
International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.15, June 2025

Elnamaki Coding: A New Arithmetic Language where
Numbers Unfold as Recursive Fibonacci Seeds,

Mapping the Hidden Architecture of Additive Reality

Abdelrhman Elnamaki
Independent Researcher

Düsseldorf, Germany

ABSTRACT
Elnamaki Coding (EC) redefines the foundations of arithmetic[1]
by replacing scalar value representation with recursive structural
emergence. In this framework, natural numbers[1] are not
static entities but semantic trajectories—dynamic paths through
a topologically recursive Fibonacci manifold. Each numerical
identity arises from morphic decompositions, Zeckendorf[3] style
expansions, and invertible modular transforms. At the heart of EC
lies the Sequanization Theorem, which induces a non-Euclidean
metric onZ based on recursive path existence, redefining proximity
and arithmetic continuity. Two reversible operators—Lowe and
Elevate—generate an algebra of additive evolution, enabling
a complete grammar for morphic arithmetic. This generative
system encodes identity as structure, not magnitude, establishing
a symbolic substrate for logic, computation, and complexity.
Unlike compression or classical encoding schemes, EC constructs
an intrinsic arithmetic language grounded in recursive algebra, path
redundancy, and topological invariants. It supports high-entropy,
non-linear mappings with direct implications for post-quantum
cryptography, symbolic AI architectures, and structural modeling
of recursive growth. EC’s semantic lattice allows encoding of
entangled state graphs, recursive tensor webs, and morphogenetic
trajectories in symbolic and quantum domains. The result is a
universal grammar for number theory—self-referential, reversible,
and structurally exact.

General Terms
Recursive Arithmetic, Symbolic Dynamics, Arithmetic Topology,
Information Theory, Algorithms, Number Theory, Cryptography, Encoding
Theory

Keywords
Fibonacci lattice, Zeckendorf decomposition, Lowe and Elevate
maps, Sequanization Theorem, parametric recursion, morphic
encoding, recursive number systems, modular arithmetic, nested
seed expansion, generative arithmetic language, topological
number identity, Elnamaki Coding

1. INTRODUCTION
Elnamaki Coding (EC) represents a novel generative arithmetic
paradigm where numbers are not endpoints, but emergent

trajectories—recursive paths through a Fibonacci-topological
manifold. This framework departs from the traditional scalar
view of positional encoding for integers, replacing it with a
structural arithmetic grammar. Within this grammar, numerical
identity is not defined by a fixed value but by path connectivity,
established through arbitrary integer seed pairs, Zeckendorf
morphisms, and invertible modular transforms. Central to this
concept is the Sequanization Theorem, which articulates that
any two integers are connected through finite recursive paths.
This profound insight induces a non-Euclidean metric over
the set of natural numbers N: here, adjacency is determined
not by Euclidean distance but by recursive transform ability.
The Lowe and Elevate maps function as invertible operators
within this lattice, establishing a reversible calculus of additive
evolution. The result is a new coding scheme possessing a
comprehensive, topologically navigable, and morphically coherent
domain. EC offers a recursive grammar of additive evolution that
asymptotically converges toward the Golden Ratio (ϕ)[4], thereby
forming a structurally unique topological-semantic substrate. Its
multidimensional seed space and path-sensitive dynamics support
invertible, non-linear transformations, opening a formal gateway
for exploring applications in symbolic AI design, fault-tolerant
distributed architectures, and cryptographic constructs exhibiting
high entropy, diffusion, and structural opacity.
EC-based permutations, will yield a cipher primitives that are
robust against structural inference. This has significant implications
for CAP-security and post-quantum resilience, potentially
leveraging non-algebraic hardness assumptions. In quantum
contexts, EC encodes symbolic tensor webs suitable for recursive
entanglement modeling and non-Euclidean state navigation. The
framework topologically captures recursive morphogenesis and
self-similar architectures, where Zeckendorf remainders quantify
alignment error between linear and non-linear growth—a novel
invariant for analyzing structural incommensurability in physical,
biological, and information systems.

1.1 Motivation
Existing arithmetic often struggles to capture the ”how” of number
generation and transformation, focusing instead on the ”what.”
EC seeks to provide a richer, generative arithmetic language where
numerical identity is fluid and context-dependent, emerging from
the process of its creation within a structured topological space. By

1

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.15, June 2025

conceptualizing numbers as paths rather than points, EC aims to
unlock new avenues for understanding number-theoretic structures,
particularly those related to Fibonacci sequences and the Golden
Ratio, which appear ubiquitously in natural growth patterns. This
paradigm is motivated by the potential to develop more robust,
adaptive, and intrinsically secure computational and encoding
methods that mirror the complexity and dynamism of natural
systems. It also seeks to bridge concepts from number theory,
topology, and symbolic dynamics, fostering interdisciplinary
research and applications.

1.2 Overview of EC
EC constitutes a foundational arithmetic framework predicated
on parametric Fibonacci sequences. It reconceptualizes natural
numbers as emergent trajectories—dynamic recursive paths
embedded within a Fibonacci-based topological manifold—rather
than as immutable scalar quantities. Each element in this space
arises from an arbitrary integer seed pair (x, y) ∈ Z2, uniquely
generating a parametric recursive sequence.
Principal constructs of EC include:

—Parametric Fibonacci Sequences: Extensions of classical
Fibonacci sequences initiated from arbitrary integer seeds,
forming a high-dimensional seed space that parametrizes infinite
distinct sequences with varied structural characteristics.

—Seed Differential and Geometry: The seed differential δ =
y − x encapsulates the initial momentum of sequences and
elucidates intrinsic symmetries and geometric relations within
the seed space.

—Structural Number Representation: Numeric identity is
encoded structurally by seed-index pairs (x, y, n), emphasizing
generative provenance over conventional magnitude.

—Lowe and Elevate Transformations: A pair of invertible,
bijective maps acting on seed pairs, forming a reversible algebra
of additive transformations that preserve equivalence classes of
number identities within the Fibonacci-topological lattice.

—Generalized Zeckendorf Decomposition (GZD): A robust
extension of Zeckendorf’s Theorem permitting unique
decomposition relative to any parametric Fibonacci basis,
introducing structural remainders as quantitative invariants of
incommensurability between numbers and generative bases.

—Sequanization Theorem: Establishes the existence of finite
recursive chains connecting arbitrary integers, inducing a novel
non-Euclidean metric over Z where proximity reflects recursive
transformability rather than Euclidean distance.

Unlike conventional compression or encoding schemes, EC
generative arithmetic characterized by recursive, topological, and
morphically exact transformations.

1.3 Contributions
This work Creates EC by delivering the following technical
contributions:

(1) Reformulation of Numerical Identity: Replaces the fixed
scalar notion of integers with dynamic path connectivity in
a Fibonacci-topological space, defining equivalence classes
of “Elnamaki Identities” generated by distinct seed-index
trajectories.

(2) Formalization of Parametric Fibonacci Sequences:
(3) Definition and Proof of Invertible Lowe and Elevate

Transformations

(4) Generalized Zeckendorf Decomposition
(5) Proof of the Sequanization Theorem
(6) Development of Recursive Arithmetic Constructs: Details

recursive arithmetic structures—including the Elnamaki
Identity, Triadic Basis Equivalence, Seed Tensor Web, and
Nested Seed Expansion—highlighting the deep structural
redundancy and interrelations within the EC system.

Together, these contributions establish a mathematically rigorous
foundation for recursive arithmetic systems, and structural
information encoding.

2. PRELIMINARIES AND THEORETICAL
FOUNDATIONS

2.1 The Classical Fibonacci Sequence
The classical Fibonacci sequence, denoted as Fn, is defined by a
simple linear recurrence relation. It begins with two predetermined
initial values, typically F0 = 0 and F1 = 1. Subsequent terms
are generated by summing the two preceding terms. Formally, the
sequence is defined as:

F0 = 0,

F1 = 1,

Fn = Fn−1 + Fn−2 for n ≥ 2.

The initial terms of the sequence are thus:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, The Fibonacci
sequence exhibits numerous properties, including its close
relationship with the Golden Ratio (ϕ ≈ 1.61803), to which
the ratio of consecutive terms converges (Fn/Fn−1 → ϕ as
n → ∞). Its terms appear in various natural phenomena, such
as plant branching patterns, seashell spirals, and phyllotaxis,
underscoring its relevance across disciplines. In the context of
EC, Fibonacci sequence serves as the core recursive backbone,
providing the fundamental structure upon which more generalized
and parametric systems are built. Its predictable growth and
well-understood properties make it an ideal base for constructing a
topological space for number representation.

2.2 Zeckendorf Decomposition
Zeckendorf’s Theorem asserts that every positive integer admits
a unique representation as a sum of non-consecutive Fibonacci
numbers. Formally, for any N ∈ Z+, there exists a unique set of
indices {jk > jk−1 > · · · > j1} such that jm ≥ jm−1 + 2 and

N = Fjk + Fjk−1 + · · ·+ Fj1 ,

where Fn denotes the nth classical Fibonacci number (F0 =
0, F1 = 1, F2 = 1, . . .), excluding consecutive terms.
For example, 10 = F6 + F3 = 8 + 2 is valid, while F5 +
F4 = 5 + 3 is invalid due to adjacency. The decomposition
is computed via a greedy algorithm that iteratively subtracts the
largest Fibonacci number not exceeding the remainder, ensuring
structural uniqueness.
Within the Elnamaki framework, this concept generalizes to
non-classical, parametric Fibonacci sequences, yielding what is
termed a Generalized Zeckendorf Decomposition (GZD). This
broader formulation introduces structural remainders—residual
components in recursive space—which refine the topological
identity of an integer beyond scalar value. The uniqueness and
O(logN) complexity of classical Zeckendorf decomposition carry

2

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.15, June 2025

over to the GZD, making it both structurally expressive and
algorithmically efficient in EC.

2.3 Matrix Representation of Fibonacci Sequences
The classical Fibonacci sequence and its generalizations can be
elegantly represented and analyzed using matrices provides a
powerful tool for efficient computation of terms and reveals deep
structural symmetries inherent in these sequences.
The standard Fibonacci matrix M is defined as:

M =

[
0 1
1 1

]
This matrix has the property that its powers generate Fibonacci
numbers:

Mn =

[
Fn−1 Fn

Fn Fn+1

]
for n ≥ 1. For instance, M1 =

[
F0 F1

F1 F2

]
=

[
0 1
1 1

]
.

In EC, this matrix representation is extended to parametric
Fibonacci sequences. Let a parametric sequence S be defined by
initial seed pair (x, y), where S0 = x and S1 = y. Any term Sn in
this sequence can be expressed as a linear combination of Fibonacci
numbers:

Sn = x · Fn−1 + y · Fn

This relation can be formulated using matrix-vector multiplication.
The terms of the sequence can be generated by applying the
Fibonacci matrix to the initial state vector. Specifically, the n-th
term Sn can be derived by projecting the initial seed pair onto the

result of applying Mn−1 to a base vector v0 =

[
0
1

]
:

Sn =
[
x y

]
·
(
Mn−1 ·

[
0
1

])
This interpretation casts integer sequences as vector trajectories
within a 2D Fibonacci space, where the seed pair (x, y) defines
the initial conditions or ”flow” across a Fibonacci lattice.
The primary advantage of this matrix formulation is its efficiency
in computing Sn. Matrix exponentiation using repeated squaring
allows Mn−1 to be calculated in O(logn) time complexity.
This logarithmic time evaluation is crucial for the scalability and
practical applicability of EC, especially when dealing with large
indices or extensive number transformations. It ensures that the
generation of sequence terms remains computationally feasible
even for deeply recursive structures.

2.4 Topological and Symbolic Arithmetic Overview
EC conceptualizes arithmetic as a topological-symbolic process
as recursive trajectories within a Fibonacci manifold defined by
integer seed pairs.
Topological Framework. Each number is represented by a path
indexed over a seed space (x, y) ∈ Z2, forming an equivalence
class of structural identities. Recursive adjacency is formalized
through the Sequanization Theorem, inducing a non-Euclidean
metric based on transform ability. Lowe and Elevate maps enable
reversible transitions across this space.
Symbolic Arithmetic. Numbers emerge through morphic
encodings, where operations are transformations on recursive
symbols rather than digits. Redundancies such as triadic basis
equivalence and nested expansions define a symbolic grammar
supporting fusion, structural compression.

3. ELNAMAKI CODING FRAMEWORK
3.1 Parametric Fibonacci Sequences
To generalize the classical Fibonacci sequence, its fixed initial
conditions are abandoned. Instead, the recurrence is seeded with
two arbitrary integers.

DEFINITION 1 PARAMETRIC FIBONACCI SEQUENCE. Let
x, y ∈ Z. Define Sn recursively as:

S0 = x

S1 = y

Sn = Sn−1 + Sn−2 for all n ≥ 2

The pair (x, y) is termed a Fibonacci seed pair. The sequence
Sn is uniquely governed by the choice of these seeds, forming the
recursive backbone for second-order sequences.

This generalization allows for an infinite family[2, 6] of
Fibonacci-like sequences, This ”parametric” nature is foundational
to EC, as it enables a vast seed space where numerical identities
emerge from specific generative contexts.

3.2 Seed Differential and Seed Space Geometry
In the context of parametric Fibonacci sequences, the seed
differential δ = y − x quantifies the initial displacement between
the seed terms (x, y), serving as the directional gradient that
governs recursive evolution. This yields the following symmetric
identity triad:

y = x+ δ, x = y − δ, δ = y − x,

which encapsulates the algebraic closure of seed initialization.
Beyond the canonical basis (x, y), alternative representations such
as (x, δ) and (y, δ) define rotated bases in the two-dimensional
seed lattice. These reparameterizations correspond to linear basis
transformations in the Z2 module induced by the Fibonacci
recursion matrix.

3.3 Structural Number Representation
Elnamaki Coding defines an integer N as the result of a recursive
generative process. Given a seed pair (x, y) and an index k ∈ N,
the scalar value is expressed as:

N = x · Fk−1 + y · Fk

where Fk denotes the k-th Fibonacci number under the classical
recurrence F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2. This formulation
aligns N with a parametric trajectory within a Fibonacci-based
space[6, 7].
The full identity of N , termed the Elnamaki Identity (EI), consists
of the equivalence class of all tuples (x, y; k) that yield the
same scalar projection. This introduces a symbolic redundancy
in representation, where a single value corresponds to multiple
recursive origins.
This structural representation can be reformulated as a matrix
product:

N =
[
x y

]
·

([
0 1
1 1

]k−1
·
[
0
1

])
In this view, numerical identity becomes path-invariant
and structurally recursive, reframing arithmetic as a
symbolic-topological process rather than a scalar operation.

3

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.15, June 2025

3.4 Lowe and Elevate Transformations
EC introduces two invertible linear maps Lowe and Elevate which
operate on seed pairs in Z2 with respect to the Fibonacci tail
(Fn−1, Fn). These transformations define a reversible arithmetic
over seed space, enabling canonical navigation of recursive
identities[5, 6].

DEFINITION 2 LOWE MAP TL . Let (x, y) ∈ Z2 be a seed pair
and (Fn−1, Fn) the Fibonacci identity tail. Define the map TL :
Z2 → Z2 by:

q =

⌊
x

Fn

⌋
,

x′ = x− qFn,

y′ = y + qFn−1.

Then TL(x, y) = (x′, y′) transforms the seed pair into a locally
reduced form preserving the scalar output.

DEFINITION 3 ELEVATE MAP TE . Given (x′, y′) ∈ Z2 from
the Lowe map and the same tail (Fn−1, Fn) with quotient q, define
TE : Z2 × Z→ Z2 by:

x = x′ + qFn,

y = y′ − qFn−1.

Then TE(x
′, y′; q) = (x, y) restores the original seed pair.

These operations establish a bijective morphism on Fibonacci
seed space, preserving numerical equivalence while transforming
coordinate representations. The Lowe map yields a normalized
form, while the Elevate map reconstructs higher-order identities.
Together, they form the core of EC’s structural invariance engine.

3.5 Invertibility and Algebraic Properties
The Lowe and Elevate transformations form a reversible algebra
on the local seed domain Z2, central to the structural integrity of
Elnamaki Coding. Each map is the inverse of the other, ensuring
that transformations preserve numerical identity.

3.5.1 Bijectivity Proof. (1) Left Inverse: TE(TL(x, y); q) =
(x, y)
Given:

q =

⌊
x

Fn

⌋
, x′ = x− qFn, y′ = y + qFn−1

Apply Elevate:

x′′ = x′ + qFn = x, y′′ = y′ − qFn−1 = y

(2) Right Inverse: TL(TE(x
′, y′; q)) = (x′, y′)

Given:

x = x′ + qFn, y = y′ − qFn−1

Apply Lowe:

q′ =

⌊
x

Fn

⌋
= q, x′′ = x− qFn = x′, y′′ = y + qFn−1 = y′

Hence, TE and TL are mutually inverse and bijective.

3.5.2 Complexity Analysis. Let b denote the bit length of the
input:

—Lowe Map: Requires integer division and multiplication, total
cost O(b log b).

—Elevate Map: Only arithmetic operations, total cost O(b).
—In fixed-width word arithmetic, both run in O(1) time.

These maps thus support both symbolic reversibility and
computational efficiency, critical for EC’s recursive algebraic
system.

4. RECURSIVE ARITHMETIC SYSTEMS
4.1 Elnamaki Identity and Path-Based Numbering
In EC the traditional scalar notion of numerical identity is
superseded by a ”path-based” numbering system, leading to the
concept of the Elnamaki Identity (EI). A natural number N is not
fundamentally a fixed scalar quantity, but rather the observable
manifestation of a dynamic recursive trajectory. This trajectory
is precisely defined by a specific seed pair (x, y) and its index
of emergence (k) within the corresponding parametric Fibonacci
sequence.
While a scalar value for N is computed as N = x · Fk−1 + y ·
Fk, the true EI of N resides in the equivalence class of all tuples
[(x, y), k] that yield N . This implies that a single scalar value can
be generated by multiple distinct seed pair-index combinations. For
example, the number 13 could be F6 (from seed (0, 1) at index 7),
or it could be S3 from seed (1, 3) (where S0 = 1, S1 = 3 =⇒
S2 = 4, S3 = 7, S4 = 11. The crucial point is that the underlying
value N remains the same, but the ”path” or ”structural coordinate”
through which it is generated differs.

4.2 Triadic Basis Equivalence
The concept of Triadic Basis Equivalence reveals profound
symmetries in the representation of parametric sequences. While
the seed pair (x, y) naturally initializes a sequence, alternative
formulations using (x, δ) or (y, δ) (where δ = y − x) as bases
provide deeper insights into the underlying structure and enable
versatile manipulation of sequence terms.

LEMMA 4 TRIADIC BASIS EQUIVALENCE. Let δ = y − x.
Then for all n ∈ N:

x · Fn−1 + y · Fn = x · Fn+1 + δ · Fn = y · Fn+1 − δ · Fn−1

Proof (Lemma 1): The proof proceeds by algebraic manipulation,
utilizing the fundamental Fibonacci identity Fn = Fn−1 + Fn−2
(or Fn+1 = Fn + Fn−1).
Part 1: x · Fn−1 + y · Fn = x · Fn+1 + δ · Fn Starting with the
left-hand side and substituting y = x+ δ:

x · Fn−1 + y · Fn = x · Fn−1 + (x+ δ) · Fn

= x · Fn−1 + x · Fn + δ · Fn

= x · (Fn−1 + Fn) + δ · Fn

Using the Fibonacci recurrence Fn−1 + Fn = Fn+1:

= x · Fn+1 + δ · Fn

This proves the first equality.
Part 2: x ·Fn−1+y ·Fn = y ·Fn+1− δ ·Fn−1 Starting again with
the left-hand side and substituting x = y − δ:

x · Fn−1 + y · Fn = (y − δ) · Fn−1 + y · Fn

= y · Fn−1 − δ · Fn−1 + y · Fn

= y · (Fn−1 + Fn)− δ · Fn−1

Again, using the Fibonacci recurrence Fn−1 + Fn = Fn+1:

= y · Fn+1 − δ · Fn−1

4

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.15, June 2025

This proves the second equality.
Implications: This lemma reveals a rotated coordinate system
within the Fibonacci plane, where the seed differential δ functions
as a transformed basis vector. From a linear algebra standpoint,
these equivalences correspond to a change of basis in a
2-dimensional integer lattice. Any term in a parametric Fibonacci
sequence can be equivalently generated using any of these three
bases: (x, y), (x, δ), or (y, δ). This flexibility is powerful for
algebraic manipulation, optimization, and understanding the deeper
symmetries and interconnections within the EC framework.

4.3 Seed Tensor Web and Cross-Seed Redundancy
Elnamaki Coding (EC) formalizes numerical identities as emergent
constructs from a tensor web of recursively interlinked seed
pairs. Rather than relying on a single parametric trajectory,
EC encodes integers via multiple overlapping recursive streams
seeded by distinct but interrelated base pairs. This architectural
redundancy constitutes a robust framework for fault-tolerant
recursion, structural interpolation, and distributed encoding via
linear projections.

4.3.1 Differential Seed Interactions. Consider the seed pair

(x, y) = (19, 23),

with differential parameter defined as

δ := y − x = 4.

From this foundational pair, a family of the interrelated parametric
sequences is generated, each defined recursively by the Fibonacci
relation:

Sn = Sn−1 + Sn−2,

with distinct initial conditions as follows:

S(0)(x, y) = {19, 23, 42, 65, 107, 172, 279, 451, 730, . . . }

(1)
S(1)(0, y) = {0, 23, 23, 46, 69, 115, 184, 299, 483, . . . }
S(2)(0, x) = {0, 19, 19, 38, 57, 95, 152, 247, 399, . . . }
S(3)(0, δ) = {0, 4, 4, 8, 12, 20, 32, 52, 84, 136, . . . }
S(4)(x, δ) = {19, 4, 23, 27, 50, 77, 127, 204, 331, . . . }

(2)

At index n = 7, the primary sequence value S
(0)
7 = 451

admits multiple equivalent decompositions across these auxiliary
sequences:

S
(0)
7 = S

(1)
7 + S

(2)
6 = 299 + 152 = 451, (3)

and equivalently,

S
(0)
7 = S

(2)
7 + S

(4)
7 = 247 + 204 = 451. (4)

These equalities illustrate the cross-seed redundancy inherent in EC
through structurally shifted seed pairs.

4.3.2 General Structural Identity and Projections. More
generally, for any seed pair (x, y) ∈ Z2, the EC sequence satisfies
the distributed additive construction:

Sn(x, y) = Sn−1(0, x) + Sn(0, y), (5)

where each auxiliary sequence Sn(0, z) is seeded by a single
parameter z.
Utilizing the classical Fibonacci numbers {Fn}, defined as

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n ≥ 2,

the closed-form expressions for auxiliary sequences are:

Sn(0, x) = x · Fn−1, Sn(0, y) = y · Fn, (6)

which immediately recover the fundamental EC identity:

Sn(x, y) = x · Fn−1 + y · Fn. (7)

4.3.3 Alternative Seed Pairs and Cross-Redundancy. Beyond the
canonical pair (x, y), EC accommodates alternative seed bases that
enable further redundancy and expressive generalization. Notable
examples include:

—(x, δ) seed basis:

Sn(x, δ) = x · Fn−1 + δ · Fn,

where δ = y − x captures differential interaction.
—(δx, δy) differential seed basis:

Sn(δx, δy) = δx · Fn−1 + δy · Fn,

where δx, δy represent secondary differentials derived from seed
transformations.

—Composite liftings such as (x+ δ,y − δ), enabling nontrivial
linear combinations and extended lattice projections.

These alternative bases define orthogonal projections in the EC
tensor web.

4.3.4 Interpretation and Applications. This recursive tensor web
formalism endows EC with a robust symbolic infrastructure, where
numerical values are embedded within harmonized trajectories
governed by diverse seed interactions. The multiplicity of
equivalent recursive representations is a deliberate feature,
affording:

—Error-tolerant decoding: alternative reconstruction routes
allow for recovery in case of partial data corruption.

—Symbolic interpolation: parametric blending across seed spaces
enables smooth transitions and generalizations.

—Distributed computation: parallelizable recursive streams
support scalable arithmetic processing architectures.

4.3.5 Extraction of Maximal Seed Sequences from Integer
Approximations. Given an integer N ∈ N, we define a method
to extract its maximal seed sequence via a non-standard Fibonacci
basis. This process integrates Zeckendorf decomposition, binary
shifting, and recursive subtraction to reveal latent additive
structure.

4.3.5.1 Step 1: Zeckendorf Representation.. Every N ∈ N
admits a unique decomposition:

N =
∑
i

biFi with bi ∈ {0, 1}, bibi+1 = 0

where Fi denotes the i-th Fibonacci number and the binary vector
b = [b0, b1, . . .] encodes the Zeckendorf expansion.

5

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.15, June 2025

4.3.5.2 Step 2: Binary Shift.. Left-shifting b yields a new
vector b′, inducing the shifted integer:

N ′ =
∑
i

b′iFi+1

This operation defines a new seed Nn+1 := N ′ over a reindexed
Fibonacci basis.

4.3.5.3 Step 3: Recursive Subtraction.. Let F ′ = {F ′i}
denote the shifted Fibonacci basis. Define:

R0 := Nn+1, Rk := Rk−1−max{F ′i ∈ F ′ | F ′i ≤ Rk−1}, k ≥ 1

Continue until Rk ≥ Rk−1. The maximal seed sequence is the
collection:

{F ′i ∈ F ′ | F ′i selected at step k}

4.3.5.4 Example (N = 100).

—Zeckendorf: 100 = 89 + 8 + 3, binary vector: b =
[0, 0, 1, 0, 1, 0, 0, 0, 0, 1]

—Shifted: b′ = [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1], yielding N ′ = 162

—Recursive subtraction over F ′: [100, 62, 38, 24, 14, 10, 4]

This method reveals deep structural regularities within N
over Fibonacci-based representations, highlighting the additive
incompleteness of scalar number models.

4.4 Nested Seed Expansion and Fusion Products
The concepts of Fusion Products and Nested Seed Expansion
provide a granular understanding of how recursive structures
interact and can be decomposed within Elnamaki Coding, revealing
localized linear structures and their transformations.
Fusion Products over Recursive Seed Sequences: Consider two
integer sequences, S = [s0, s1, . . . , sN] and I = [i0, i1, . . . , iN],
which are typically derived from Zeckendorf-based recursive
subtraction over shift-seeds of a natural number N . A fusion
product at index k ∈ {0, . . . ,K − 1} is defined, where K :=
min(|S|, |I|)− 1.

DEFINITION 5 FUSION PRODUCT. For sequences S and I ,
the fusion product Φk at index k is defined as:

Φk := ([sk, sk+1], [ik, ik+1]) ∈ Z2 × Z2

Each fusion product Φk encapsulates a local seed transformation
pair. It effectively couples arithmetic components from sequence
S with corresponding index shifts or base elements from sequence
I over adjacent coordinates. This captures the dynamic interplay
between the value sequence and its underlying Fibonacci basis.
Example: Given S = [32, 20, 12, 8, 4, 4, 0] and I =
[0, 1, 1, 2, 3, 5, 8], the fusion sequence yields:

—Φ0 = ([32, 20], [0, 1]) = (32 ∗ 1 + 20 ∗ 0)
—Φ1 = ([20, 12], [1, 1]) = (20 ∗ 1 + 12 + 1]

—Φ2 = ([12, 8], [1, 2]) = (12 ∗ 1 + 8 ∗ 2)
—Φ3 = ([8, 4], [2, 3]) = (8 ∗ 2 + 4 ∗ 3)
—Φ4 = ([4, 4], [3, 5]) = (4 ∗ 3 + 4 ∗ 5)
—Φ5 = ([0, 4], [5, 8]) = (0 ∗ 5 + 8 ∗ 4)

This collection of fusion products provides a structured view of
the relationship between the two sequences at each step of their
interaction.
Complexity of Fusion Generation: For K fusion products, each
step involves constant-time tuple operations, resulting in time

complexity O(K). Storing K elements in Z2 ×Z2 requires O(K)
space, or O(Kb) bit complexity for b-bit integers. Since each
Φk is computed independently, the fusion process admits full
parallelization with O(1)-depth across K processors.
Nested Seed Expansion: Given a fusion product Φ =
([x, y], [Fn−1, Fn]), a Nested Seed Expansion process is defined.
This process recursively generates a sequence of seed pairs over a
fixed Fibonacci tail [Fn−1, Fn], derived from the mechanics of the
Lowe transformation. This reveals the fundamental decomposition
of the mapping between a source sequence and a target sequence.

DEFINITION 6 NESTED SEED EXPANSION. Let the initial
seed be Seed0 = [x, y] with an identity tail [Fn−1, Fn]. The
expansion proceeds as follows:

(1) Integer Quotient and Remainder Decomposition: Compute
x = q · Fn + r, where q = ⌊x/Fn⌋ and r = x (mod Fn).

(2) Initial Nested Seed: Construct the first nested seed using the
Lowe transformation logic: Seed′0 = [r, y + q · Fn−1].

(3) Recursive Seed Generation: For each i ≥ 1, define the i-th
nested seed as:

Seedi = [xi−1 + Fn, yi−1 − Fn−1]

where Seedi−1 = [xi−1, yi−1].
(4) Termination Condition: The expansion halts when the

inequality xi > yi holds.

Each nested seed encodes a localized linear structure. The
reconstruction of the original number N from any nested seed
Seedi = [xi, yi] with the tail [Fn−1, Fn] is given by N = xi ·
Fn−1 + yi · Fn. The process aims to expose multiple equivalent
(x, y) seed pairs that, when projected onto the specific Fibonacci
tail, yield the same overall numerical value or relate to specific
properties of the original number.
Example: Let’s consider a scenario where N = 32 and an
identity product ΦIP = ([Nn−1, N], [Fn−1, Fn]). This example
is provided in the prompt in a way that suggests specific indices.
Let’s reinterpret to align with the definition. If N = 32 is to be
linked to say F4 = 3 and F5 = 5 (tail [3, 5]), we might look for
nested seeds.
The approximate cardinality of the Nested Seeds (NSs) associated
with the embedding of N at the identity position corresponding to
In (which we can interpret as Fn or a general Sn(0, In)) is given
by the expression:

NSs(N ; In) ≈
N

In · In+1

+ 1

This relationship is understood as an asymptotic heuristic. It
captures the leading-order behavior of seed proliferation as N
grows, but it does not impose a strict invariant across all instances.
Variations arise primarily due to local fluctuations in divisibility
and the precise modular relationships between N , In, and In+1.
Structural Compression: This expression reveals a natural
entropy gradient over Fibonacci partitions. As n→∞, the number
of nested seeds tends to 1 (#NestedSeeds → 1), reflecting the
contraction of feasible subdivisions at large scales. This implies
that for very large numbers, the generative options become more
constrained, leading to a form of structural ”compression” in terms
of alternative seed representations.
Complexity Analysis of Nested Seed Expansion:

—Time Complexity: Each step performs constant-time arithmetic
on fixed-size words. The number of steps scales as the count of

6

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.15, June 2025

Fibonacci numbers ≤ x, approximately O(logϕ(x)), where ϕ is
the golden ratio. Thus, Texpansion = O(logϕ(x)).

—Space Complexity: Each nested seed requires constant space;
total space scales with the number of steps, yielding Sexpansion =
O(logϕ(x)).

—Bit Complexity: Operations involve integers of size O(log(x))
bits, so total bit complexity is Bexpansion = O(logϕ(x) · log(x)).

Nested seed expansion is a powerful tool for analyzing the
intrinsic composition of numbers within the EC framework,
offering insights into their recursive structure and potential for
decomposition.

5. GENERALIZED ZECKENDORF
DECOMPOSITION

5.1 Definition and Construction
Classical Zeckendorf decomposition (CZD) states:

∀n ∈ Z>0, ∃!{bi} ⊂ {0, 1} s.t. n =
∑
i

biFi, bibi+1 = 0,

where {Fi} is the classical Fibonacci sequence.
Generalized Zeckendorf Decomposition (GZD): For a
parametric Fibonacci sequence Sx,y defined by

S0 = x, S1 = y, Sn = Sn−1 + Sn−2,

any integer N admits a decomposition

N =

k∑
i=0

biSi + r, bi ∈ {0, 1}, bibi+1 = 0, r ∈ Z≥0.

Here, r is the structural remainder quantifying the
incommensurability between N and the generalized basis.

5.2 Encoding / Decoding Algorithm (Greedy)
r ← N, B ← 0, last← −∞,

for i = k → 0 :

if Si ≤ r and i ̸= last− 1 then
Bi ← 1, r ← r − Si, last← i,

Decoding:

N =
∑
i

BiSi + r.

5.3 Complexity

k = O(logϕ N), Tencode = Tdecode = O(k) = O(logN).

5.4 Structural Remainder and Quasi-Periodicity
For Sx,y , remainder r reveals the residue class of N mod
S-spacing. For example, for S5,9,

r(N) exhibits quasi-periodic pattern: [1, 2, 3, 4, 0, 6, 7, 8, 0, 1, 2, 3, 4, 0, . . .].

Interpretation:

r = N −
∑
i

biSi

measures the nonlinear fit of N within the parametric Fibonacci
basis Sx,y , encoding the structural incommensurability between
linear progression and nonlinear recursive growth.

6. SEQUANIZATION THEOREM AND
RECURSIVE PATH CONNECTIVITY

6.1 Theorem Statement
THEOREM 7 SEQUANIZATION THEOREM. Let a, b ∈ Z.

Define S = {sk}k≥0 by

sk = sk−1 + sk−2, k ≥ 2,

with s0 = x, s1 = y ∈ Z.
∃i, j ∈ N0, i < j and (x, y) ∈ Z2 s.t.

si = a, sj = b.

6.2 Proof Sketch
Express sk via classical Fibonacci Fk:

sk = xFk−1 + yFk, F0 = 0, F1 = 1, F−1 = 1.

Solve linear system: [
Fi−1 Fi

Fj−1 Fj

] [
x
y

]
=

[
a
b

]
.

Choosing i = 0, j = 1,[
1 0
0 1

] [
x
y

]
=

[
a
b

]
=⇒ x = a, y = b,

with det = 1 ̸= 0, guaranteeing unique integer solutions.

6.3 Degree of Connectivity and Metric
Define degree d := j − i− 1 ≥ 0.

d = 0 ⇐⇒ si = a, si+1 = b.

Interpret d as recursive path length between a, b in
Fibonacci-topological space.

6.4 Example:
Given (a, b) = (6, 28), find (x, y), i, j s.t.

si = 6, sj = 28, d = j − i− 1.

Construct S with seed (x, y) = (1, 5):

S = [1, 5, 6, 11, 17, 28, . . .],

with indices i = 2, j = 5, degree

d = 5− 2− 1 = 2.

6.5 Higher-Order and Nonlinear Extensions

sn =

k∑
m=1

cmsn−m, cm ∈ Z,

with k > 2, seed vector x ∈ Zk.
Existence of paths generalizes to:

∃i < j, si = a, sj = b,

via invertible companion matrix:

M = companion(c1, . . . , ck).

7

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.15, June 2025

Nonlinear recurrences:

sn = f(sn−1, . . . , sn−k), f nonlinear,

require new structural and invertibility analysis.

This framework yields a recursive metric space on Z, enabling
algebraic connectivity, hierarchical path enumeration, and
generalized arithmetic topologies.
Note: full theorem proof comes in EC V0.2.

7. ELNAMAKI CODING (EC) V 0.1: INITIAL
COMPONENTS

EC formals The components for improved modularity,
computational efficiency, and extensibility. The initial component
set for EC V 0.1 includes:

(1) Enhanced Seed Space Manager:
—Supports dynamic manipulation of seed pairs (x, y) ∈ Z2

with extended operations including modular constraints
and filtered seed subsets and implements seed equivalence
normalization to identify canonical representatives
minimizing computational complexity.

(2) Optimized Sequence Generator:
—Utilizes advanced matrix exponentiation and memoization

for fast parametric Fibonacci sequence generation at scale
and Supports batch computation of multiple sequence terms
and parallelized indexing.

(3) Generalized Transformation Engine:
—Incorporates Lowe (TL) and Elevate (TE) operators

with rigorous algebraic interface supporting chaining and
composition.

—Extends transformation logic to handle modular arithmetic
and controlled perturbations for approximate equivalences.

(4) Generalized Zeckendorf Decomposition (GZD):
—Implements enhanced greedy and backtracking algorithms

for decomposition with explicit remainder tracking.
—Supports decomposition across parameterized families of

sequences for comparative structural analysis.
(5) Recursive Path Resolver:

—Integrates heuristic and exact search strategies over the
seed space to identify minimal degree recursive connections
between integers.

—Provides explicit metrics and geodesic computations in the
induced non-Euclidean number space.

(6) Symbolic Identity Repository:
—Maintains indexed mappings of numbers to their multi-seed

generative representations and fusion product expansions.
—Enables efficient querying and redundancy analysis within

the seed tensor web structure.

This initial EC V1 component suite sets the stage for scalable
implementations and exploratory research into complex recursive
arithmetic structures, facilitating more sophisticated algorithmic
and applied developments.

8. EVALUATION AND EXPERIMENTAL
SCENARIOS

The experimental validation of Elnamaki Coding focuses on
empirical scenarios designed to substantiate its theoretical structure
and explore its practical implications.

8.1 Behavior Under Diverse Seed Pairs
Sequences generated from varying seed pairs (x, y) ∈ Z2 are
analyzed for growth patterns, density, modular periodicity, and
decomposition behavior. All sequences asymptotically converge
to φ, yet exhibit distinct structural signatures across seed pairs,
validating the recursive topology.

8.2 Compression via Generalized Zeckendorf
Using (GZD), integers are encoded via various parametric
Fibonacci bases. Metrics include binary sparsity, structural
remainder distribution, and representational compactness. Results
reveal seed-dependent compression efficiency and semantic
remainder content.

8.3 Symbolic Tensor Web Encoding
EC encodes quantum tensor networks symbolically through
seed-path morphisms, enabling recursive composition of
multi-qubit states. The expressive power of EC supports complex
tensor contraction patterns fundamental to quantum circuit
representation.

8.4 Symbolic Cryptography and Encoding
EC enables structural encoding via seed extraction, binary
shifts, and recursive subtraction. These operations yield maximal
seed sequences and high-entropy representations suitable for
cryptographic primitives. Structural opacity and path-based
identity offer resistance to algebraic and quantum attacks.

9. REFERENCES
[1] Thomas Jech, Set Theory, 3rd ed., Springer Monographs in

Mathematics, 2003.
[2] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik,

Concrete Mathematics: A Foundation for Computer Science,
2nd ed., Addison-Wesley, 1994.

[3] Edouard Zeckendorf, “Représentation des nombres naturels
par une somme de nombres de Fibonacci ou de nombres de
Lucas,” Bulletin de la Société Royale des Sciences de Liège,
vol. 41, pp. 179–182, 1972.

[4] Eric W. Weisstein, “Fibonacci Number,” MathWorld–A
Wolfram Web Resource, Wolfram Research, 2025.
[Online]. Available: https://mathworld.wolfram.
com/FibonacciNumber.html

[5] Yann Bugeaud, Guillaume Hanrot, and Caroline Teulière,
“Positivity of second order linear recurrent sequences,”
Theoretical Computer Science, vol. 5, 2005. ISSN
0166-218X. DOI: 10.1016/j.dam.2005.10.009.

[6] Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences:
Theory, Applications, Generalizations, Cambridge University
Press, 2003. DOI: 10.1017/CBO9780511546545.

[7] Torbjörn Granlund and the GMP development team, GNU
MP: The GNU Multiple Precision Arithmetic Library, Manual
version 6.2.1, 2020.

8

https://mathworld.wolfram.com/FibonacciNumber.html
https://mathworld.wolfram.com/FibonacciNumber.html

	Introduction
	Motivation
	Overview of EC
	Contributions

	Preliminaries and Theoretical Foundations
	The Classical Fibonacci Sequence
	Zeckendorf Decomposition
	Matrix Representation of Fibonacci Sequences
	Topological and Symbolic Arithmetic Overview

	Elnamaki Coding Framework
	Parametric Fibonacci Sequences
	Seed Differential and Seed Space Geometry
	Structural Number Representation
	Lowe and Elevate Transformations
	Invertibility and Algebraic Properties
	Bijectivity Proof
	Complexity Analysis

	Recursive Arithmetic Systems
	Elnamaki Identity and Path-Based Numbering
	Triadic Basis Equivalence
	Seed Tensor Web and Cross-Seed Redundancy
	Differential Seed Interactions
	General Structural Identity and Projections
	Alternative Seed Pairs and Cross-Redundancy
	Interpretation and Applications
	Extraction of Maximal Seed Sequences from Integer Approximations

	Nested Seed Expansion and Fusion Products

	Generalized Zeckendorf Decomposition
	Definition and Construction
	Encoding / Decoding Algorithm (Greedy)
	Complexity
	Structural Remainder and Quasi-Periodicity

	Sequanization Theorem and Recursive Path Connectivity
	Theorem Statement
	Proof Sketch
	Degree of Connectivity and Metric
	Example:
	Higher-Order and Nonlinear Extensions

	Elnamaki Coding (EC) V 0.1: Initial Components
	Evaluation and Experimental Scenarios
	Behavior Under Diverse Seed Pairs
	Compression via Generalized Zeckendorf
	Symbolic Tensor Web Encoding
	Symbolic Cryptography and Encoding

	References

