
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

53

Advances in Malaria Detection: Synergizing Deep
Learning and Traditional Machine Learning

Samuel Yao Sebuabe
Department of Computer Science

Valley View University

Justice Kwame Appati
Department of Computer Science

University of Ghana

Stephen Kofi Dotse
Department of Information

Technology Studies
University of Professional Studies

John Yao Akakpo
Department of Computer Science

University of Ghana

Doe Martin
Department of Computer Science

Valley View University

ABSTRACT

Malaria remains one of the leading causes of death globally,

necessitating continuous research into novel diagnostic and

treatment methods. Despite available treatments, accurately

assessing drug efficacy against malaria parasites remains

challenging due to the need for precise parasite quantification

in blood-smeared images, a task traditionally performed using

time-consuming microscopy methods. In this study, we

propose a Convolutional Neural Network (CNN)-based deep

learning model to enhance malaria parasite detection from

Giemsa-stained thin blood smears. The proposed model

incorporates advanced preprocessing techniques, including

normalization, standardization, and staining, as well as data

augmentation methods (e.g., random cropping, flipping, and

rotation) and hyperparameter optimization to significantly

improve performance. The primary dataset from the National

Institutes of Health (NIH), consisting of 27,558 parasitized and

uninfected cell images, was used to train and evaluate the

model. A custom CNN architecture was compared with pre-

trained models like VGG-19, ResNet-50, and MobileNetV2

based on accuracy, precision, recall and AUC. The best-

performing model achieved a training accuracy of 96.88%,

validation accuracy of 95.55%, and test accuracy of 95.67%

after 50 epochs. Performance metrics such as precision

(97.37%), recall (97.75%), and AUC (99.19%) demonstrated

high sensitivity and specificity, confirming the model’s

robustness. A secondary dataset from the IEEE repository,

containing 43,434 images, was used to validate the model,

yielding near-identical performance and further confirming its

generalizability across diverse datasets. These findings

underscore the proposed model’s ability to accurately detect

malaria parasites, offering a faster and more reliable alternative

to traditional microscopy. Future work will explore integrating

mobile-based imaging systems with cloud and edge-based

inference for deployment in low-resource settings, aiming to

enhance malaria treatment outcomes in underserved regions.

General Terms

Artificial Intelligence, Deep Learning, Pattern Recognition,

Computer Vision, Algorithms, Image Processing, Medical

Diagnostics, Machine Learning, Health Informatics.

Keywords

Malaria, Convolutional Neural Network, Cell Images,

Minutiae, IEEE Dataset, Giemsa-stained Thin Blood Smears.

1. INTRODUCTION
Malaria is a major national health concern around the world. It

is transmitted by the parasite plasmodium falciparum, which is

responsible for the majority of deaths and serious health

problems in impoverished areas of Africa and other tropical

regions. According to the latest World malaria report, there

were 263 million cases of malaria in 2023 compared to

252 million cases in 2022. The estimated number of malaria

deaths stood at 597 000 in 2022 compared to 600 000 in 2022

[1]. The main symptoms of malaria include fever, vomiting,

headache, and tiredness. Parasitological studies, including

microscopic tests and rapid diagnostic tests (RDT), are

necessary to assess whether potential patients are infected with

malaria or not. However, in locations where malaria

parasitological tests are not easily accessible, the complexities

of malaria diagnosis may result in misinterpretation and

improper presumed therapy [2]. In the treatment of malaria, it

is recommended that anti-malaria drugs be taken upon

parasitological confirmation of the condition. A variety of

contributions have been put in place to diagnose malaria easily

and efficiently [3]. The fundamental approach entails collecting

a blood sample from an infected person and sending it to a

laboratory where an experienced health professional must

distinguish between uninfected and parasitized cells. This

diagnostic technique is time-consuming and labor-intensive.

To minimize the cost of blood testing and reduce the personnel

required for plasmodium parasite detection in blood samples, it

is recommended to implement cost-effective automated

diagnostic techniques, in one or more modalities, for the

identification of infected erythrocytes containing plasmodium

parasites [4]. The most critical stage before starting treatment

of malaria is the detecting stage, as accurate diagnosis is

essential for determining the appropriate treatment [5].

According to [6], several studies have been conducted on

diagnosing malaria using machine learning techniques, with the

majority focusing on the blood smear image method. They also

stated that tons of blood smears are studied for the plasmodium

parasite every year, using available methods such as Rapid

Diagnostic Tests, Immunofluorescence Antibody Testing

(IFA), Polymerase Chain Reaction (PCR) based techniques,

Loop-mediated Isothermal Amplification (LAMP) technique,

Light Microscopy, and others, which involve manual detection

of malaria falciparum parasites and infected red blood cells by

trained microscopists. Despite many of these evaluation

strategies for detecting infection, the majority of microscopists

in resource-limited areas have hurdles in improving diagnostic

accuracy [7]. Machine learning has recently been applied in the

public medical field for disease detection and prediction. With

the availability of extensive healthcare datasets and

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

54

advancements in computational techniques, it is now capable

of diagnosing a wide range of health disorders. Public health

researchers have utilized several machine learning methods

which have yielded promising results. [8] introduces the IDTL-

MPDC model for malaria detection using deep transfer

learning, achieving 95.86% accuracy by integrating median

filtering, Res2Net, differential evolution, and KNN. While it

outperforms existing methods, its reliance on a single dataset

and lack of interpretability and real-world validation highlights

areas for improvement. The study by [9] presents TL-SGAN,

a model combining transfer learning and semi-supervised

GANs for malaria detection with limited labeled data,

achieving 96.6% accuracy. It reduces data dependency and

training time but focuses only on binary classification and

requires validation on diverse datasets. In a similar vein, [10]

also proposes a deep learning-based framework (HPTDL-

MPDC) for automated malaria detection, combining VGG19

for feature extraction and an LSTM-CNN model for

classification, optimized with Adagrad. Achieving 91%

accuracy on a large dataset, it outperforms existing methods,

though it requires further clinical validation and testing on

diverse datasets for broader applicability. [11] develops

YOLO-mp models for real-time malaria detection, addressing

annotation inconsistencies in datasets and optimizing YOLOv4

for speed and accuracy. The refined Dataset B-centered

improves data quality, and the lightweight YOLO-mp-3l model

achieves 94.07% mAP, outperforming YOLOv4 while being

faster and smaller, making it suitable for low-resource settings.

The objectives of this study are:

• To propose a more efficient computational method for the

detection of malaria parasites from blood smear images

• To perform an in-depth comparison of the proposed method

with other existing approaches in the same domain using

secondary data (online repository)

The subsequent sections of the paper are organized as follows.

The material and method/algorithm are introduced in Section

2. Section 3 extensively discusses the results recorded. Lastly,

the work is concluded in Section 4.

2. THE MATERIALS AND METHODS
This study focuses on comparing the performance of different

deep learning methods in detecting Plasmodium parasites from

medical images, aiming to improve malaria diagnosis accuracy

and efficiency. This section provides an overview of the deep

learning techniques considered, the data acquisition strategy

adopted, and the algorithms used to achieve the study’s

objective.

The data acquisition strategy is critical for ensuring high-

quality, labeled medical images for training the models [12].

Details about the dataset, including its source, resolution, and

annotation process, are discussed. The programming logic and

algorithms employed, particularly the use of deep learning

models like Convolutional Neural Networks (CNNs), are also

outlined.

The following sections cover data preprocessing and

augmentation techniques, which are essential for preparing the

raw images by enhancing their quality and expanding the

dataset. The proposed architecture is then discussed, detailing

the layers and components used to detect Plasmodium

parasites, with a focus on the integration of pre-trained models

and transfer learning strategies. The training process, including

loss functions, optimization techniques, and hyperparameter

tuning, is briefly explained.

Finally, the section discusses various evaluation metrics, such

as accuracy, sensitivity, specificity, precision, recall, F1-score,

and the area under the ROC curve, which will be used to assess

the effectiveness of the model in detecting malaria. These

metrics are critical for evaluating the performance of the deep

learning models and ensuring their suitability for medical

applications.

2.1 Deep Learning Models
Deep learning is a powerful computational framework that

relies on multiple convolutional filters to interpret data at

various levels of abstraction. Unlike humans, deep learning

algorithms require vast amounts of high-quality annotated data

to make accurate predictions. This dependency on large

datasets has historically hindered the widespread adoption of

deep learning in fields like medicine, where annotated data is

scarce and privacy concerns are prevalent [13], Neural

networks, which are primarily composed of layers of

interconnected neurons, can be employed to uncover

fundamental relationships in datasets and extract meaningful

features [14] In this context, several deep learning models have

been investigated, each with distinct principles, advantages,

and limitations. These models include Sequential CNN, pre-

trained VGG19, pre-trained ResNet50, and pre-trained

MobileNet-v2 classifiers. All models were tested on the same

dataset, with their outcomes compared to assess performance.

These models were chosen because they are trained on the

ImageNet database, which, despite requiring high

computational power and large datasets, produces reliable and

robust results. Given the computational limitations of the

system used in this study, pre-trained models were leveraged to

efficiently compare results while avoiding the need for

extensive retraining.

One of the core deep learning models, the Convolutional

Neural Network (CNN), is widely used for image analysis and

classification tasks. CNNs consist of convolutional, pooling,

and fully connected layers [15]. which allow them to

automatically extract features from images while preserving

spatial hierarchies. The performance of a CNN can be

mathematically expressed as:

CJ
1 = μ (∑ ci

j−1

ml−1

i=1

∗ K i̇j

i + bj
l−1) (1)

Typically, CNNs are built with three primary types of layers:

convolutional layers, pooling layers, and fully connected

layers, as illustrated in Fig. 1. Convolution blocks, which

combine convolutional and pooling layers, are stacked together

to form the network. The fully connected layer, usually found

at the end of the network, is often used for segmentation or

hypothesis testing. While CNNs are highly effective at

processing large image datasets and automatically extracting

hierarchical features, they do have limitations. These models

require large amounts of labeled data and significant

computational resources. Moreover, they may perform poorly

on tasks with limited data or non-image inputs, which can pose

challenges in certain domains.

In response to these challenges, MobileNet was introduced by

Google at CVPR 2017 as a lightweight CNN designed for

mobile applications. By using depthwise separable

convolutions, MobileNet reduces the computational load

compared to traditional CNNs [17]. Building on this,

MobileNetv2, introduced by [18], incorporates inverted

residual blocks, further optimizing the model with fewer

parameters and improved performance when processing

images larger than 32𝑝𝑥 x 32𝑝𝑥. Each block in MobileNetv2

includes a 1𝑥1 convolution with ReLU6 activation, followed

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

55

by a depthwise convolution and another 1𝑥1 convolution. This

architecture not only reduces the model’s computational

footprint but also ensures efficient performance for a variety of

tasks, as demonstrated in Fig. 2.

Another well-established deep learning model, VGG19, was

developed by the Visual Geometry Group at Oxford and is

known for its high accuracy in image recognition tasks. VGG19

consists of 19 layers, including 16 convolutional layers, 3 fully

connected layers, and 5 max-pooling layers. It is widely used

for visual recognition and is often fine-tuned with transfer

learning to adapt to specific datasets, such as ImageNet or more

specialized tasks like malaria detection [19]. Despite its

simplicity, VGG19 is highly effective at extracting hierarchical

features, making it a popular model for many image

classification challenges, as shown in Fig. 1.

Fig 1: VGG-19 Architecture

In addition to CNN and MobileNet, the ResNet architecture,

introduced by [5], addresses performance degradation in deep

learning models by employing residual connections. These

connections allow the network to bypass certain layers,

mitigating the vanishing gradient problem and enabling deeper

networks without compromising performance. ResNet50, an

improved version of ResNet, uses these residual blocks to

maintain high performance even with complex architectures.

The residual connection is mathematically expressed as:

y = F(x, W + x) (2)

where 𝑥 is the input and 𝑦 is the output. ResNet50 was used in

this study with transfer learning.

ResNet50 improves both training efficiency and classification

accuracy, making it particularly effective for complex datasets.

For this study, ResNet50 was employed with transfer learning,

helping to enhance performance while reducing the need for

extensive retraining [20].

Each of the deep learning models tested in this study CNN,

MobileNetv2, VGG19, and ResNet50 offers unique advantages

suited to different tasks. CNNs excel at feature extraction from

large image datasets, MobileNetv2 is optimized for low-

resource environments such as mobile applications, VGG19

provides high accuracy in image recognition tasks, and

ResNet50 allows for deeper networks with better performance

through residual connections [21]. By leveraging pre-trained

models, the study makes use of the strengths of each

architecture, addressing computational limitations while

comparing their performance on a common dataset.

Collectively, these models contribute valuable insights into the

potential of deep learning for image classification and other

machine learning applications.

Fig 2: MobileNetv2 Architecture

Fig 3: ResNet-50 Architecture

2.2 Data Acquisition
For this research, two different secondary datasets were

considered. They are the malaria images (thin blood smear)

dataset which was downloaded from the IEEE data repository

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

56

and malaria cell images which were also retrieved from the

National Institutes of Health (NIH) website. The main reasons

for adopting these datasets are that (a) they are used extensively

by other researchers in the same or similar domain, and (b) they

also produced higher accuracy results based on papers. Further

descriptions of these datasets are stated in the sections that

follow.

2.1.1 National Institutes of Health Dataset
This dataset was retrieved from the NIH data repository [22].

The dataset contains 27,558 cell images which are organized

into two folders labeled as parasitized and uninfected. Each of

these subfolders contains 13,779 images as represented in

Table I below. The data was taken from 150 P. falciparum and

50 healthy patients and it was photographed at Chittagong

Medical College Hospital, Bangladesh using a smartphone by

placing it on the conventional light microscope [23].

Table 1: Malaria Image Dataset from NIH Repository

This data, however, was further restructured into three units,

for training, testing, and validation. A detail of this is explained

in section 5 of this report. Figure 5 and 6 are sample displays

of the images in the dataset for parasitized and uninfected cells.

2.1.2 IEEE Data
This dataset is retrieved from the IEEE data repository [24]. In

total, it contains 43,434 cell images which are organized into

three folders labeled training, testing, and single prediction.

The training and testing folders have subfolders labeled as

parasitized and uninfected. The distribution of the samples in

these folders is summarized in Table 2.

Table 2: IEEE Dataset Repository

Set

Labels

Parasitized Uninfected

Testing 7,952 7,880

Training 13,800 13,800

Single

Prediction

1 1

2.3 Programming Logic and Algorithms
The programming language used for the implementation of this

work is python programming language version 3.12.4 and

anaconda software which provided access to a coding

environment called Jupiter notebook. The following open-

source libraries which made it possible to perform certain

special functions during the implementation process were used.

• OS – enabled us to load the image files from the hard

disk to Jupiter notebook

• OpenCV and skimage – helped in processing our images

• Keras API and TensorFlow

• Matplotlib and Seaborn – helped in the visualization of

the images in the Jupiter notebook

• Pandas – for analysis and normalization of data

• NumPy – for mathematical computations and further

computational analysis

2.4 The Proposed Architecture
The architecture of the proposed malaria detection model is

systematically outlined, as depicted in the schematic diagram

in Fig. 4. The workflow begins with input data acquisition

(microscopic images of blood smears), followed by

preprocessing to enhance data quality through normalization

and augmentation techniques. The processed dataset is then

divided into training, validation, and test subsets, ensuring

robust model evaluation. The core of the architecture involves

model training, where a customed sequential convolutional

neural network (CNN) is developed to classify the images as

infected or uninfected. Finally, the trained model is saved for

deployment, facilitating future use in malaria detection

systems.

Fig 4: Pipeline for the Proposed method

2.5 Data Preprocessing and Augmentation
Data preprocessing plays a crucial role in improving image

quality, as images can be affected by various types of noise,

such as camera angle and the position of the image at the time

of capture [25]. To address this, several methods are applied to

clean the images and reduce noise. In this work, during the

preprocessing stage, all malaria images are first transformed to

a specified target size, and their pixel values are rescaled to a

unit value. This process according to [26] ensures that all

images are of uniform size before being passed into the model

Label Number of Images

Parasitized 13,779

Uninfected 13,779

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

57

for training. To suppress high intensities and enhance the

images by detecting their edges, digital image filtering

techniques are employed. These filtering techniques are

essential in improving the overall quality of the images [27].

One of such technique used in this study is image resizing,

which is an important preprocessing technique in the image

recognition domain. Typically, deep convolutional learning

frameworks are trained more efficiently using smaller-sized

images, as larger images require the network to process four

times as many pixels, increasing computational costs and

training time. In this study, the original dimensions of the

parasitized and uninfected images in the dataset are

heterogeneous, with variations in size and resolution observed

across the samples. Consequently, all images are resized

uniformly to a target size of [224, 224], and their pixel values

are rescaled to unit values before being input into the model.

This resizing technique helps to reduce the training time and

conserves computational resources, such as CPU power and

memory [28]. In addition to resizing, Gaussian filtering is

employed to further enhance the image quality. This technique

helps reduce noise and blur areas in the image by applying a

filter that focuses on specific areas of the image. The filter

passes as a geometric kernel across each pixel in the region of

interest, giving greater weight to pixels near the center of the

kernel, while those at the periphery have less influence on the

final value. The Gaussian filter is essentially an approximation

of Gaussian mathematical concepts, and when applied to an

image, the dimensions of the matrix used to modify the image

are first calculated [29]. These dimensions are typically odd

numbers, which ensures that the center pixel is the focal point

of the calculation. The kernel itself is squared, with an equal

number of rows and columns, and the values within it are

computed using the Gaussian function:

𝑓(x, y) =
1

2πσ2
− e

x2+y2

2σ2 (3)

where 𝑥 and 𝑦 are the coordinates, and σ represents the standard

deviation. This function allows for the creation of a Gaussian

kernel of any size by adjusting the parameters accordingly. The

effect of applying the Gaussian filter is illustrated in Fig. 8,

which shows a comparison between the original image and the

one after the filter has been applied. In the other hand, the edges

of an image represent its most fundamental features, capturing

a significant number of internal properties of an image. As

such, edge detection is one of the most important tasks in the

field of image processing. Among the various approaches used

for edge detection, the most common are differential and

filtering techniques [30]. However, the more traditional

differential and gradient-based edge detection techniques are

often complicated and yield unsatisfactory results [31].

Operators such as Prewitt, Roberts, and Laplacian, although

widely used, are highly sensitive to noise and tend to perform

poorly under noisy conditions [32].

In this study, the Sobel edge detection technique was employed

to extract edge features from the images for further analysis.

The Sobel operator was chosen for its ability to smooth random

noise in images [33], especially since the introduction of

median filters. This makes it a reliable method for edge

detection in the context of image processing. However, it is

worth noting that, despite its advantages, this technique did not

yield significant contributions to the work during the

experiments. This observation warrants further investigation,

and future work will explore the potential causes of this

phenomenon in more detail. Figure 9 illustrates a comparison

between the original image and the image after the Sobel edge

detection technique has been applied. Another preprocessing

technique that has been explored in this study is normalization,

which as has been defined by [34], as the process of converting

image pixels to a common scale across all images in a dataset.

This technique is widely used in computer vision applications

to accelerate model learning. Specifically, normalization

involves dividing the pixel values of an image by the highest

value that a pixel can take. In this study, normalization was

achieved by dividing each image in the dataset by 255, a

method easily implemented using OpenCV and the Python

programming language. This process becomes essential

because when using raw images and passing them directly to

the model, the computation of these pixel values can become

complex and computationally expensive.

Therefore, normalizing the pixel values to a range from 0 to 1

helps reduce computational costs and makes the processing

faster and more efficient [35], as the resulting values are

smaller.

2.6 Splitting Data into Training, Validation

and Testing
In the first experiment, the dataset was partitioned into three

subsets: training, validation, and testing. To optimize

computational efficiency, 70% of the dataset was designated

for training, 10% for model validation, and 20% for evaluating

the performance of the model on the test set. In the second

experiment, the dataset was again divided into three subsets,

but with different proportions: 60% for training, 10% for

validation, and 30% for testing. The outcomes of these

experiments are discussed in the subsequent section.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

58

Fig 5: CNN Architecture [16]

Fig 6: Some samples of parasitized malaria cells

Fig 7: Some samples of uninfected malaria cells

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

59

2.7 Activation Functions

The activation function is a critical component of a neural

network, providing the necessary nonlinear transformation that

enables the network to model complex relationships within

data. It defines the output of each neuron in response to a set of

inputs, thereby determining the neural network’s ability to

approximate intricate functions. Activation functions are

inspired by biological neural networks, particularly the firing

patterns of neurons in the human brain when activated by

various stimuli [36]. In the present study, two distinct

activation functions were employed to optimize the model

during the training phase. The Rectified Linear Unit (ReLU) is

a widely used nonlinear activation function in deep neural

networks, particularly effective in multi-layer architectures.

ReLU is advantageous because its derivative is constant (equal

to 1) for positive input values, which allows for faster

convergence during training relative to conventional activation

functions. Additionally, the simplicity of ReLU eliminates the

need for extra computational overhead during training, as it

operates on a constant value for positive inputs. ReLU is

mathematically defined as:

f(x) = max (0, x) (4)

where 𝑥 represents the input value. However, ReLU is

generally unsuitable for use in the output layer of a neural

network. This is due to the fact that it does not activate all

neurons simultaneously, meaning neurons will only be

activated if the output of the nonlinear transformation exceeds

zero. This characteristic makes ReLU less appropriate for tasks

requiring probability outputs, such as classification tasks. In

such cases, the output layer must generate probabilities for each

class based on the input data.

In contrast, the sigmoid activation function is characterized by

its ability to map any real-valued input to an output within the

range of 0 to 1. This function was originally introduced by

Pierre François Verhulst in the mid-19th century as a model for

population growth, in which the function adjusted an

exponential model to fit observed data between 1838 and 1847.

The sigmoid function is mathematically expressed as:

𝑆(𝑥) =
1

1 + 𝑒−𝑥
(5)

where 𝑥 represents the input to the sigmoid function, and 𝑒

denotes 𝐸𝑢𝑙𝑒𝑟’𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.71828). The sigmoid function is

particularly suitable for binary classification tasks, as its output

can be interpreted as a probability value between 0 and 1. In

this study, the sigmoid function was selected for the output

layer because the task involves binary classification,

specifically determining whether a blood smear contains

malaria parasites. The probabilistic nature of the sigmoid

function aligns well with the requirement to output class

probabilities.

Fig 8: Sample of Original Image of RBC and Image after

Gaussian Filtering

Fig 9: Sample of original image of RBC and image after

Sobel edge detection

2.8 Training the Model
The number of trainable and nontrainable parameters of the

proposed model are 11,169,089 and 0, respectively, which

accounts for a total of 11,169,089 parameters to be trained in

the model. Three callback functions were employed during the

training process to make the model more resilient, ensuring that

training does not continue without improvement in results.

These callback functions are ModelCheckPoint,

EarlyStopping, and LearningRateScheduler. The learning rate

is dynamically adjusted based on 50 epochs. The model was

trained using the binary_crossentropy loss function, which is

typically used for binary classification models. The

binary_crossentropy function computes the cross-entropy loss

between true labels and predicted labels. This loss function was

chosen because our focus was to perform binary classification

of whether a cell is infected with malaria or not. The

binary_crossentropy function is mathematically represented as:

𝐿𝑜𝑠𝑠 (𝑦, �̂�) = −𝑙𝑜𝑔 (𝑃(𝑦 | 𝑥) (6)

where 𝑥 and 𝑦 are input values. To optimize the weights and

biases of the model, an ADAM optimizer was used. ADAM

optimizer was chosen because it produces better results than

other optimization algorithms [25], has a shorter computation

time, and requires fewer tuning parameters.

3. TRANSFER LEARNING
Transfer Learning according to [8] is a feature that enables

users to transfer the knowledge of pre-trained models and use

it in their own problem set. Instead of creating a model from

scratch to compare results in this work, models that are trained

on large datasets such as ImageNet with 100,000 data points

and explored the power of transfer learning were used which

according to [37] is proven to be significant in many image

classification types of studies. In this research, it was identified

that CNNs modelled on relatively large datasets could serve as

feature extractors for a wide range of image recognition tasks

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

60

to aid in enhanced performance, as compared to state-of-the-art

approaches. Transfer learners on the VGG19, ResNet50, and

MobileNetv2 were used, and evaluating their performances

which are discussed in further sections.

4. EVALUATION METRICS
A metric helps in evaluating the performance of any designed

model. In machine learning, classification problems involve

two or more alternative outputs [38]. The performance of the

model is evaluated using four metrics: accuracy, AUC,

precision, and recall. Given that the distribution of instances

across each target class in the dataset is balanced, accuracy is

employed as the primary metric to assess model performance.

Accuracy is defined as the ratio of correctly classified instances

(both positive and negative) to the total number of instances in

the dataset. Additionally, precision, recall, and accuracy are

derived from the confusion matrix, which is composed of four

components: False Positives (FP), True Positives (TP), False

Negatives (FN), and True Negatives (TN). A classification

report is used to compute precision and recall for each target

class. Equations 6, 7, 8, and 9 provide the mathematical

formulations for these metrics.

Accuracy =
TP + TN

TP + FP + FN + TN
(6)

AUC =
1 + TPR − FPR

2
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where 𝑇𝑃 = True Positive prediction result, 𝑇𝑁 = True

Negative prediction result, 𝐹𝑃 = False Positive prediction

results, 𝐹𝑁 = False Negative prediction result, TPR = True

Positive Rate and FPR = False Positive Rate.

5. RESULTS AND DISCUSSIONS
To evaluate the performance of the model, the entire NIH

dataset was split into three distinct sets: training, validation, and

testing. The main idea behind this process is to ensure that the

model generalizes well, to tune it appropriately during training,

and to evaluate its performance accurately on unseen data.

Without such a split, the model risks performing well on known

data but failing to perform well when exposed to new, real-

world data. In the first experiment, the dataset was split using

the following proportions: 70% for training the model, 10% for

validation and 20% for testing. This was achieved with the help

of split-folders library in python. Table 3 presents a summary

of this experiment.

Table 3: Split Proportion for Experience I

Training Found 20252 images belonging to

2 classes

70%

Validation Found 3410 images belonging to 2

classes

10%

Testing Found 5922 images belonging to 2

classes

20%

Following the partitioning of the dataset into training,

validation, and testing subsets, the model was subjected to

iterative optimization using the training set for parameter

updates via backpropagation and gradient descent.

Concurrently, the validation set was leveraged to monitor

performance metrics, enabling hyperparameter optimization

and the implementation of regularization strategies such as

early stopping to mitigate overfitting. Upon convergence of the

training process, the testing set was utilized to conduct a

comprehensive evaluation of the generalization of the model

and robustness. The outcomes of this experimental workflow

are systematically summarized in Table 4, providing insights

into the performance metrics and behavioral trends observed.

Table 4: Results of Experiment I

Splitting

Type

Accuracy Precision Recall AUC

Training 0.9688 0.9355 1.0000 0.9778

Validation 0.9548 0.9477 0.9626 0.9871

Testing 0.9552 0.9885 0.9659 0.9457

In the first experiment, the model, trained for 50 epochs with a

70% training, 20% testing, and 10% validation data split,

demonstrated strong performance across multiple metrics. It

achieved a training accuracy of 96.88%, test accuracy of

95.52%, and validation accuracy of 95.48%, indicating

effective convergence and robust generalization, with minimal

overfitting, as shown in Fig. 10. The training loss stabilized at

15.73%, and the validation loss at 14.33%, reflecting effective

model calibration, as depicted in Fig. 11. Precision, recall, and

AUC scores further highlighted the model’s effectiveness:

training precision of 93.55%, recall of 100%, and AUC of

97.78%; validation precision of 94.77%, recall of 96.26%, and

AUC of 98.71%; and test precision of 98.85%, recall of

96.59%, and AUC of 94.57%, as represented in Fig. 12, Fig.

13, and Fig. 14. These results confirm the model’s ability to

generalize well across different data partitions, achieving high

accuracy, precision, recall, and AUC, while minimizing false

positives and overfitting.

In the second experiment, the data was modified with split

proportions to assess the model’s performance under different

conditions. Specifically, the dataset was divided into 60% for

training, 20% for validation, and 20% for testing, using the

same split-folders library to ensure consistency in data

handling. As detailed in Table V, the training set contained

16,534 images across two classes, while the validation and

testing set each contained 5,514 and 5,510 images,

respectively, also distributed across the same two classes. This

adjustment in the split ratio allowed us to investigate the

impact of varying the amount of training data on the model’s

ability to generalize, as well as to assess its performance across

both validation and testing subsets. The results from this

experiment, including accuracy, precision, recall, and AUC,

are summarized in Table VI, providing insights into how these

changes in data partitioning influence the model’s behavior

and overall efficacy in different evaluation settings. This

variation in data split helps us understand the trade-offs

between using more data for training and ensuring sufficient

data for validation and testing, contributing to a more

comprehensive evaluation of the model’s performance.

Table 5: Results of Experiment II

Splitting

Type

Accuracy Precision Recall AUC

Training 0.9688 0.9737 0.9737 0.9919

Validation 0.9555 0.9364 0.9775 0.9882

Testing 0.9567 0.9884 0.9688 0.9458

In the second experiment, the dataset was partitioned into 60%

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

61

for training, 20% for validation, and 20% for testing, ensuring

balanced representation across all subsets. The model was

trained for 50 epochs using identical hyperparameters to

optimize its parameters effectively. The performance metrics

are illustrated in Fig. 15 (Accuracy), Fig. 16 (Loss), Fig. 17

(Precision), Fig. 18 (Recall), and Fig. 19 (AUC). The model

achieved a training accuracy of 96.88%, with validation and

testing accuracies stabilizing at 95.55% and 95.67%,

respectively (Fig. 15), indicating strong generalization with

minimal overfitting. The training loss converged to 11.17%,

while validation and testing losses settled at 13.77% and

13.22%, respectively, signifying efficient optimization and

minimal performance degradation across splits (Fig. 16).

Precision scores reached 97.37% (training), 93.64%

(validation), and 98.84% (testing), highlighting the model’s

ability to minimize false positives (Fig. 17). Recall values of

97.37% (training), 97.75% (validation), and 96.88% (testing)

demonstrate high sensitivity in identifying parasitized samples

(Fig. 18). The Area Under the Curve (AUC) was 99.19%

(training), 98.82% (validation), and 94.58% (testing),

reflecting exceptional discriminative capability across all

datasets (Fig. 19). These results confirm the model’s robust

performance in malaria parasite detection, achieving high

accuracy, sensitivity, and specificity, with reliable

generalization to unseen data.

Fig 10: Learning Curve for Experiment I, depicting the

accuracy of the model across successive training epochs.

Fig 11: Learning Curve for Experiment I, showing the

model’s loss across training epochs.

Fig 12: Learning Curve for Experiment I, illustrating the

progression of the recall metric across training epochs.

Fig 13: AUC Learning Curve for Experiment I, presenting

the evolution of the Area Under the Curve (AUC) over

successive training epochs.

Fig 14: Learning Curve for Experiment I, representing the

precision metric across training epochs.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

62

Fig 15: Learning curve for Experiment II, showing model

accuracy across training epochs and its performance

trends during optimization.

Fig 16: Learning Curve for Experiment II, showing the

model’s loss across training epochs.

Fig 17: Learning Curve for Experiment II, depicting the

precision of the model across successive training epochs.

Fig 18: Recall Metric for Experiment II, showing the

model’s recall values across successive training epochs.

Fig 19: AUC Learning Curve for Experiment II, showing

the model’s AUC (Area Under the Curve) across

successive training epochs.

5.1 Validating Model performance with

IEEE Dataset

In In addition to the NIH dataset, which has been widely

employed in prior research and utilized in this study, the model

underwent further validation using an additional dataset

sourced from the IEEE data repository to assess its

generalization and robustness across distinct datasets. This

evaluation was aimed at understanding how well the model

adapts to datasets with different statistical distributions, feature

representations, and inherent complexities, thereby providing a

more comprehensive validation. Both the NIH and IEEE

datasets were processed under identical conditions, with the

model trained using the same hyperparameters for 50 epochs to

ensure consistency in training protocols and eliminate

confounding variables. The use of the IEEE dataset, known for

its diverse set of images and complex class distributions,

offered a more challenging environment for the model, testing

its ability to generalize beyond the NIH dataset’s

characteristics. The results from the cross-validation

experiments, including precision, recall, accuracy and AUC,

are summarized and compared in Table VII, which provides

detailed performance metrics for both datasets. These

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

63

comparative results allow for a rigorous assessment of the

model’s adaptability and its efficacy across different datasets,

offering a more nuanced understanding of its potential

deployment in varied real-world applications where data

diversity is prevalent.

Table 6: Comparison of Model Performance on NIH and

IEEE Dataset

Dataset Accuracy Precision Recall AUC

NIH 0.9688 0.9737 0.9737 0.9919

IEEE 0.9667 0.9724 0.9739 0.9993

To validate the efficacy of the model, three state-of-the-art

transfer learning architectures were evaluated: MobileNetV2,

ResNet50, and VGG19. The models were trained using varying

splits of the training and validation datasets to assess their

generalization capabilities. Computational efficiency,

particularly the training time and resource utilization, was also

quantified as part of the evaluation. The experimental results,

including accuracy, loss, and other relevant metrics, are

presented in Table 7.

Table 7: Comparison with Transfer Learners

Model Accuracy Precision Recall AUC

ResNet50 0.8564 0.7770 0.9646 0.9976

MobileNetv2 0.9348 0.9085 0.9628 0.9669

VGG19 0.8906 0.8316 0.9755 0.9782

Proposed

Model

0.9688 0.9737 1.0000 0.9919

It can be observed that the proposed model outperformed other

transfer learning architectures, as demonstrated in Table 8. This

performance enhancement can be attributed to the sophisticated

preprocessing pipelines and advanced data augmentation

strategies employed, which significantly improved the model’s

capacity to generalize by exploiting a more heterogeneous and

diverse training set. To further validate the superior

performance of the model, it was benchmarked against results

from prior methodologies within the same domain. A

comprehensive comparative analysis of these works is

summarized in Table 8, which underscores the advantages of

the approach in terms of accuracy, robustness, and

computational efficiency over existing techniques.

Table 8: Comparison with Related Works

Model Dataset Precision Accuracy Recall

HPTDL-

MPDC

[10]

NIH 0.8900 0.9100 0.9300

TL-

SGAN [9]

NIH N/A 0.9660 N/A

IDTL-

MPDC [8]

NIH 0.9586 0.9586 0.9598

CNN [7] NIH 0.9791 0.9792 0.9792

Random

Forest

[12]

NIH 0.9000 0.9000 0.9000

Proposed

Model

NIH 0.9737 0.9688 1.0000

Table 8 above provides a comprehensive comparison of several

machine learning models on their performance evaluated using

the NIH dataset. The comparison is structured around three key

performance metrics: Precision, Accuracy, and Recall, which

provide insights into the reliability and effectiveness of each

model.

6. CONCLUSIONS
In this study, experiments leveraging Convolutional Neural

Network (CNN)-based deep learning algorithms were

conducted to enhance the classification performance of malaria

parasite detection from cell images. The primary dataset used

for training and evaluation was the NIH malaria dataset, which

contains 27,588 of parasitized and uninfected cell images.

Advanced preprocessing techniques, including normalization,

standardization, and staining, significantly contributed to

improving the model’s feature representation and overall

performance. Additionally, techniques such as data

augmentation (e.g., random cropping, flipping, rotation) and

hyperparameter optimization algorithms were employed,

yielding substantial improvements in model generalization and

robustness. Various pre-trained architectures VGG-19,

ResNet-50, MobileNetV2, and a custom-designed CNN were

evaluated based on their accuracy, precision, recall, F1-score,

and computational efficiency (in terms of training time and

resource consumption). In the first experiment, the model was

trained for 50 epochs with a 70% training, 20% testing, and

10% validation data split from the NIH dataset. The model

demonstrated strong performance across multiple metrics,

achieving a training accuracy of 96.88%, test accuracy of

95.52%, and validation accuracy of 95.48%, indicating

effective convergence and robust generalization with minimal

overfitting. The training loss stabilized at 15.73%, and the

validation loss at 14.33%, reflecting efficient model

calibration. Precision, recall, and AUC scores highlighted the

model’s effectiveness: training precision of 93.55%, recall of

100%, and AUC of 97.78%; validation precision of 94.77%,

recall of 96.26%, and AUC of 98.71%; and test precision of

98.85%, recall of 96.59%, and AUC of 94.57%. These results

confirm the model’s ability to generalize well across different

data partitions, achieving high accuracy, precision, recall, and

AUC, while minimizing false positives and overfitting. In the

second experiment, the dataset was partitioned into 60% for

training, 20% for validation, and 20% for testing, ensuring

balanced representation across all subsets. The model was

trained for 50 epochs using identical hyperparameters to

optimize its parameters effectively. The model achieved a

training accuracy of 96.88%, with validation and testing

accuracies stabilizing at 95.55% and 95.67%, respectively,

indicating strong generalization with minimal overfitting. The

training loss converged to 11.17%, while validation and testing

losses settled at 13.77% and 13.22%, respectively, signifying

efficient optimization and minimal performance degradation

across splits. Precision scores reached 97.37% (training),

93.64% (validation), and 98.84% (testing), highlighting the

model’s ability to minimize false positives. Recall values of

97.37% (training), 97.75% (validation), and 96.88% (testing)

demonstrated high sensitivity in identifying parasitized

samples. The Area Under the Curve (AUC) was 99.19%

(training), 98.82% (validation), and 94.58% (testing),

reflecting exceptional discriminative capability across all

datasets. These results confirm the model’s robust performance

in malaria parasite detection, achieving high accuracy,

sensitivity, and specificity, with reliable generalization to

unseen data. Additionally, the performance of the proposed

model was validated using an independent dataset retrieved

from the IEEE data repository. The model was trained with the

same hyperparameters and configuration as in the initial

experiments. Remarkably, the results on this new dataset were

almost identical, with training accuracy of 96.67%, validation

accuracy of 95.51%, and test accuracy of 95.53%. The

precision, recall, and AUC scores also exhibited near-identical

values, further confirming the robustness and generalizability

of the model across different datasets. These consistent results

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

64

validate the model’s capacity for reliable malaria parasite

detection in diverse environments.

In conclusion, the highest performing metrics were observed in

the second experiment, where the model achieved exceptional

values across key metrics: a training accuracy of 96.88%, a

precision of 97.37%, recall of 97.75%, and an outstanding AUC

of 99.19% for training data. These results demonstrate the

model’s superior ability to detect malaria parasites with high

sensitivity and specificity, indicating its potential for reliable,

real-world deployment in malaria detection. Future research

will focus on leveraging mobile-based imaging systems for the

analysis of thin blood smear images captured with

smartphones. The objective is to develop an efficient pipeline

for detecting and quantifying various malaria parasite pairings

capable of infecting humans. Ultimately, the goal is to design a

cutting-edge, end-to-end diagnostic system that integrates with

cloud computing and edge-based inference to enable accurate

pre-diagnosis of malaria in low-resource, underserved

environments.

7. ACKNOWLEDGMENTS
National Institute of Health (NIH) and IEEE are duly

acknowledged for making their data publicly available, which

was instrumental in training and validating the model.

8. REFERENCES
[1] World Malaria Report 2023. World Health Organization,

2023.

[2] E. Guemas et al., “Automatic patient-level recognition of

four Plasmodium species on thin blood smear by a real-

time detection transformer (RT-DETR) object detection

algorithm: a proof-of-concept and evaluation,” Microbiol

Spectr, vol. 12, no. 2, Feb. 2024, doi:

10.1128/spectrum.01440-23.

[3] L. Zedda, A. Loddo, and C. Di Ruberto, “A deep

architecture based on attention mechanisms for effective

end-to-end detection of early and mature malaria

parasites,” Biomed Signal Process Control, vol. 94, Aug.

2024, doi: 10.1016/j.bspc.2024.106289.

[4] E. Hassan, M. Y. Shams, N. A. Hikal, and S. Elmougy, “A

Novel Convolutional Neural Network Model for Malaria

Cell Images Classification,” Computers, Materials and

Continua, vol. 72, no. 3, pp. 5889–5907, 2022, doi:

10.32604/cmc.2022.025629.

[5] A. Singh, M. Mehra, A. Kumar, M. Niranjannaik, D.

Priya, and K. Gaurav, “Leveraging hybrid machine

learning and data fusion for accurate mapping of malaria

cases using meteorological variables in western India,”

Intelligent Systems with Applications, vol. 17, Feb. 2023,

doi: 10.1016/j.iswa.2022.200164.

[6] P. A. Pattanaik, M. Mittal, M. Z. Khan, and S. N. Panda,

“Malaria detection using deep residual networks with

mobile microscopy,” Journal of King Saud University -

Computer and Information Sciences, vol. 34, no. 5, pp.

1700–1705, May 2022, doi:

10.1016/j.jksuci.2020.07.003.

[7] M. Bhuiyan and M. S. Islam, “A new ensemble learning

approach to detect malaria from microscopic red blood

cell images,” Sensors International, vol. 4, Jan. 2023, doi:

10.1016/j.sintl.2022.100209.

[8] A. Alassaf and M. Y. Sikkandar, “Intelligent Deep

Transfer Learning Based Malaria Parasite Detection and

Classification Model Using Biomedical Image,”

Computers, Materials and Continua, vol. 72, no. 3, pp.

5273–5285, 2022, doi: 10.32604/cmc.2022.025577.

[9] I. Amin, S. Hassan, S. B. Belhaouari, and M. H. Azam,

“Transfer Learning-Based Semi-Supervised Generative

Adversarial Network for Malaria Classification,”

Computers, Materials and Continua, vol. 74, no. 3, pp.

6335–6349, 2023, doi: 10.32604/cmc.2023.033860.

[10] T. K. Kundu, D. K. Anguraj, and S. V. Sudha, “Modeling

a Novel Hyper-Parameter Tuned Deep Learning

EnabledMalaria Parasite Detection and Classification,”

Computers, Materials and Continua, vol. 77, no. 3, pp.

3289–3304, 2023, doi: 10.32604/cmc.2023.039515.

[11] A. Koirala et al., “Deep Learning for Real-Time Malaria

Parasite Detection and Counting Using YOLO-mp,” IEEE

Access, vol. 10, pp. 102157–102172, 2022, doi:

10.1109/ACCESS.2022.3208270.

[12] D. Crossed D Signumic, D. Keco, and Z. Mašetic,

“Automatization of Microscopy Malaria Diagnosis Using

Computer Vision and Random Forest Method,” in IFAC-

PapersOnLine, Elsevier B.V., 2022, pp. 80–84. doi:

10.1016/j.ifacol.2022.06.013.

[13] I. Jdey, G. Hcini, and H. Ltifi, “Deep learning and

machine learning for Malaria detection: overview,

challenges and future directions,” Sep. 2022, [Online].

Available: http://arxiv.org/abs/2209.13292

[14] Y. Alraba’nah and W. Toghuj, “A deep learning based

architecture for malaria parasite detection,” Bulletin of

Electrical Engineering and Informatics, vol. 13, no. 1, pp.

292–299, Feb. 2024, doi: 10.11591/eei.v13i1.5485.

[15] O. S. Zhao et al., “Convolutional neural networks to

automate the screening of malaria in low-resource

countries,” PeerJ, vol. 8, 2020, doi: 10.7717/peerj.9674.

[16] “Convolutional Neural Network: A Complete Guide.”

Accessed: Dec. 20, 2024. [Online]. Available:

https://learnopencv.com/understanding-convolutional-

neural-networks-cnn/

[17] S. Shambhu, D. Koundal, P. Das, V. T. Hoang, K. Tran-

Trung, and H. Turabieh, “Computational Methods for

Automated Analysis of Malaria Parasite Using Blood

Smear Images: Recent Advances,” Comput Intell

Neurosci, vol. 2022, 2022, doi: 10.1155/2022/3626726.

[18] E. Prasetyo, R. Purbaningtyas, R. D. Adityo, N. Suciati,

and C. Fatichah, “Combining MobileNetV1 and

Depthwise Separable convolution bottleneck with

Expansion for classifying the freshness of fish eyes,”

Information Processing in Agriculture, vol. 9, no. 4, pp.

485–496, Dec. 2022, doi: 10.1016/j.inpa.2022.01.002.

[19] D. T. Rademaker et al., “Quantifying the deformability of

malaria-infected red blood cells using deep learning

trained on synthetic cells,” iScience, vol. 26, no. 12, Dec.

2023, doi: 10.1016/j.isci.2023.108542.

[20] S. Sawant and A. Singh, “Malaria Cell Detection Using

Deep Neural Networks,” Jun. 2024, [Online]. Available:

http://arxiv.org/abs/2406.20005

[21] M. Mujahid et al., “Efficient deep learning-based

approach for malaria detection using red blood cell

smears,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi:

10.1038/s41598-024-63831-0.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

65

[22] “Malaria Datasheet.” Accessed: Dec. 20, 2024. [Online].

Available: https://lhncbc.nlm.nih.gov/LHC-

research/LHC-projects/image-processing/malaria-

datasheet.html

[23] F. Yang et al., “Cascading YOLO: automated malaria

parasite detection for Plasmodium vivax in thin blood

smears,” p. 58, Mar. 2020, doi: 10.1117/12.2549701.

[24] “Malaria Thick Blood Smears | IEEE DataPort.”

Accessed: Dec. 20, 2024. [Online]. Available: https://ieee-

dataport.org/documents/malaria-thick-blood-smears

[25] F. Yang et al., “Deep Learning for Smartphone-Based

Malaria Parasite Detection in Thick Blood Smears,” IEEE

J Biomed Health Inform, vol. 24, no. 5, pp. 1427–1438,

May 2020, doi: 10.1109/JBHI.2019.2939121.

[26] K. Maharana, S. Mondal, and B. Nemade, “A review: Data

pre-processing and data augmentation techniques,” Global

Transitions Proceedings, vol. 3, no. 1, pp. 91–99, Jun.

2022, doi: 10.1016/J.GLTP.2022.04.020.

[27] “Image Filtering Techniques in Image Processing.”

Accessed: Dec. 20, 2024. [Online]. Available:

https://www.imageprovision.com/articles/understanding-

image-filtering-techniques-in-image-processing.

[28] P. V. Dantas, W. Sabino da Silva, L. C. Cordeiro, and C.

B. Carvalho, “A comprehensive review of model

compression techniques in machine learning,” Applied

Intelligence 2024 54:22, vol. 54, no. 22, pp. 11804–11844,

Sep. 2024, doi: 10.1007/S10489-024-05747-W.

[29] M. Mafi, H. Martin, M. Cabrerizo, J. Andrian, A. Barreto,

and M. Adjouadi, “A comprehensive survey on impulse

and Gaussian denoising filters for digital images,” Signal

Processing, vol. 157, pp. 236–260, Apr. 2019, doi:

10.1016/J.SIGPRO.2018.12.006.

[30] S. Elmi and Z. Elmi, “A robust edge detection technique

based on Matching Pursuit algorithm for natural and

medical images,” Biomedical Engineering Advances, vol.

4, p. 100052, Dec. 2022, doi:

10.1016/J.BEA.2022.100052.

[31] X. Li, “Image Texture Analysis and Edge Detection

Algorithm Based on Anisotropic Diffusion Equation,”

Advances in Mathematical Physics, vol. 2021, no. 1, p.

9910882, Jan. 2021, doi: 10.1155/2021/9910882.

[32] K. Muntarina, R. Mostafiz, F. Khanom, S. B. Shorif, and

M. S. Uddin, “MultiResEdge: A deep learning-based edge

detection approach,” Intelligent Systems with

Applications, vol. 20, Nov. 2023, doi:

10.1016/j.iswa.2023.200274.

[33] S. S. Bao, Y. R. Huang, J. C. Xu, and G. Y. Xu, “Pixel

Difference Unmixing Feature Networks for Edge

Detection,” IEEE Access, vol. 11, pp. 52370–52380,

2023, doi: 10.1109/ACCESS.2023.3279276.

[34] S. Seoni et al., “All you need is data preparation: A

systematic review of image harmonization techniques in

multi-center/device studies for medical support systems,”

Comput Methods Programs Biomed, vol. 250, p. 108200,

Jun. 2024, doi: 10.1016/J.CMPB.2024.108200.

[35] M. Salvi, F. Branciforti, F. Molinari, and K. M.

Meiburger, “Generative models for color normalization in

digital pathology and dermatology: Advancing the

learning paradigm,” Expert Syst Appl, vol. 245, p.

123105, Jul. 2024, doi: 10.1016/J.ESWA.2023.123105.

[36] N. Schiess, A. Villabona-Rueda, K. E. Cottier, K.

Huether, J. Chipeta, and M. F. Stins, “Pathophysiology

and neurologic sequelae of cerebral malaria,” Malar J, vol.

19, no. 1, Jul. 2020, doi: 10.1186/S12936-020-03336-Z.

[37] A. M. Qadri, A. Raza, F. Eid, and L. Abualigah, “A novel

transfer learning-based model for diagnosing malaria from

parasitized and uninfected red blood cell images,”

Decision Analytics Journal, vol. 9, p. 100352, Dec. 2023,

doi: 10.1016/J.DAJOUR.2023.100352.

[38] M. M. Taye, “Understanding of Machine Learning with

Deep Learning: Architectures, Workflow, Applications

and Future Directions,” Computers 2023, Vol. 12, Page

91, vol. 12, no. 5, p. 91, Apr. 2023, doi:

10.3390/COMPUTERS12050091.

IJCATM : www.ijcaonline.org

