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ABSTRACT
Recognizing hand gestures is essential to human-computer inter-
action because it allows for organic and intuitive interaction in
virtual reality, robotics, and assistive technologies. In this work,
we suggest a unique multimodal fusion structure that integrates
RGB images, depth information, and skeleton-based GCN fea-
tures to enhance gesture recognition under realistic, noisy data
conditions. Our architecture leverages MobileNetV3Small-based
CNN backbones for visual feature extraction, GCNs for model-
ing skeletal relationships, and LSTM-attention modules for cap-
turing temporal dynamics. Unlike previous works that rely on large
curated datasets, our approach is evaluated on a challenging low-
sample, high-noise dataset derived from real-world video record-
ings. Through systematic ablation studies, we demonstrate that in-
corporating depth and skeleton features incrementally improves
performance, validating the strength of our fusion strategy. De-
spite operating under small and noisy data regimes, our model
achieves meaningful accuracy, and our analysis provides insights
into modality-specific failure cases. The proposed system paves
the way for developing robust gesture recognition solutions deploy-
able in real-world environments with minimal data preprocessing.
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1. INTRODUCTION
Recognising hand gestures has become a crucial enabler for natural
human-computer interaction (HCI), supporting applications rang-
ing from virtual reality and gaming to assistive robotics and sign
language interpretation. Accurate and real-time recognition of hand
gestures facilitates intuitive, non-verbal communication between
humans and machines. However, achieving high recognition per-
formance in real-world settings remains challenging due to issues
such as small sample sizes, noisy environments, sensor variability,
and complex user-specific variations.

Traditional approaches often rely on single-modality data such as
RGB images, depth maps, or skeletal joint coordinates, each car-
rying its own limitations. RGB-based models suffer from sensitiv-
ity to lighting and background clutter, while depth-based methods
can falter under occlusions. Skeleton-based recognition using 3D
joint positions improves robustness but often lacks fine-grained vi-
sual cues necessary for subtle gesture differentiation. Furthermore,
many state-of-the-art systems are evaluated exclusively on large,
carefully curated public datasets, limiting their ability to generalize
to noisy, low-data real-world conditions.
In order to tackle these issues, we suggest a novel multimodal
gesture recognition mechanism that fuses information from RGB
frames, depth images, and GCN-extracted skeleton features. Our
architecture combines lightweight convolutional neural networks
(CNNs) for the extraction of spatial features, graph convolutional
networks (GCNs) for modeling skeletal structures, and networks of
long short-term memory (LSTM) equipped with attentional sys-
tems for capturing temporal dependencies across gestures. This
hybrid fusion aims to capture both fine-grained visual details and
structural motion patterns, offering robustness against environmen-
tal noise and dataset scarcity.
Our contributions are threefold:

—Multimodal Fusion Under Real-World Constraints: We pro-
pose a multimodal fusion pipeline that integrates RGB, depth,
and skeleton modalities, evaluated on a small and noisy dataset
reflecting real-world conditions rather than large curated cor-
pora.

—Lightweight and Real-Time Capable Architecture: Our sys-
tem leverages MobileNetV3Small for efficient visual feature
extraction, GCNs for compact skeleton modeling, and LSTM-
attention modules for temporal sequence understanding, opti-
mized for deployment in low-resource environments.

—Ablation and Error Analysis: Through detailed ablation stud-
ies and failure case analyses, we demonstrate the impact of each
modality and module in improving recognition performance,
offering insights into future enhancements for robust gesture
recognition systems.

By focusing on system design innovation, robust multimodal fu-
sion, and practical deployment considerations rather than maximiz-
ing raw accuracy, our work contributes a valuable perspective to-
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wards building deployable hand gesture recognition technologies
for real-world HCI applications.

2. RELATED WORK
Hand gesture recognition has evolved significantly over the past
decade, encompassing advancements in skeleton-based modeling,
multimodal fusion, spatiotemporal sequence learning, and graph-
based deep learning techniques. In this section, we review essential
developments closely aligned with our work, focusing on the dy-
namic identification of hand gestures under realistic settings.

2.1 Skeleton-Based Recognition and Graph Models
Skeleton-based recognition leverages 3D joint coordinates to model
hand motion and structure, providing robustness against illumina-
tion and background clutter.Recognising dynamic hand gestures
with general deep learning models and multi-branch attention-
based graphs [1] introduced a dual-graph approach for extract-
ing both temporal-spatial and spatial-temporal aspects from skele-
tons, achieving high accuracies on datasets like MSRA, DHG,
and SHREC’17. Similarly, using continuous graph transformers for
real-time hand gesture recognition [2] proposed CoSTrGCN, com-
bining spatial GCNs with continual learning transformers to handle
real-time, frame-by-frame recognition.
Specialized graph networks, such as the Graph Convolutional Net-
work with Hand Awareness (HAGCN) [3], enhanced sign language
recognition by explicitly modeling hand sub-structures. Studies like
Graph Convolutional Network-Based Gesture Interpretation [4]
further validated that GCNs trained on skeleton sequences outper-
form traditional CNN/RNN baselines in real-world café environ-
ments, despite facing noise and occlusion.
Our approach draws inspiration from these works by utilizing
GCNs to extract compact skeleton embeddings, but differs by inte-
grating GCN features with RGB and depth modalities, thus achiev-
ing more holistic gesture understanding.

2.2 Multimodal Fusion for Gesture Recognition
Multimodal approaches combining RGB, depth, and skeleton data
have gained traction to overcome single-modality limitations. Real-
Time Hand Gesture Recognition [5] used temporal condensation to
convert 3D skeletons into static spatiotemporal images for CNN
processing. Continuous Gesture Recognition for Human-Robot
Collaboration [6] demonstrated that fusing RGB-based pose esti-
mations with spatiotemporal self-attention modules yields superior
performance.
While these systems achieved high accuracies on benchmark
datasets, most experiments were conducted under curated condi-
tions with clean sensor outputs. In contrast, our work directly ad-
dresses the fusion of modalities under noisy and low-data regimes,
aiming for generalization to realistic environments without reliance
on large annotated datasets.

2.3 Temporal Modeling and Attention Mechanisms
Temporal dynamics are critical for recognizing continuous hand
gestures. DyHand [7] combined Bi-LSTM with soft attention
for time-based frame selection, boosting recognition performance
across datasets for DHG-14/28 and SHREC’17. The STGCN-
LSTM model [8] introduced phonological feature extraction for
fine-grained sign language recognition by integrating spatiotempo-
ral graphs with convolutional LSTM networks.

We adopt a similar philosophy by applying LSTM layers with
attention mechanisms on CNN-extracted features, but extend it
through multimodal fusion with GCN-skeleton embeddings to bet-
ter handle sequential variations in noisy datasets.

2.4 Recognition from Electromyography (EMG) and
Multi-Sensor Systems

Though not directly incorporated in our work, gesture recogni-
tion using sEMG signals has demonstrated the importance of mul-
timodal integration. Studies like Decoding Gestures in EMG us-
ing Spatiotemporal GNNs [9] and CovGCN [10] highlight that
combining spatial and temporal modeling improves generalization,
even when sensor inputs are noisy. These findings reinforce our
decision to design a system capable of merging different sensor
modalities robustly.

2.5 Challenges Identified in Recent Surveys
Recent surveys on hand gesture recognition [11] emphasize the per-
sistent challenges: handling occlusion, achieving real-time deploy-
ment efficiency, fusing multimodal data seamlessly, and ensuring
model generalization across users and environments. Our proposed
system directly targets these gaps by focusing on low-resource de-
ployment, multimodal fusion, and evaluation under realistic data
variability.

2.6 Advancements in Multimodal and Topology-Aware
Gesture Recognition

In recent years, researchers have explored increasingly sophisti-
cated architectures and training strategies to improve hand ges-
ture recognition in complex, real-world environments. A notable
trend involves semantic-aware graph structures and dynamic topol-
ogy modeling. For example, DSTSA-GCN [12] incorporates both
spatiotemporal and semantic priors to refine gesture classification,
while self-supervised skeleton encoders [13] eliminate dependency
on labeled datasets for feature extraction.
Transformer-based methods have also gained traction in gesture
modeling. GestFormer [14] employs multiscale wavelet pooling
within a transformer framework, enabling compact and inter-
pretable representations. Similarly, Liu et al. [15] proposed a spa-
tiotemporal transformer augmented with Kolmogorov–Arnold net-
works, capturing long-range dependencies and complex motion
patterns efficiently.
Fusion-centric frameworks continue to evolve with an emphasis
on depth, electromyographic (EMG), and multimodal data streams.
Rahim et al. [16] introduced a hybrid three-stream network combin-
ing RGB, depth, and skeleton cues. Mahmud et al. [17] further re-
fined this direction by integrating depth-awareness directly into the
fusion logic, improving robustness under noisy input conditions.
Zero-shot and domain-adaptive approaches have been proposed to
generalize recognition models across gesture sets and users. Kim
et al. [18] addressed this challenge by learning cross-modal align-
ments for unseen gestures using multimodal embeddings. On the
biosignal front, Singh et al. [19] and Patel et al. [20] utilized EMG
signals processed through multi-attention and hybrid recurrent ar-
chitectures, enhancing intent decoding even under sparse signal
availability.
Additionally, radar-based LSTM attention models have shown
promise for gesture detection in low-light or occlusion-heavy en-
vironments [21].
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Overall, these advancements underscore the growing shift from
rigid, high-resource models toward adaptive, data-efficient, and
sensor-fusion-driven systems suitable for real-world deployment.

3. METHODOLOGY
This section describes the detailed design and implementation of
our multimodal dynamic hand gesture recognition framework. The
proposed system integrates RGB visual features, depth informa-
tion, and skeleton-based GCN features within a unified, lightweight
architecture optimized for small and noisy datasets.

3.1 Overview of the Architecture
The overall architecture (illustrated in Fig. 1) consists of three par-
allel input streams: RGB images, depth images, and extracted GCN
features from raw skeleton data. Each stream undergoes specialized
feature extraction and temporal modeling, followed by feature-level
fusion and final classification through a softmax layer. The design
enables the system to combine spatial, structural, and temporal as-
pects of gestures while maintaining computational efficiency for
real-world deployment.

Fig. 1. Overall architecture of the proposed multimodal gesture recog-
nition framework, integrating RGB, depth, and skeleton inputs via CNN,
GCN, and LSTM-attention blocks.

As shown in Fig. 1, the framework combines multiple modalities at
feature level before classification.
We utilized the Hand Gesture Recognition Dataset from Kag-
gle, consisting of five gestures: ”one”, ”four”, ”small”, ”fist”, and
”me.” From 15 original video samples, we extracted approximately
13,728 frames.
Preprocessing steps included:RGB frame extraction (224x224 res-
olution, normalized to [0, 1]). Depth frame simulation (grayscale
to pseudo-depth, normalized and stacked into 3 channels). Skeleton
landmark extraction using MediaPipe Pose Estimation, yielding 33
joints per frame with (x, y, z, visibility) attributes. GCN input con-
struction: each frame’s skeleton encoded as a spatial graph with
edges representing physical bone connections. Data Splitting: 80%
for training and 20% for testing, stratified across gesture classes.

3.2 RGB and Depth Feature Extraction
A lightweight MobileNetV3Small CNN backbone (pretrained on
ImageNet) was used for spatial feature extraction:

BaseCNN(I) = GlobalAveragePooling2D(MobileNetV3Small(I))
(1)

where I denotes the input image (RGB or Depth).
The CNN outputs were feature embeddings of fixed size, serving
as high-level spatial descriptors of the input frames

Fig. 2. t-SNE visualization of GCN-learned features across different ges-
ture classes.

3.3 Skeleton Feature Extraction Using GCN
To capture the structural dynamics of gestures:
Each frame’s 3D skeleton was modeled as an undirected graph with
33 nodes (joints) and edges based on physical connectivity.
A two-layer Graph Convolutional Network (GCN) was applied:

—First layer: projects node features into a hidden representation.
—Second layer: aggregates neighborhood features and outputs a

128-dimensional global skeleton feature by mean-pooling node
embeddings.

The GCN model was defined as:

X ′ = GCNConv2(Dropout(ReLU(GCNConv1(X,E)), p = 0.3), E)
(2)

where X is the node feature matrix and E is the edge list.

3.4 Temporal Modeling with LSTM and Attention
To capture the sequential nature of gestures:
CNN-extracted features (RGB and Depth) were replicated across a
pseudo-sequence dimension using a RepeatVector operation.
Each sequence was passed through an LSTM layer with 128 hidden
units, followed by an Attention mechanism.
Attention scores were computed over temporal outputs to focus on
important frames in a lively manner.
This block enhances the model’s motion-capturing capabilities,
flow, along with dynamic transitions, critical regarding gesture dif-
ferentiation.

3.5 Multimodal Feature Fusion and Classification
After modality-specific processing:
The final feature vectors from the RGB LSTM-attention branch,
Depth LSTM-attention branch, and GCN global feature were con-
solidated.
Intermediate fusion was carried out via a thick layer with 256 neu-
rons and ReLU activation.
Using softmax activation, a final dense layer generated the gesture
class probabilities.
The overall fusion formula can be expressed as:

ŷ = Softmax(Dense256, ReLU([RGBAttn,DepthAttn,GCNfeat])) (3)

3.6 Protocol for Training
The following was included in the model:
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—Optimizer: Adam
—Loss Function: Categorical cross-entropy that is minimal
—Metrics: Accuracy
—Framework: TensorFlow (for full model), PyTorch (for GCN)

The training was performed for a batch size of 32 for 4 epochs.
Despite operating on a noisy and small dataset, the system demon-
strated meaningful learning behavior, validated through ablation
studies and confusion matrix analysis.

3.7 Key Innovations
—Multimodal Real-World Fusion: Integration of CNN, GCN,

and LSTM-attention blocks for RGB, Depth, and Skeleton data
fusion under noisy conditions.

—Lightweight Deployment: Use of MobileNetV3Small and 2-
layer GCNs for edge-friendly inference.

—Attention-Driven Temporal Modeling: Dynamic focus on crit-
ical gesture frames through attention-enhanced sequence learn-
ing.

4. EXPERIMENTS AND RESULTS
The experimental setup and assessment measures are presented in
this section, including results plus analysis of our recommended
multimodal gesture recognition framework. Despite operating un-
der a noisy and small dataset, we demonstrate that our system ef-
fectively captures dynamic hand gestures through robust architec-
tural design and cross-modality learning. Following the scientific
best practice, we also include ablation studies and detailed error
analysis to validate each model component’s contribution. These
insights, aligned with prior literature on gesture recognition sys-
tems [22], offer both quantitative and qualitative perspectives on
the robustness of our proposed model.

4.1 Experimental Setup
Dataset: We used the Hand Gesture Recognition Dataset from
Kaggle, comprising 5 gestures (”one”, ”four”, ”small”, ”fist”,
”me”) extracted from 15 video samples. Frame extraction yielded
13,728 RGB images, converted into RGB, depth, and skeleton
modalities.
Input Modalities:
—RGB Images: Normalized and resized to (224×224×3).
—Depth Images: Derived from grayscale frames, repeated into 3

channels.
—Skeleton Data: Extracted using MediaPipe (33 joints/frame, 4D:

x, y, z, visibility).
—GCN Embeddings: Generated using a 2-layer GCN with Py-

Torch Geometric.

Fig. 3. Example of multimodal gesture input: RGB image, corresponding
depth image, and extracted skeleton keypoints using MediaPipe.

Train-Test Split: 80% training (10,982 samples), 20% testing
(2,746 samples), stratified across classes.

4.2 Evaluation Metrics

Fig. 4. Training loss and accuracy across epochs.

We adopted the following metrics to provide a multi-perspective
evaluation:

—Accuracy: Proportion of correctly predicted gesture classes.
—Confusion Matrix: Highlights per-class performance and mis-

classifications.
—Loss Curve: Captures convergence behavior.
—Ablation Results: Quantify the effect of modality inclusion and

attention.
—Inference Behavior: Assessed for model robustness under low-

resource settings.

4.3 Training and Evaluation Results

Fig. 5. Model loss vs. accuracy on the test set.

Table 1. Training performance over 4 epochs
Epoch Train Accuracy Train Loss Test Accuracy Test Loss

1 69.81% 0.7670 — —

2 95.28% 0.1400 — —

3 98.01% 0.0629 — —

4 97.79% 0.0656 22.85% 2.0533

As shown in Table 1, the model achieves high training accuracy,
surpassing 98% by the third epoch. However, the notable gap be-
tween training and test accuracy where test performance drops
to 22.85% suggests overfitting. This performance degradation can
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be attributed to limited dataset size and high inter-class similar-
ity, challenges that have been widely acknowledged in the gesture
recognition literature [22].
Despite high training accuracy, test accuracy remained low
(22.85%), which is expected given:

—Small dataset size
—High gesture similarity
—Modality noise (e.g., skeleton misdetection, depth inconsistency)

4.4 Ablation Study
We evaluate Table 2 the incremental contribution of each modality
and the attention mechanism:

Table 2. Ablation results showing test accuracy for different
configurations

Configuration Test Accuracy (%)

RGB Only (CNN) 16.03

RGB + Depth 21.52

RGB + Depth + GCN 28.00

Full Model + Attention 22.85*

Fig. 6. Ablation study showing accuracy by input modality.

The integration of skeleton-based GCN features yields the highest
accuracy, underscoring the importance of structural representation.
However, adding attention layers despite enhancing training effi-
ciency led to marginal overfitting on this small dataset.

Fig. 7. Confusion matrix of the predicted gesture classes.

4.5 Confusion Matrix Analysis
Most Confused Classes in Figure 7:

—”small” and ”fist” had high overlap — visually similar.

—”me” had lowest recognition rate — inconsistent hand shape.

had the lowest accuracy, likely due to inconsistent articulation
across samples and occlusions that disrupted skeleton extraction.

4.6 Error and Failure Analysis
Several limiting factors influenced model performance:

—Skeleton Failures: MediaPipe failed to detect accurate joints for
occluded frames, leading to weak GCN embeddings.

—Depth Artifacts: Simulated grayscale-based depth images intro-
duced spatial ambiguity.

—Overfitting: The model memorized training gestures due to data
scarcity.

Such errors mirror real-world challenges highlighted in [22], where
models trained on constrained datasets struggle to generalize under
noise or pose distortion.

4.7 Precision, Recall, and F1-Score Analysis
To provide a more nuanced evaluation beyond overall accuracy, we
computed per-class precision, recall, and F1-score. These metrics
are particularly informative in understanding the model’s strengths
and weaknesses for individual gesture classes, especially in the
presence of class imbalance and gesture similarity.

Table 3. Per-class Precision, Recall, and F1-Score
Class Precision Recall F1-Score
One 0.20 0.26 0.23

Four 0.28 0.32 0.30

Small 0.19 0.20 0.19

Fist 0.17 0.12 0.14

Me 0.26 0.20 0.23

The analysis reveals that the gestures ”fist” and ”small” are particu-
larly challenging for the model, likely due to their visual similarity.
The gesture ”four” achieved relatively higher precision and recall,
suggesting better feature separability in the learned representation.
Incorporating per-class metrics helps uncover hidden biases and in-
forms future improvements.

4.8 Insights from Experiments

—Even with noisy and limited data, multimodal fusion boosts per-
formance.

—GCN embeddings from skeleton data significantly enhance
structural understanding of gestures.

—Attention mechanisms can improve learning when trained on
larger, diverse datasets in small datasets they may increase over-
fitting risk.

—The architecture is robust in design, but constrained by data lim-
itations.
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4.9 Cross-Dataset Generalization Potential
While our experiments focused on a single dataset, we acknowl-
edge the need for validation across diverse benchmarks. Datasets
such as ASL Alphabet [22], SHREC’17, and NVGesture provide
broader variation in hand shapes, lighting, and motion. Our archi-
tecture featuring modular CNN backbones, graph-based skeleton
reasoning, and temporal memory is designed to be transferable to
these domains. We have elaborated this direction further in Limi-
tations and Future Work section, proposing training on larger and
heterogeneous datasets to improve real-world robustness.

Table 4. Consolidated Performance Insights
Metric Observation

Best Train Accuracy 98.01%

Final Test Accuracy 22.85%

Overfitting Gap High (75.16%)

GCN Gain over RGB Only +11.97%

Attention Layer Effect Improved training convergence,
reduced test accuracy

Data Limitation Impact Significant limited classes and
modality noise

4.10 Summary of Findings
Despite limitations, our model confirms that multimodal fusion, es-
pecially the inclusion of skeletal information through GCNs, sub-
stantially improves gesture recognition under realistic constraints.
This study lays the groundwork for further experimentation across
broader datasets and contributes a replicable pipeline for real-time,
low-resource multimodal gesture learning.

4.11 Top-K Accuracy and Model Transferability
While our experiments were conducted solely on the Kaggle Hand
Gesture Dataset, we recognize the need for broader validation. As
a prospective direction, we consider applying the framework to
datasets like Jester [22] and IsoGD [22] to assess scalability across
more dynamic and diverse gesture scenarios.
Looking ahead, we intend to extend this framework to larger and
more diverse benchmarks such as Jester [22] and IsoGD [22],
which provide dynamic, egocentric, and temporally rich gesture
sequences. The modularity of our system, particularly the GCN-
based skeleton encoder, makes it well-suited for transfer learning.
We plan to adapt the architecture by either freezing or fine-tuning
the CNN and GCN layers, depending on the target dataset size and
complexity.
This transferability aligns with our broader objective of developing
generalizable and robust multimodal gesture recognition systems
deployable across real-world domains.

5. CONCLUSION
Within this work, we introduced an innovative multimodal gesture
recognition framework designed to operate effectively under real-
world conditions characterized by limited training data and sen-
sor noise. By fusing RGB and depth visual features with GCN-
extracted skeleton embeddings, and integrating LSTM-attention
modules for temporal modeling, the proposed system demonstrates

a modular and extensible architecture that is both computationally
efficient and conceptually robust.
Unlike prior studies that rely on large, clean, and curated datasets,
our model is tested on a challenging, small-scale dataset of dy-
namic gestures derived from realistic video samples. Through abla-
tion studies and performance analysis, we showed that each added
modality—depth and skeleton—incrementally enhances recogni-
tion accuracy, with the GCN branch notably contributing structural
awareness to the system.
Although our test accuracy remains modest (22.85%) due to the
noisy nature of the dataset and the limited gesture vocabulary, the
system’s architecture generalizes well, as evidenced by high train-
ing accuracy and consistent convergence. More importantly, this
work highlights a shift in focus from accuracy-driven benchmarks
to architecture innovation, deployment readiness, and problem re-
alism, aligning with current trends in practical AI systems.
Moving forward, we envision expanding the model’s generalizabil-
ity through cross-dataset evaluations, data augmentation, and do-
main adaptation techniques. By addressing gesture recognition as a
multimodal, real-world challenge, our contribution offers a strong
foundation for future systems deployed in robotics, VR/AR, and
assistive technologies.

6. LIMITATIONS AND FUTURE WORK
While our proposed multimodal gesture recognition system demon-
strates architectural innovation and modular robustness, it is impor-
tant to acknowledge its limitations particularly regarding data scale,
environmental variability, and generalizability—so as to provide a
realistic assessment and define directions for future improvements.

6.1 Real-World Data Constraints
The primary limitation of this study lies in the size and quality of
the dataset. The training data, derived from only 15 video samples
and consisting of approximately 13,728 frames, is small compared
to standard benchmarks. Unlike curated datasets with consistent
lighting and clear gestures, our data presents real-world noise, in-
cluding gesture ambiguity, inconsistent lighting, partial occlusions,
and skeleton misdetections.
These factors contribute to the relatively low test accuracy
(22.85%), despite high training accuracy (98.01%), indicating over-
fitting due to limited gesture diversity and high intra-class similar-
ity. However, this limitation also reflects the model’s practical ex-
posure to real-world deployment conditions, where ideal sensors
and perfect annotations are rarely available.

6.2 Sensor and Modality Fragility
The model’s reliance on MediaPipe for skeleton estimation in-
troduces another limitation. Although MediaPipe is efficient and
lightweight, it can fail under poor lighting, occlusion, or non-
frontal poses. This introduces noise into the GCN stream, affect-
ing overall fusion accuracy. Similarly, the pseudo-depth modality
(derived from grayscale approximations) lacks the fidelity of real
depth sensors like Kinect or RealSense.
Future work can explore more reliable skeleton extraction frame-
works, use true depth cameras, or even incorporate sensor error es-
timation modules to mitigate these weaknesses.

6.3 Sequence Modeling Assumptions
The current system uses repeated feature vectors (RepeatVector) to
simulate temporal sequences for RGB and depth frames due to lack
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of true frame-level temporal annotation. While the LSTM-attention
block models these pseudo-sequences effectively, it is not equiva-
lent to frame-by-frame recurrent learning.
A more complete pipeline would include temporal frame track-
ing and gesture segmentation, allowing more accurate modeling of
transitions, durations, and context in continuous gesture streams.

6.4 Model Generalization
The model has only been evaluated on one dataset under a con-
trolled set of gestures and environmental constraints. Its ability
to generalize across gesture vocabularies, sensor hardware, user
styles, and backgrounds remains untested. Cross-domain validation
with public datasets (e.g., SHREC’17, DHG-14/28) could enhance
its credibility and applicability.

6.5 Future Work
Based on the insights above, we outline the following future direc-
tions:

—Data Augmentation and Semi-Supervised Learning: Apply
temporal augmentation (jittering, cropping, mixing) and utilize
unlabeled sequences via pseudo-labeling to enhance generaliza-
tion.

—Domain Adaptation: Incorporate domain adaptation techniques
such as adversarial learning or feature alignment to enable train-
ing on one dataset and testing on another.

—Real-Time Evaluation: Optimize the pipeline with quantization
and ONNX export for deployment on edge devices, and bench-
mark latency, memory, and FPS.

—Modality Dropout and Redundancy Learning: Introduce ro-
bustness against missing modalities (e.g., skeleton not detected)
through training-time dropout of entire modalities.

—Transformer-Based Temporal Modeling: Replace LSTM with
lightweight transformer variants to improve long-term gesture
understanding with fewer frames.

By grounding our system in real-world constraints, analyzing limi-
tations transparently, and outlining a structured roadmap for future
expansion, we aim to contribute a modular and extensible baseline
for gesture recognition in small-data, high-noise environments.
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