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ABSTRACT
Knowledge of system security becomes more and more important
as ever-evolving network threats arise. Intrusion detection, a cru-
cial component of cybersecurity, recognizes unusual activity based
on traffic patterns. However, harmful cyberattacks can frequently
hide enormous amounts of legitimate data in unbalanced network
traffic. Generative AI models can be utilized to address this im-
balance by generating synthetic data that can improve the devel-
opment of machine learning models. Traditional intrusion detec-
tion systems (IDS) often struggle with imbalanced data, where
benign traffic overwhelmingly outnumbers malicious traffic. This
imbalance can lead to poor detection rates for rare but signifi-
cant attacks. To overcome this challenge, a novel approach is pro-
posed using a Generative Adversarial Variational Auto-Encoder
(GAVAE) to improve the detection of intrusions in imbalanced net-
work traffic. By combining the probabilistic latent space learning
of Variational Auto-Encoders (VAEs) with the adversarial training
framework of Generative Adversarial Networks (GANs), the pro-
posed method generates high-quality synthetic samples of minor-
ity classes. These synthetic samples augment the training dataset,
leading to a more balanced distribution and increased throughput
of the intrusion detection model. The proposed model was eval-
uated on the UNSW-NB15 and NSL-KDD data sets. The experi-
mental results demonstrate that the proposed GAVAE model sig-
nificantly improves the detection capabilities compared to tradi-
tional methods, offering a robust solution for network security.
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1. INTRODUCTION
Network security is increasingly complicated with the arrival of
new Internet technologies such as file sharing, mobile payments,
and the expansion of the Internet of Things [1, 2, 3]. Specifically,

the requirement for network security is increasing because of the
necessity to safeguard private data, a rise in hacking occurrences,
a rise in the conversion of personal computers into zombie PCs in
response to the growth in open information system users, the quick
information sharing among hackers, and the sharp rise in Internet
usage. As a result, a network intrusion detection system (NIDS) is
now a key part of network security and computing.
An irregularity in a network is the sign of an intrusion or threat.
Hackers utilize bugs in software such as buffer overflows and poor
security standards among other network vulnerabilities to their ad-
vantage, weakening the security of the network. Hackers, often
ordinary Internet users, attempt to steal or compromise sensitive
data from a victim’s system. These intruders may include exter-
nal attackers or authorized users with limited privileges seeking to
gain higher access rights. Intrusion detection techniques are gen-
erally classified into two main types: anomaly detection and sig-
nature detection. By comparing the network’s packet flow with the
previously established, configured known signatures of known at-
tacks, signature-based detection keeps an eye on known threats. On
the other hand, attacks are identified using the anomaly detection
technique, which compares events that indicate a departure from
the authorized user parameters with those that have been set [2].
When malicious activity occurs on a network, the intrusion detec-
tion system (IDS) creates logs and notifies the network administra-
tor [2, 3, 4].
One security mechanism that helps protect computers and network
systems from possible abuse is intrusion detection [3]. The anomaly
detection approach, which compares anomalous behavior with nor-
mal behaviour, and the signature-based detection method, which
compares with pre-configured and pre-determined attack patterns
known as signatures, are the two ways intrusion detection sys-
tems identify intrusions. In an effort to reduce false detection of
unknown attacks and increase the identification of preconfigured
attacks, hybrid detection - which combines anomaly-based and
signature-based detection - has recently been the subject of numer-
ous studies [4]
.
Despite their widespread acceptance, about 80 % of IoT devices
are susceptible to various cyberattacks [4]. They are susceptible
to various attacks, such as denial-of-service (DDoS), unauthorized
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device access, data breaches, identity theft, and man-in-the-middle
exploits. Robust security methods that can identify both known and
new attacks must be considered in order to protect critical systems
critical to security against attackers [4, 5, 6]. Primarily, intrusion
detection systems (IDSs) are the first line of defense in the CPS
domain. They are in charge of monitoring system data and network
traffic for malicious activity and sending out alarms.
Later, the researchers used machine learning techniques to detect
intrusions [1]. However, machine learning was not well received at
the time because of the limitations in computer power and storage.
The rapid progress in computing and the growing influence of arti-
ficial intelligence (AI) have led researchers to incorporate machine
learning techniques into network security to improve threat detec-
tion and system protection. They have obtained certain outcomes
[2, 3, 4].
To identify anomalies in the network, an IDS integrated with ma-
chine learning model will support to achieve an improved accuracy
[7]. While IoT, Big Data, Cloud computing, and Industry 4.0, are
some of the rising IT developments in CPS that are gaining pop-
ularity, they are also creating new risks [8]. In addition, new ar-
chitectural arrangements are making the model more complex be-
cause of unidentified emergent behavior [9]. It is necessary to de-
ploy each IDS individually to examine how they interact with this
complicated system; yet, the model training is being hampered by a
lack of data. Furthermore, the majority of these publicly accessible
datasets are imbalanced, meaning that certain categories of attack
data are scarce relative to normal data.
To address the challenges in the existing system, the proposed work
creates a generative adversarial network (GAN)-assisted intrusion
detection system (IDS) that may mitigate the dataset-related restric-
tions for all of these developing technologies. Due to their lack of
extensive training datasets and technological limitations for pro-
cessing large amounts of data, traditional artificial neural networks
(ANNs), which were previously used to do this task, are no longer
useful. Due to the unique features of the present internet, it has been
decided to use the capabilities of contemporary artificial neural net-
works (ANN) to detect security intrusions. In this paper, the suit-
ability of generative adversarial networks (GANs) is examined for
detecting security breaches in large-scale cyber device networks.
In this work, the popular techniques’ limited ability to self-learn
in the current intrusion detection systems and the absence of com-
prehensive and reliable datasets mean that they are unable to fully
solve all intrusion detection tasks for m2m networks. A relatively
recent class of artificial neural networks called Generative Adver-
sarial Networks (GAN) is primarily focused on producing specific
data [7]. Two neural networks are combined to form GAN; one
creates the objects, while the other estimates them. G stands for
generator in the first network, and D stands for discriminator in the
second. They are in competition with one another: D learns to iden-
tify these fakes from the data, while G learns to produce ever-more-
believable things. The direct route across the network for informa-
tion transmission from G to D is called the channel, and the reverse
path from D to G is known as the return path. Giving the network
a thorough grasp of the hidden data and its contents is the primary
objective of all neural models based on GANs. This functionality
will assist us in resolving the lack of dataset problem.
When compared to typical ANNs, GAN offers several noteworthy
benefits, including the ability to quickly search for and classify net-
work anomalies as well as generate extra anomalous copies to en-
hance the quality of the flagged samples. Since there is no need
to generate each entry in the sample sequentially, GAN generates
samples faster than even fully visible belief nets (Neural Autore-
gressive Distribution Estimation (NADE), Pixel Recurrent Neu-

ral Network (RNN), WaveNet, etc.). Unlike Boltzmann machines,
which rely on a Monte Carlo approximation to the gradient of the
log partition function, GANs train without the need for any such
approximations and are also significantly simpler to train. GAN
does not introduce deterministic bias in contrast to variation auto-
encoders.
There is a high degree of category imbalance because most traf-
fic data in real cyberspace is from normal activities, with very few
being harmful cyberattacks. Normal activities hold the dominant
position in cyberspace. In the incredibly redundant and unbalanced
network traffic data, intrusion detection is under a lot of strain. Cy-
berattacks might blend in with a lot of everyday traffic. Because of
this, it is simple to misclassify and the machine learning algorithm
is unable to adequately understand the distribution of a small num-
ber of categories [5]. Adaptive learning of the difference between
normal and abnormal behavior is a powerful tool for improving
the real-time intrusion processing performance by training a large
number of data samples. Nonetheless, the imbalance in classifica-
tion still has an impact on the multiclassification of network traffic.
In this work a unique Generative Adversarial Variational Autoen-
coder (GAVAE) approach is proposed to address the class imbal-
ance issue in network traffic when faced with imbalanced data.
This method effectively addresses data imbalance and strength-
ens the classification model’s ability to learn difficult examples.
To evaluate its effectiveness, two benchmark datasets are tested us-
ing both deep learning and traditional machine learning algorithms.
The main contributions of this work are as follows.

—To perform a thorough analysis and data cleaning on two bench-
mark datasets: the traditional NSL- KDD and UNSW-NB15.

—In order to address the issue of class imbalance in intrusion de-
tection and improve the classifier’s ability to learn distinctions
during training, this work presents a novel GAVAE technique
that reduces the majority samples and augments the minority
samples in the challenging set.

The rest of the article is presented as below. The relevant work in
the area of intrusion detection is analyzed in Section II. Section
III suggests a modified model and provides necessary background
data. The intrusion detection system suggested is described thor-
oughly in Section IV. Section V displays the results and discussions
for the suggested model in comparison to the most advanced clas-
sification models and established approaches. In Section VI, this
article concludes with the conclusion.

2. RELATED WORK
Intrusion Detection Systems (IDS) are classified into two main
types: Host-Based Intrusion Detection Systems (HIDS) and
Network-Based Intrusion Detection Systems (NIDS). HIDS is em-
ployed by network administrators to track and assess activities on a
particular device. A key benefit of HIDS is its capability to analyze
encrypted data as it moves across a network. However, managing
HIDS can be challenging since each host requires individual con-
figuration and oversight. Moreover, some denial-of-service attacks
may disable HIDS. In contrast, NIDS is a hardware- or software-
based system strategically positioned within a network to monitor
traffic without directly interacting with the devices it oversees.
Network-Based Intrusion Detection Systems (NIDS) function with
two interfaces: one for management and reporting, and another for
network traffic monitoring. One of the main benefits of NIDS is its
capability to oversee extensive networks with minimal hardware
deployment. Moreover, since NIDS typically operate discreetly,
they provide an added layer of security by remaining hidden from

10



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.15, June 2025

potential attackers. However, a significant drawback is their strug-
gle to precisely identify attack vectors when network traffic is ex-
ceptionally high.
The data-level based network intrusion detection model is exam-
ined in [2]. In this article, three data-based research schemes—a
data augmentation scheme based on the variational autoencoder
(VAE), a data-balancing strategy based on the conditional VAE, and
a data-balancing scheme based on both conditional VAE and ran-
dom under sampling—are built step-by-step. The deep-learning-
based IDS is integrated with the three data-level-based schemes.
An unsupervised deep learning approach combined with a semi-
supervised learning strategy is utilized to identify anomalous net-
work traffic or intrusions from flow-based data is used in [3]. More
precisely, flow features were used to identify unknown attacks us-
ing Autoencoder and Variational Autoencoder algorithms. The ex-
perimental findings demonstrate that Variational Autoencoder out-
performs Autoencoder and One-Class Support Vector Machine in
most cases.
In order to detect intrusions in unbalanced network traffic, [4]
investigates deep learning and machine learning techniques. A
novel approach, known as the Difficult Set Sampling Technique
(DSSTE), is proposed to tackle the challenge of class imbalance.
Additionally, a Convolutional Neural Network (CNN)-based intru-
sion detection model is introduced in [5]. Before training the CNN,
network traffic is balanced using the Synthetic Minority Oversam-
pling Technique and Edited Nearest Neighbors (SMOTE-ENN)
method. The model’s performance is evaluated using the NSL-
KDD dataset.
Three categorization strategies were employed in the work of Alka-
sassbeh and Almseidin [6] to address the low accuracy problems
that are frequently encountered by IDS that use artificial neural
networks with fuzzy clustering for handling infrequent attacks. By
dividing the heterogeneous training data set into homogeneous sub-
sets, they were able to successfully increase accuracy while lower-
ing the complexity of each training set. The suggested work used
J48 trees, Multilayer Perceptron (MLP), and Bayes network tech-
niques, with J48 trees providing the best accuracy. Their inability
to use feature selection to eliminate all unnecessary, redundant, and
undesirable features is a significant flaw in their work.
By utilizing a voting classifier to combine the output of several su-
pervised and unsupervised machine learning methods, Marilyn Z.
and Chung-Horng L. [7] developed an ensemble-based approach
to IDS. The study improves the performance and accuracy of the
available intrusion detection systems. They chose the Kyoto2006+
dataset, which is older and more promising than the KDDCup ’99
dataset, which is the most employable. This forces them to strive
for a specific degree of accuracy, although in a few instances, the
recall of the result is rather low, indicating high false-negative rate
(FPR) levels.
In order to address the problems with single classifiers, an ensem-
ble approach has been proposed in [8]. As a result, a highly scal-
able and constructive majority voting-based ensemble model was
proposed, which can be used in real-time to successfully examine
network traffic and proactively warn about potential attacks. An ef-
ficient model was created by taking into account the characteristics
of current machine learning techniques. In [8], the proposed intru-
sion detection methodology is based on ensembles. The suggested
model uses decision trees, logistic regression, and naive Bayes as
voting classifiers. The effectiveness of the model was assessed us-
ing a number of well-known, cutting-edge approaches currently in
use. Additionally, an analysis of the suggested model’s efficacy was
conducted using the CICIDS2017 dataset. The outcomes show a
notable increase in accuracy.

A technique to assess the danger of adversarial assaults on ML-
based IDS that makes use of generative adversarial networks and
active learning is proposed in [11]. This approach gets around these
drawbacks by showing how to compromise an IDS with sparse
training data and presuming that the only thing known about the
IDS model beforehand is its binary classification. Traditional ma-
chine learning techniques struggle with data imbalance and fea-
ture redundancy when dealing with complicated and vast network
data feature information. This leads to low detection rates, high
false alarm rates, and subpar real-time performance of intrusion
detection systems. Thus [12] presents a data imbalance-based Con-
volutional Neural Network Intrusion Detection Method (CNN-
IDMDI) to address these issues. Conventional statistical learning
techniques, including Naive Bayes [7], Decision Trees [8, 9, 10],
Random Forests [9, 10, 11, 12, 13, 14], and Support Vector Ma-
chines [10, 11, 12, 13, 14], are used in the majority of previous
works to develop intrusion detection. Many studies, such as Multi-
layer Percetron [15], Convolutional Neural Network [16], and Re-
current Neural Network [17], used neural networks for intrusion
detection, motivated by the amazing impact of deep learning. In
addition, Aljawarneh et al. [18] reported an enhanced accuracy in-
trusion detection system based on feature selection and hybrid al-
gorithm.
The efficacy of most intrusion detection systems is hampered by
class-imbalanced data, despite the significant advancements gained
in previous approaches [19]. The issue of class imbalance arises
when there are substantially less intrusion samples than the typi-
cal amount. Deep learning technologies, which can produce results
that are on the same level with or even better than those of human
experts, are widely used in computer vision, natural language pro-
cessing, speech recognition, drug design, intrusion detection, and
other fields. Examples of these technologies include DBN (Deep
Belief Network), DNN (Deep Neural Network), CNN (Convolu-
tional Neural Network), LSTM (Long-Term Short-Term Memory),
and GAN (Generate Adversarial Network) [8, 9, 10, 11]. These
technologies still have a lot of issues, though. First, there is an im-
balance in the sorts of attack traffic due to the quick advancement
of network technology and the quick expansion of network traffic
data.
On unbalanced data sets, it is challenging for conventional clas-
sifiers to reach high detection rates. Second, the security of the
Internet and Intranet is increasingly being threatened by uniden-
tified assaults as a result of the widespread use of new technologies
like artificial intelligence (AI). Conventional classifiers identify un-
known assaults poorly, while they perform better on known threats.
Third, the quantity and complexity of network traffic data are in-
creasing due to the growing acceptance of the Internet of Things
and the broad use of cloud- based services, making it challenging
for conventional classifiers to discern between normal and aberrant
activity.
In conclusion, even though the previously described deep learning
techniques have shown good results for network intrusion detec-
tion systems, they are still plagued by low detection rates for un-
known and infrequent attacks. In order to address these issues, de-
veloping a novel hybrid intrusion detection system is proposed. The
suggested framework concatenates the encoded latent vectors with
the given attack labels and feeds them into the decoder to produce
unknown assaults. GAVAE is used to learn the latent distribution
of the intrusion data. As a result, the training sample set is bal-
anced and the diversity of training samples is enhanced. In order to
create a DNN classifier, the GAVAE encoder also includes a soft-
max layer. Lastly, the DNN classifier efficiently identifies unknown
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threats by automatically examining high- level abstract feature rep-
resentation of network attack data.

3. BACKGROUND
The ideas of autoencoders and GAN, which are essential parts of
the anomaly detection method, are briefly explained in this section.

3.1 Auto-Encoder
One of the core deep learning models in artificial neural network
called the autoencoder [20, 21], is trained by an unsupervised learn-
ing procedure. Restoring the output to the original input as closely
as feasible is the aim of autoencoders. Therefore, in order to re-
duce the reconstruction error, the parameters are gradually updated
throughout the training phase. An encoder and a decoder make up
the two main parts of an autoencoder’s architecture as shown in Fig
1. While the decoder is a decompression technique that can be used
to generate new data or denoise raw data, the encoder is typically
employed to reduce dimensionality. Mapping the given raw input
data (x) into the latent space of representation is the encoder’s job
is given in the Eq.1.

z = f(xW + b) (1)

where W and b stand for the weight matrix and bias vector, re-
spectively, and f signifies the encoder’s activation function. On the
other hand, the decoder’s job is to as closely as possible rebuild the
representation z into the matching input data (Eq.2)(i.e., x̃).

x̃ = g(zW ′ + b′) (2)

where g stands for the decoder’s activation function and W’ and
b’ stand for the weight matrix and bias vector, respectively. As a
result, training the autoencoder to reduce reconstruction error LRE

as shown in Eq.3.

(x, x̃;W,W ′) = ∥x− x̃∥2 = ∥x− g (W ′(xW + b) + b′)∥2 (3)

Fig. 1. Auto-Encoder architecture

Representing high-dimensional input data as lower-dimensional in-
formation (summarized yet relevant information) is one of the au-
toencoder’s core functions. Here, autoencoders are used to extract
features from the input data (i.e., reduce its dimension). Although
high- dimensional data is typically projected into a lower dimen-
sional space using PCA, the autoencoders are used to perform non-
linear transformations on complicated data sets.

3.2 Generative Adversarial Networks
In order to produce synthetic data that is nearly identical to the real
data (training data), generative models are intended to mimic the
probability distribution of a training data set. Among these genera-
tive models, GAN research [4] has attracted a lot of attention lately.
As a result, several GAN models have been put out in an effort to
enhance functionality and performance [22, 23]. Two models based
on neural networks make up a GAN model as shown in Fig. 2 a gen-
erator G and a discriminator D. While the discriminator D seeks to
distinguish between real and fake data, the generator G seeks to
produce synthetic data (fake data) that is similar to the real data.
Put another way, during the training process, these two elements
have competing goals.

Fig. 2. Architecture of Generative adversarial Network

Formally speaking, it has been defined pz and pdata as the
probability distributions of the real data and the latent code, respec-
tively. Then, a GAN’s objective function V(D, G), which is made
up of a discriminator D and a generator G, is a minimax game and
may be expressed in the Eq. 4 as follows:

V (D,G) = min
G

max
D

Ex∼pdata
[logDθD (x)]+ Ez∼pz [log (1−DθD (GθG(z)))]

(4)
where the model parameters of D and G are indicated by
θD and θG respectively. As a result, the generator is trained
to provide fake data that can maximize the discriminator’s confi-
dence score, and the discriminator is trained to output a greater
confidence value in actual data. When this training process is re-
peated enough times, the discriminator and generator will reach a
point where there is no more room for improvement.

3.3 Generative Adversarial Auto- Encoder
Generative Adversarial Auto-Encoder (GAAE) is illustrated in Fig.
3. Because AAE and VAE act similarly, AE’s latent variable z is
compelled to follow a predetermined prior distribution p(z). When
it comes to the AAE, z can be defined in any way and is simple
to sample and feed into the discriminator. But unlike VAE, which
maximizes the evidence lower bound (ELBO), AAE uses the GAN
to direct the encoder q(z | x) distribution so that it matches the
previous distribution p(z). The discriminator network is trained to
distinguish between real data from the previous distribution p(z)
and false data from the AE in the input code vector z.
The adversarial auto-encoder with regularization integrates label
information throughout the adversarial training phase. To give the
latent variables a better fit distribution, the discriminator network
receives the one-hot label. As demonstrated, the decoder’s input of
one- hot label converts unsupervised training to supervised train-
ing. GAAE joins the hidden variable z with the one-hot label y

12



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.15, June 2025

Fig. 3. Adversarial Auto-Encoder Framework

collectively as the decoder’s input. Next the network is compelled
to acquire the label-independent latent distribution. While this is
not achievable in AAE, new attack samples can be created with the
designated labels in GAAE.

3.4 Proposed GAVAE Intrusion Detection Framework
The proposed Generative Adversarial Variational Autoencoder
(GAVAE) is illustrated in Fig. 4, which combines the benefits
of VAE and GAAE. The primary distinction between the GAAE
model and its predecessor is that the former employs AE to charac-
terize the latent distribution of attack samples, whilst the latter uses
VAE.

Fig. 4. Proposed GAVAE architecture

Additionally, the one-hot class vectors are given to the discrimi-
nator and decoder in order to control the degree of independence
between latent variables and classes. The distribution (q(x | z), y)
can provide attack samples of the given label y to the decoder. The
proposed system consists of four stages: Preprocessing, Training
GAVAE , Data Augmentation, and Intrusion detection.

3.5 Preprocessing
The system uses the preprocessing module, which consists of three
subprocesses, to purify a given raw data source before creating and
training AI models. 1) Feature scaling; 2) One-hot encoding; and
3) outlier analysis. During the outlier analysis stage, the system
removes anomalies that could have an adverse effect on the training
of the model. Outliers are typically found by using reliable metrics
of size to quantify the statistical distribution of the data sets. To
identify outliers, several commonly used robust measures of scale
are available, including the median absolute deviation (MAD) and

the interquartile range (IQR). Among these, MAD was selected.
The MAD of a numerical property A = x1, x2,..., xn is defined
(Eq.5) as follows:

MAD = median (|xi −median(A)|)

(5)
It is assumed that the data set’s numerical properties have a normal
distribution. Consequently, 1.4826 × MAD is a consistent estima-
tor ’q’ for estimating the standard deviation. Using this estimator,
it has been concluded that values more than ( 10 ×σ̂ are considered
outliers for a given numerical attribute. Naturally, outlier analysis
is carried out separately for each class and solely on the numeri-
cal attributes. Keep in mind that eliminating outliers should come
before scaling features because the latter can hide outlier-related
information. The system converts nominal qualities into one-hot
vectors after removing the outliers. A binary vector the size of the
number of attribute values is used to represent each nominal (cat-
egorical) attribute, with 1 given to a point that corresponds to the
expressed value and 0 to all other points. For instance, the attribute
”protocol,” which is frequently present in network traffic data, is
converted into a binary vector of length three when the values tcp,
udp, and icmp are present. The resulting values are then repre-
sented as [1, 0, 0], [0, 1, 0], and [0, 0, 1], respectively. The sys-
tem scales the numerical properties in conjunction with the one-hot
encoding procedure. Scaling for numerical features can often be
attributed to normalization [28] and standardization [24]. Between
the two strategies, the min-max normalization strategy 2 wasse-
lected. For a numeric attribute A, the normalization function ( fA (.)
that maps∀x ∈ Aintoarange[0, 1]isdefined(Eq.6)asfollows :

f(xi) = x̃i =
xi −minxj

maxxj −minxj

forxi ∈ A (6)

where the symbol xi stands for the ith value (or element) of
set A value. Generally speaking, feature extraction (PCA, Pear-
son correlation coefficient, etc.) is taken into consideration at this
stage in deep learning-based approaches in order to feed the model
with as many informative features as possible. As a result, fea-
ture extraction can have a major impact on how well models per-
form in anomaly detection. Computational feature extraction is ex-
cluded from consideration, since the framework integrates an au-
toencoder model capable of learning representations without the
need for manual feature extraction. It should be noted that, in the
proposed framework, there was no noticeable difference between
the model with and without a computational feature extraction ap-
proach. Later on, a thorough explanation of how to use the autoen-
coder as a feature extractor is provided.

4. TRAINING GAVAE
The training process for the proposed GAVAE follows these steps
for each minibatch: The Variational Autoencoder (VAE) is trained
to minimize the binary cross-entropy loss by reducing the differ-
ence between the reconstructed data x̂ and the original input data
x.

—(1) The discriminator learns to differentiate between real and
generated samples z, distinguishing those from the real data dis-
tribution q(z) and the multivariate Gaussian prior p(z), with the
objective of minimizing the WGAN-GP loss.

—(2) The generator (encoder) is optimized to deceive the discrim-
inator by generating samples z that closely resemble real data.
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After training SAVAER, the original training dataset (x,y) is passed
through the trained VAE to compute the cross-entropy reconstruc-
tion loss. The binary cross-entropy reconstruction loss for a given
sample (xi,yi) is defined (Eq.7) as follows:

L(xi, yi) = −
d∑

k=1

[xi,k log x̂i,k + (1− xi,k) log(1− x̂i,k)] (7)

where x̂i = Decoder (Encoder(xi,yi); xi ,k represents the k-th fea-
ture value of the sample xi ; d denotes the number of features. The
maximum class reconstruction loss maxLj of class j is defined in
the Eq.8 as follows:

maxLj = k ·max{L(xi, yi) | yi ∈ classj} (8)

where k is the scale factor, and usually k is set to 1.0.

4.1 Data Augmentation
To enhance the classifier’s ability to detect unknown and minority
attacks, new attack samples can be generated during the data aug-
mentation phase using a trained decoder as shown in Fig. 5. This
process involves sampling the latent variable znew from a mul-
tivariate Gaussian distribution p(z), combining it with the corre-
sponding minority class label ynew, and feeding the resulting input
into the decoder to create new attack instance xnew.

Fig. 5. Data Augmentation

The reconstruction error L(xnew, ynew) of the newly generated
sample is determined using Equation 8 once the newly generated
sample (xnew, ynew) is fed into the trained GAVAE. Filter the
newly created attack samples (xnew, ynew) in accordance with
Eq.9 to exclude the samples that change noticeably from the origi-
nal sample distribution. This ensures that the newly generated sam-
ples have the same spatial distribution as the original samples. In
order to balance the training data set, the freshly created attack sam-
ples that are consistent with the original data distribution are finally
combined with the original training data set.

S = {S∪{xnew, ynew}, ifynew ∈ classj &L(xnew, ynew) ≤ maxLj

(9)

4.2 Intrusion Detection
In the attack detection stage, the trained GAVAE encoder is ex-
tended with a softmax layer on top of its final layer to form a deep
neural network classifier as shown in Fig 6. The weights of the
DNN’s hidden layers are initialized using the weights of the learned
GAVAE encoder. The DNN classifier is trained using the synthetic
training dataset. The DNN classifier’s hidden layer weights are first
frozen, followed by backpropagation to update the output layer’s
weight, the unfreezing of all hidden layers, and the use of the syn-
thetic training data set to refine the classifier.

Fig. 6. Detecting attacks

5. EXPERIMENT AND DISCUSSION
All experiments are conducted on a ThinkStation workstation
equipped with an Intel E5-2620 CPU and 64 GB RAM, running
a 64-bit Windows 10 operating system within a TensorFlow envi-
ronment. To evaluate the performance of the proposed model and
several widely used classifiers, three distinct datasets are utilized:
NSL-KDD (KDDTest+)[24], NSL-KDD (KDDTest-21) [24], and
UNSW-NB15 [25]. The optimal hyperparameters and network ar-
chitecture for the proposed model are determined using grid search
and 5-fold cross-validation, ensuring the highest prediction accu-
racy.

5.1 Dataset description
For evaluation of any intrusion detection technique, data collec-
tion is needed. The NSL-KDD dataset [24] and the UNSW-NB15
dataset [25] are adopted to evaluate GAVAE - IDS.

5.1.1 NSL-KDD dataset. NSL-KDD [24] is a vast collection of
network records that serves as a standard for intrusion detection
techniques. These are popular datasets for assessing IDS; UNSW-
NB15 has 2,540,044 samples, while NSL-KDD has 148,517 sam-
ples. Table 1 lists the 41 features that are present in each NSLKDD
sample. These characteristics fall into four groups: host-based fea-
tures, time-related features, content-related features, and basic fea-
tures. Additionally, NSLKDD was pre-segregated into two sets:
KDDTrain+ and KDDTest+, which correspond to the training and
test sets.

Table 1. Description of Traffic Feature Groups
Attributes Description

1–9 Basic features of network connections
10–22 Content-related traffic features
23–31 Time-related traffic features
32–41 Host-based traffic features

The NSL-KDD dataset consists of both normal records and attacks.
The assaults are divided into four groups: probing, user 2 root (U
2 R), remote 2 user (R 2 L), and denial of service (DOS). The five
classes in the NSL-KDD dataset are DOS, R 2 L, U 2 R, Probe, and
Normal. Below are the specifics of the attack categories [25]:

(1) Denial of Service (DOS): A Distributed Denial-of-Service
(DDOS) assault, such as Smurf, Ping of Death, Neptune, etc.,
is when an attacker prevents memory resources or other net-
work resources from responding to proper requests, or over-
loads them.

(2) Remote 2 User (R 2 L): R 2 L attacks occur when an attacker
gains unauthorized access and uses that access to send packets
across a network. The attacker can quickly use programs like
Guess password, Xclock, and others to obtain local access as
the machine’s user.
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(3) User 2 Root (U 2 R): This type of attack happens when an at-
tacker tries to gain access to a regular user’s account or system,
such as Xtrem, Perl, etc.

(4) Probing: An attack known as probing occurs when an unautho-
rized person screens a system to learn more about the network.
This information may also be utilized in future attacks or to go
over security measures like Satan, mscan, and so forth.

5.2 UNSW-NB15 DATASET
The UNSW-NB15 dataset was presented by Moustafa et al. [19] in
2015 and is a combination of different anomalies. The many forms
of attacks in UNSW-NB15 provide a good opportunity to test vari-
ous intrusion detection systems. Table 2 lists 42 properties for each
sample in UNSW-NB15, including Basic characteristics, content-
related characteristics, time-related characteristics, general purpose
characteristics, and connection-based characteristics. Nonetheless,
UNSW-NB15 and NSL-KDD are examples of common imbal-
anced datasets. As indicated in Table 3, the NSL-KDD imbalance
ratios range from 1.44 to 305.77, while the UNSW-NB15 imbal-
ance ratios range from 10.30 to 12,751.50. Furthermore, in the
NSLKDD test set, 38 anomaly species were found, compared to
23 species in the training set.

Table 2. Description of the UNSW-NB15
attributes.

Attributes Description
1–13 Basic features of network connections

14–21 Content-related traffic features
22–30 Time-related traffic features
31–35 General purpose traffic features
36–42 Connection-based traffic features

Instead of binary classification, a 5-class classification is applied to
the NSL-KDD dataset and a 10-class classification to the UNSW-
NB15 dataset. The intrusion detection task is approached as a mul-
ticlass classification problem using multiple One-vs-All schemes.
In each scheme, one specific class is treated as the positive class,
while the remaining classes are considered negative.

Table 3. Class Distribution and Imbalance Ratios in NSL-KDD
and UNSW-NB15 Datasets

Dataset Class Samples Imbalance ratio
NSL-KDD Normal 77,054 –

DoS 53,385 1.443
Probe 14,077 5.474
R2L 3,749 20.553
U2R 252 305.770

UNSW-NB15 Normal 2,218,761 –
Generic 215,481 10.297
Exploits 44,525 49.832
Fuzzers 24,246 91.510
DoS 16,353 135.679
Reconnaissance 13,987 158.630
Analysis 2,677 828.824
Backdoor 2,329 952.667
Shellcode 1,511 1,468.406
Worms 174 12,751.500

In order to address the class imbalance in NSL-KDD, samples for
the four minority classes DoS, Probe, R2L, and U2R are generated
using the GAVAE module. Fig. 7 displays the D convergence curves

based on each class’s accuracy. The curves show that, after 4000,
5000, 6000, and 6000 iterations, respectively, the module has been
well-optimized to produce samples for DoS, Probe, R2L, and U2R.
The UNSW-NB15 and NSL-KDD optimization processes follow
the same steps and provide convergence curves that are compara-
ble.

Fig. 7. Convergence curve of discriminator D

Using the curve of DoS Fig. 7(a)) as an example, D was able to
distinguish the synthetic samples from the genuine ones with ease
during the first 1000 iterations since G was unable to produce repre-
sentative samples. As a result, D’s initial Accuracy score was nearly
100 %. Between the 1000th and 2000th iterations, D’s accuracy de-
creased from 100 % to 20 %, primarily due to G’s rising generative
capacity, which made it more difficult for D to distinguish between
synthetic and genuine samples. D and G continued to optimize one
another for the final 2000 iterations until they achieved an equilib-
rium, at which point D lost its ability to discriminate and converged
to 0.5.
The Probe curve is shown in Fig. 7(b), where Accuracy almost ap-
proached 100 % in the first 1000 iterations due to G’s poor sample
generation ability. Because G’s generating power continued to in-
crease, the Accuracy roughly decreased from 100 % to 10 % in
the 1000th to 2500th iterations. D and G continued to optimize one
another during the final 2500 iterations until D reached 0.5. Regard-
ing R2L and U2R (Fig. 7(c) and (d)), G’s accuracy, which reached
about 100 % in the first 2000 iterations, was insufficient to produce
samples. As G’s generative capacity continued to rise, the Accu-
racy roughly decreased from 100 % to 5 % in the 2000th to 4000th
iterations. D and G continued to optimize one another during the
final 2000 iterations, until D eventually converged to 0.5.
As mentioned, the DNN module uses both real and generated sam-
ples as input for training. The DNN module performs the last in-
trusion detection on new data after it has been properly tuned. To
optimize the DNN, the Adam algorithm is employed with a learn-
ing rate of 0.00005, and Categorical Cross-Entropy is used as the
loss function.

5.3 Performance metrics
Network intrusion detection systems are evaluated using nine key
performance metrics: accuracy, precision, recall, detection rate
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(DR), false positive rate (FPR), F1 score, G-mean, receiver oper-
ating characteristic (ROC) curve, and area under the ROC curve
(AUC). These metrics are derived from the confusion matrix when
categorizing network attacks.

—True Positive (TP): The number of correctly detected attack in-
stances.

—True Negative (TN): The number of correctly classified normal
traffic records.

—False Positive (FP): The count of normal traffic records incor-
rectly identified as attacks.

—False Negative (FN): The number of attack instances mistakenly
classified as normal traffic.

5.3.1 Accuracy. The percentage of accurately anticipated attacks
and normal records to the total number of records is known as the
accuracy. A greater accuracy indicates better classification model
performance ( accuracy ∈ [0, 1] ).

5.3.2 Detection rate. The percentage of real assault reports that
are accurately identified is known as the recall rate, or DR (detec-
tion rate). DR is sometimes referred to as Sensitivity or TPR (true
positive rate). The classification model performs better if the DR is
higher (DR ∈ [0, 1]).

5.3.3 Specificity. The percentage of normal records that are accu-
rately identified is measured by the TNR (true negative rate), also
known as specificity. A greater TNR indicates better classification
model performance (TNR ∈ [0, 1]).

5.3.4 Precision. The percentage of all predicted attack records
that are actual attack records is known as the precision. A
greater Precision indicates better classification model performance
(Precision ∈ [0, 1]).

5.3.5 False positive rate. The percentage of regular records that
are mistakenly identified as attack records is known as the false
positive rate, or FPR. The classification model performs better if
the FPR is lower (FPR ∈ [0, 1]).

5.3.6 F1 Score. The harmonic mean of recall and precision is
known as the F1 score. When it comes to assessing the effectiveness
of the classification model in unbalanced data sets, the F1 score is
far more useful than accuracy. A greater F1 indicates better classi-
fication model performance (F1 ∈ [0, 1]).

5.3.7 G-mean. The balance between majority and minority cat-
egorization performance is measured by the G - mean, which is
the geometric mean of specificity and sensitivity. The classifica-
tion model performs better if the G mean is higher (G−mean ∈
[0, 1]).

5.3.8 ROC Curve. The receiver operating characteristic curve or
ROC is a widely used graph that shows a classifier’s performance
across all potential thresholds. A curve that is produced on a two-
dimensional plane that shows the ordinate of the TPR and the ab-
scissa of the FPR when the threshold for classifying data is changed
is the primary analytical tool.

5.3.9 AUC. The area under the ROC curve is called the area un-
der the curve, or AUC for short. A larger AUC indicates better clas-
sification model performance (AUC ∈ [0, 1]). Real classifiers typ-
ically have an AUC of 0.5 to 1.

5.4 Results and Discussion
Several experiments are performed to evaluate the efficiency of the
proposed GAVAE-DNN in identifying unknown attacks and ad-
dressing data imbalance. The distribution of newly generated sam-
ples for each category in the UNSW-NB15 and NSL-KDD training
datasets is shown in Tables.4 and 5.

Table 4. Training samples generated for NSL-KDD
Category Number of original records Number of newly generated records Total
Normal 13,449 0 13,449
Probe 2,289 11,160 13,449
DoS 9,234 4,215 13,449
U2R 11 13,438 13,449
R2L 209 13,240 13,449
Total 25,192 42,053 67,245

Table 5. Training samples generated for UNSW-NB15
Category Number of original records Number of newly generated records Total
Normal 56,000 0 56,000
Generic 40,000 16,000 56,000
Exploits 33,393 22,607 56,000
Fuzzers 18,184 37,816 56,000
DoS 12,264 43,736 56,000
Reconnaissance 10,491 45,509 56,000
Analysis 2,000 54,000 56,000
Backdoor 1,746 54,254 56,000
Shellcode 1,133 54,867 56,000
Worms 130 55,870 56,000
Total 175,341 481,340 560,000

The spatial distribution of the sample of the original and enhanced
training data, projected onto a two-dimensional space using UMAP
(Uniform Manifold Approximation and Projection), is shown in
Figs.8 and 9. Additionally, GAVAE- DNN’s detection performance
is contrasted with that of other cutting-edge models documented in
the IDS literature, and the comparative outcomes are displayed in
Tables 6 and 7.

Fig. 8. UMAP visualization for NSL-KDD dataset

5.5 Comparative study with other state-of -art
methods

To improve the detection rate of unknown attacks, this study in-
troduces the GAVAE-DNN model, which generates unknown at-
tack instances and balances the training dataset. The model em-
ploys a decoder to create minority attack samples for training. Fur-
thermore, five commonly used classification models—K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), Random For-
est (RF), Convolutional Neural Network (CNN), and Deep Neural
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Fig. 9. UMAP visualization UNSW-NB15 dataset

Network (DNN)—are utilized for intrusion detection. Their perfor-
mance is assessed and compared with the proposed GAVAE-DNN
model to determine its effectiveness. These classification methods
have been widely applied in intrusion detection studies. The com-
parative experimental results are presented in Figs.10 and 11.

Table 6. Comparison of overall performance of different
classification models on NSL-KDD dataset

Method Accuracy Recall (DR) Precision F1 G-mean FPR
KNN 76.83 63.26 63.76 75.43 77.54 7.10
CNN 73.54 57.34 72.36 70.64 73.52 7.18
DNN 75.87 61.23 83.56 74.98 76.23 6.68
RF 78.26 66.98 91.54 77.14 79.34 6.77
SVM 81.34 71.36 93.54 81.36 81.33 7.41
GAVAE-DNN 90.35 85.76 96.04 91.55 90.08 4.65

Fig. 10. Comparison of overall performance of different classification
models on NSL-KDD dataset

Table 7. Comparison of overall performance of different
classification models on UNSW-NB 15 dataset

Method Accuracy Recall (DR) Precision F1 G-Mean FPR
KNN 86.74 84.65 83.03 87.54 84.75 26.44
CNN 48.08 51.85 53.64 52.38 48.32 56.43
DNN 86.34 92.43 83.56 88.34 86.04 24.89
RF 88.23 91.45 83.56 90.43 86.32 20.44
SVM 87.34 93.63 82.65 90.13 85.43 25.77
GAVAE-DNN 93.01 94.56 95.32 93.88 93.12 5.67

Fig. 11. Comparison of overall performance of different classification
models on UNSW-NB 15 dataset

Fig. 10 demonstrates that the GAVAE-DNN model achieves su-
perior performance compared to other classification models on
the NSL-KDD dataset, excelling in overall accuracy, recall, pre-
cision, F1 score, and G-mean. Fig. 10 illustrates the comparative
performance of six classification models—KNN, CNN, DNN, RF,
SVM, and GAVAE-DNN—using metrics such as Accuracy, Re-
call, Precision, F1-score, G-mean, and False Positive Rate (FPR).
Among these, GAVAE-DNN consistently achieves the highest val-
ues across all positive metrics while maintaining the lowest FPR,
indicating superior detection capabilities. SVM and RF follow
closely with balanced performance, whereas CNN underperforms
across most categories. This visual clearly demonstrates the advan-
tage of combining generative and discriminative learning methods.
Thus GAVAE-DNN improves the accuracy and low false alarms.
Likewise, Fig. 11 highlights that GAVAE-DNN outperforms other
models on the UNSW-NB15 dataset, achieving higher overall ac-
curacy, precision, F1 score, G-mean, and a lower false positive
rate (FPR). Fig. 11 compares six models—KNN, CNN, DNN, RF,
SVM, and GAVAE-DNN—across key evaluation metrics. GAVAE-
DNN consistently performs best, scoring the highest in Accuracy,
Recall, Precision, F1, and G-mean. It also records the lowest False
Positive Rate (FPR), making it the most reliable and accurate. In
contrast, CNN lags behind significantly, particularly in Recall and
FPR. The results highlight GAVAE-DNN’s capability to deliver su-
perior detection with minimal errors.
These comparative experimental findings confirm the effectiveness
of the proposed GAVAE-DNN model in detecting network intru-
sions, especially when dealing with imbalanced network traffic.

6. CONCLUSION
The need for network intrusion detection is growing as network in-
trusion continues to change. Imbalanced network traffic presents a
major threat to cybersecurity, complicating the ability of intrusion
detection systems to effectively identify malicious activities. This
research introduces the Generative Adversarial Variational Autoen-
coder (GAVAE) as a method to improve classification models’ abil-
ity to learn from skewed network data. The GAVAE framework
generates a broad range of rare and previously unseen attack sam-
ples. To enhance training data diversity and maintain balance, its
decoder is employed to create supplementary attack samples for
designated labels. The weights of the DNN’s hidden layers are ini-
tialized using GAVAE’s encoder, which also automatically extracts
high-level feature representations from the original samples. The
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proposed hybrid architecture for network intrusion detection, called
GAVAE-DNN, combines GAVAE with DNN. The effectiveness of
the GAVAE-DNN model was assessed using the NSL-KDD and
UNSW-NB15 benchmark datasets, producing favorable outcomes.
Comprehensive experimental evaluations reveal that GAVAE-DNN
excels in detecting both known and novel attacks while also im-
proving the detection rate for infrequent attacks. Additionally, com-
parative studies on the UNSW-NB15 dataset highlight its strong
capability in identifying advanced network threats. The model
achieved a peak accuracy of 93.01 % and an F1 score of 93.88
% on this dataset. Given its extremely competitive findings when
compared to the most advanced models, the suggested SAVAER
could be a competitive option for network intrusion detection.
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