoencoder
(VAE) is optimized by minimizing the binary cross-entropy loss,
aiming to reduce the discrepancy of the recreated output Z and the
original input x.

—(1) The discriminator is trained to distinguish between latent
representations drawn from the actual data distribution a(z) and
those sampled from the prior Gaussian distribution b(z), using
the WGAN-GP loss as the objective function to guide this differ-
entiation.

—(2) The encoder, acting as the generator, is trained to fool the dis-
criminator by producing latent representations z that are nearly
indistinguishable from those sampled from the true data distri-
bution.

After training SAVAER, the actual data (x,y) is passed through the
trained VAE to compute the reconstruction loss using binary cross-
entropy. For each sample (z;,y;) the binary cross-entropy loss is
estimated as described in Eq.7.

d

L(z;,y:) = — Z [k logZ; ) + (1 — a4 5) log(1l — &, )] (7)
k=1

where k represents the k-th feature of the each input sample; d rep-
resents the number of features. The reconstruction loss with max-
imum value for class maxL; of class j is defined in the Eq.8 as
follows:

max L; = k- max{L(z;,y;) | y; € class j} (8)

where K is the scaling factor and it is set to 1.0.

4.1 Data Augmentation

To enhance the classifier’s ability to detect unknown and minority
attacks, new attack samples can be generated during the data aug-
mentation phase using a trained decoder as shown in Fig. [] This
process involves sampling the latent variable 2., from a multivari-
ate Gaussian distribution p(z), combining it with the corresponding
minority class label 3., and feeding the resulting input into the
decoder to create new attack instance e .
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Fig. 5. Data Augmentation

The reconstruction error L(Z ey, Ynew) Of the newly generated sam-
ple is determined using Equation 8 once the newly generated sam-
ple (Tyew, Ynew) is fed into the trained GAVAE. Filter the newly
created attack samples (Zpew, Unew) 1N accordance with Eq.9 to ex-
clude the samples that change noticeably from the original sam-
ple distribution. This approach guarantees that the newly synthe-
sized samples follow the same spatial property as the original data.
To achieve a balanced training dataset, these newly generated at-
tack samples—aligned with the original data distribution—are ul-
timately integrated into the original training set.

g {S U {@news Ynew } if Yo € class j

& L(Znew, Ynew) < max L;, Otherwise
©)

4.2 Intrusion Detection

In the attack detection stage, the trained GAVAE encoder is ex-
tended with a softmax layer on top of its final layer to form a deep
neural network classifier as shown in Fig [] The weights of the
DNN’s hidden layers are initialized using the weights of the learned
GAVAE encoder. The DNN classifier is trained using the synthetic
training dataset. The DNN classifier’s hidden layer weights are first
frozen, followed by backpropagation to update the output layer’s
weight, the unfreezing of all hidden layers, and the use of the au-
gumented training data set to refine the classifier.

] Mean
e - .}[  —

[T If _*("' Standard, I
esting _ deviation
Dataset il

l
Xewjos

Fig. 6. Detecting attacks

5. EXPERIMENT AND DISCUSSION

All experiments are carried out on a ThinkStation workstation fea-
turing an Intel E5-2620 processor and 64 GB of RAM, operat-
ing on a 64-bit Windows 10 system within a TensorFlow frame-
work. To assess the effectiveness of the proposed model alongside
several commonly used classifiers, three benchmark datasets are
employed: UNSW-NBI15 [25], NSL-KDD (KDDTest+) [24]], and
NSL-KDD (KDDTest-21) [24]. The model’s architecture and hy-
perparameters are fine-tuned through a grid search strategy com-
bined with 5-fold cross-validation to achieve optimal prediction
performance.
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5.1 Dataset description

To assess the effectiveness of an intrusion detection approach, it
is essential to utilize appropriate datasets. In this study, the NSL-
KDD dataset [24] and the UNSW-NB15 dataset [25] are employed
to evaluate the performance of the GAVAE-IDS model.

5.1.1 NSL-KDD dataset. NSL-KDD [24] is a vast collection of
network records that serves as a standard for intrusion detection
techniques. These are popular datasets for assessing IDS; UNSW-
NBI15 has 2,540,044 samples, while NSL-KDD has 148,517 sam-
ples. Table[T]lists the 41 features that are present in each NSLKDD
sample. These characteristics fall into four groups: host-based fea-
tures, time-related features, content-related features, and basic fea-
tures. Additionally, NSLKDD was pre-segregated into two sets:
KDDTrain+ and KDDTest+, which correspond to the training and
test sets.

Table 1. Description of Traffic Feature Groups

Attributes | Description
1-9 Fundamental features of network connections
10-22 Content-related features
23-31 Time-related features
3241 Host-based features

The NSL-KDD dataset consists of both normal records and attacks.
The assaults are divided into four groups: probing, user 2 root (U
2 R), remote 2 user (R 2 L), and denial of service (DOS). The five
classes in the NSL-KDD dataset are DOS, R 2 L, U 2 R, Probe, and
Normal. Below are the specifics of the attack categories [25]:

(1) Denial of Service (DoS): This category includes Distributed
Denial-of-Service (DDoS) attacks like Smurf, Ping of Death,
and Neptune. Such attacks are designed to overwhelm system
or network resources, preventing them from responding to le-
gitimate requests or causing them to become unresponsive.

(2) Remote 2 User (R2L): R2L attacks occur when an attacker
gains unauthorized access and uses that access to send packets
across a network. The attacker can quickly use programs like
Guess_ password, Xclock, and others to obtain local access as
the machine’s user.

(3) User 2 Root (U2R): This type of attack happens when an at-
tacker tries to gain access to a regular user’s account or system,
such as Xtrem, Perl, etc.

(4) Probing: An attack known as probing occurs when an unautho-
rized person screens a system to learn more about the network.
This information may also be utilized in future attacks or to go
over security measures like Satan, mscan, and so forth.

5.2 UNSW-NB15 DATASET

The UNSW-NBI1S5 dataset, introduced by Moustafa et al. [19] in
2015, comprises a diverse range of attack types, making it well-
suited for evaluating the performance of various intrusion detection
systems. Each entry in the dataset includes 42 features, categorized
into basic features, content-based attributes, time-related proper-
ties, general-purpose characteristics, and connection-based metrics,
as outlined in Table [2} However, both the UNSW-NB15 and NSL-
KDD datasets suffer from class imbalance. As shown in Table[3] the
imbalance ratios in NSL-KDD vary from 1.44 to 305.77, whereas
UNSW-NB15 exhibits even greater disparities, with ratios ranging
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from 10.30 to 12,751.50. Additionally, the NSL-KDD test set con-
tains 38 types of anomalies, compared to only 23 types in the train-
ing set, further highlighting the challenge of imbalance in these
datasets.

Table 2. The different categories of features in the
UNSW-NBI15 dataset

Attributes | Description
1-13 fundamental characteristics of network connections
14-21 content-based aspects of the traffic
22-30 Time-related features
31-35 General purpose traffic metrics
36-42 connection-based features

Rather than using binary classification, the NSL-KDD dataset is
evaluated with a 5-class classification approach, while the UNSW-
NB15 dataset is assessed using a 10-class classification setup. The
intrusion detection problem is framed as a multiclass classification
task by employing multiple One-vs-All strategies. In each strategy,
a single class is designated as the positive class, and all other classes
are grouped as negative, enabling focused detection for each indi-
vidual category.

Table 3. Class Distribution and Imbalance Ratios in NSL-KDD

and UNSW-NBI15 Datasets
Dataset Class Samples | Imbalance ratio
NSL-KDD Normal 77,054 -
DoS 53,385 1.443
Probe 14,077 5474
R2L 3,749 20.553
U2R 252 305.770
UNSW-NB15 | Normal 2,218,761 -
Generic 215,481 10.297
Exploits 44,525 49.832
Fuzzers 24,246 91.510
DoS 16,353 135.679
Reconnaissance 13,987 158.630
Analysis 2,677 828.824
Backdoor 2,329 952.667
Shellcode 1,511 1,468.406
Worms 174 12,751.500

To mitigate the issue of class imbalance in the NSL-KDD dataset,
the GAVAE module is utilized to generate additional samples
specifically for the four underrepresented classes: DoS, Probe,
R2L, and U2R. Fig. [/| displays the D convergence curves based
on each class’s accuracy. The curves show that, after 4000, 5000,
6000, and 6000 iterations, respectively, the module has been well-
optimized to produce samples for DoS, Probe, R2L, and U2R. The
UNSW-NB15 and NSL-KDD optimization processes follow the
same steps and provide convergence curves that are comparable.

Taking the DoS curve in Fig. 7(a) as an example, during the initial
1000 training iterations, the discriminator (D) could easily differen-
tiate between real and generated samples because the generator (G)
had not yet learned to produce realistic representations. As a result,
D’s initial Accuracy score was nearly 100 %. Between the 1000th
and 2000th iterations, D’s accuracy decreased from 100 % to 20
%, primarily due to G’s rising generative capacity, which made it
more difficult for D to distinguish between synthetic and genuine
samples. D and G continued to optimize one another for the final
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Fig. 7. Convergence curve of discriminator D

2000 iterations until they achieved an equilibrium, at which point
D lost its ability to discriminate and converged to 0.5.

The Probe curve is shown in Fig. 7(b), where Accuracy almost ap-
proached 100 % in the first 1000 iterations due to G’s poor sample
generation ability. Because G’s generating power continued to in-
crease, the Accuracy roughly decreased from 100 % to 10 % in
the 1000th to 2500th iterations. D and G continued to optimize one
another during the final 2500 iterations until D reached 0.5. Regard-
ing R2L and U2R (Fig. 7(c) and (d)), G’s accuracy, which reached
about 100 % in the first 2000 iterations, was insufficient to produce
samples. As G’s generative capacity continued to rise, the Accu-
racy roughly decreased from 100 % to 5 % in the 2000th to 4000th
iterations. D and G continued to optimize one another during the
final 2000 iterations, until D eventually converged to 0.5.

As mentioned, the DNN module uses both real and generated sam-
ples as input for training. The DNN module performs the last in-
trusion detection on new data after it has been properly tuned. The
Deep Neural Network (DNN) is optimized using the Adam opti-
mizer with a learning rate set to 0.00005, while Categorical Cross-
Entropy serves as the loss function during training.

5.3 Performance metrics

Network intrusion detection systems are measured using nine pri-
mary evaluation metrics: accuracy, precision, recall, detection rate
(DR), false positive rate (FPR), F1 score, G-mean, the receiver op-
erating characteristic (ROC) curve, and the area under the ROC
curve (AUC). These performance indicators are computed using
values obtained from the confusion matrix during the classification
of network traffic.

5.4 Results and Discussion

Multiple experiments are conducted to assess the effectiveness of
the proposed GAVAE-DNN model in detecting previously unseen
attacks and handling class imbalance issues. Tables[d]and[5display
the distribution of the newly synthesized samples across different
categories within the training sets of the UNSW-NB15 and NSL-
KDD datasets, respectively.

Figs@ and |§| illustrate the spatial distribution of both the original
and augmented training samples, projected into two dimensions
using UMAP (Uniform Manifold Approximation and Projection).
Furthermore, the detection capability of the proposed GAVAE-
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Table 4. Generated Training Samples for the NSL-KDD Dataset

Category | Number of actual records | Number of newly generated records Total
Normal 13,449 0 | 13,449
Probe 2,289 11,160 | 13,449
DoS 9,234 4,215 13,449
U2R 11 13,438 | 13,449
R2L 209 13,240 | 13,449
Total 25,192 42,053 | 67,245

Table 5. Generated Training Samples for the UNSW-NB15 dataset

Category Number of actual records | Number of newly generated records Total
Normal 56,000 0 56,000
Generic 40,000 16,000 56,000
Exploits 33,393 22,607 56,000
Fuzzers 18,184 37,816 56,000
DoS 12,264 43,736 56,000
Reconnaissance 10,491 45,509 56,000
Analysis 2,000 54,000 56,000
Backdoor 1,746 54,254 56,000
Shellcode 1,133 54,867 56,000
‘Worms 130 55,870 56,000
Total 175,341 481,340 | 560,000

DNN model is compared against several state-of-the-art intrusion
detection approaches from existing literature, with the comparative
results presented in Tables [6]and 7}

F1g§|§| and |§| present a two-dimensional projection of the spatial
distribution of the original and newly generated training samples,
visualized using Uniform Manifold Approximation and Projection
(UMAP). Additionally, GAVAE- DNN’s detection performance is
contrasted with that of other cutting-edge models documented in
the IDS literature, and the comparative outcomes are displayed in
Tables[@] and[7]
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(a) Original training data. (b) Synthetic training data.

Fig. 8. UMAP visualization for NSL-KDD dataset

5.5 Comparative Analysis with other state-of-the-art
methods

To enhance the detection of previously unseen attacks, this research
presents the GAVAE-DNN model, which generates synthetic un-
known attack samples and addresses class imbalance within the
training data. The model uses a decoder to produce additional
samples for underrepresented attack categories. In addition, five
widely adopted classification techniques—K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), Random Forest (RF),
Convolutional Neural Network (CNN), and Deep Neural Network
(DNN)—are employed to perform intrusion detection. Their per-
formance is assessed and compared with the proposed GAVAE-
DNN model to determine its effectiveness. These classification
methods have been widely applied in intrusion detection studies.
The comparative experimental results are presented in Figs[T0|and

inll
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(b) Synthetic training data.

(a) Original training data.

Fig. 9. UMAP visualization UNSW-NB15 dataset

Table 6. Performance Comparison of Classifiers on NSL-KDD

Dataset
Method Accuracy | Recall (DR) | Precision F1 G-mean | FPR
KNN 76.83 63.26 63.76 7543 77.54 7.10
CNN 73.54 57.34 72.36 70.64 73.52 7.18
DNN 75.87 61.23 83.56 74.98 76.23 6.68
RF 78.26 66.98 91.54 77.14 79.34 6.77
SVM 81.34 71.36 93.54 81.36 81.33 7.41
GAVAE-DNN 90.35 85.76 96.04 91.55 90.08 4.65
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Fig. 10. Performance Comparison of Classifiers on NSL-KDD Dataset

Table 7. Performance Comparison of Classifiers on UNSW-NB 15

dataset

Method Accuracy | Recall (DR) | Precision F1 G-Mean | FPR
KNN 86.74 84.65 83.03 87.54 84.75 26.44
CNN 48.08 51.85 53.64 52.38 48.32 56.43
DNN 86.34 92.43 83.56 88.34 86.04 24.89
RF 88.23 91.45 83.56 90.43 86.32 20.44
SVM 87.34 93.63 82.65 90.13 85.43 25.77
GAVAE-DNN 93.01 94.56 95.32 93.88 93.12 5.67

Fig.[I0[shows that the GAVAE-DNN model outperforms other clas-
sifiers on the NSL-KDD dataset, delivering higher scores in accu-
racy, recall, precision, F1 score, and G-mean. The Fig.lmcompares
the performance of six classification models—KNN, CNN, DNN,
RF, SVM, and GAVAE-DNN—using all the key evaluation met-
rics. Among these, GAVAE-DNN consistently achieves the high-
est values across all positive metrics while maintaining the low-
est FPR, indicating superior detection capabilities. SVM and RF
follow closely with balanced performance, whereas CNN under-
performs across most categories. This visual clearly demonstrates
the advantage of combining generative and discriminative learning
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Fig. 11. Performance Comparison of Classifiers on UNSW-NB 15 dataset

methods. Thus GAVAE-DNN improves the accuracy and low false
alarms.

Likewise, Fig. [[T] demonstrates that the GAVAE-DNN model de-
livers superior results on the UNSW-NB15 dataset, with improved
overall accuracy, precision, F1 score, G-mean, and a reduced false
positive rate (FPR). The Fig. [T1] presents a comparison of six
models—KNN, CNN, DNN, RF, SVM, and GAVAE-DNN—using
key performance metrics. Among them, GAVAE-DNN consistently
achieves the highest scores across all the metrics. It also records the
lowest False Positive Rate (FPR), making it the most reliable and
accurate. In contrast, CNN lags behind significantly, particularly in
Recall and FPR. The results highlight GAVAE-DNN’s capability to
deliver superior detection with minimal errors.

These comparative experimental results have shown the signifi-
cance of the proposed GAVAE-DNN model in detecting network
intrusions, especially when dealing with imbalanced network traf-
fic.

6. CONCLUSION

The need for network intrusion detection is growing as network in-
trusion continues to change. Imbalanced network traffic presents
a major threat to cybersecurity, complicating the ability of intru-
sion detection systems to effectively identify malicious activities.
This research introduces the Generative Adversarial Variational
Autoencoder (GAVAE) as a method to improve classification mod-
els’ ability to learn from skewed network data. The GAVAE frame-
work generates a broad range of rare and previously unseen at-
tack samples. To enhance training data diversity and maintain bal-
ance, its decoder is employed to create supplementary attack sam-
ples for designated labels. The hidden layer weights of the DNN
are initialized using the encoder from GAVAE, which simultane-
ously performs automatic extraction of high-level feature represen-
tations from the original data samples. The proposed hybrid archi-
tecture for network intrusion detection, called GAVAE-DNN, com-
bines GAVAE with DNN. The effectiveness of the GAVAE-DNN
model was assessed using the NSL-KDD and UNSW-NB15 bench-
mark datasets, producing favorable outcomes. Comprehensive ex-
perimental evaluations reveal that GAVAE-DNN excels in detect-
ing both known and novel attacks while also improving the detec-
tion rate for infrequent attacks. Additionally, comparative studies
on the UNSW-NB15 dataset highlight its strong capability in iden-
tifying advanced network threats. The model attained a maximum
accuracy of 93.01 % and an F1 score of 93.88 % on the dataset.
Given its extremely competitive findings when compared to the
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most advanced models, the suggested SAVAER could be a com-
petitive option for network intrusion detection.
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