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ABSTRACT 

Malaria remains one of the leading causes of death globally, 

necessitating continuous research into novel diagnostic and 

treatment methods. Despite available treatments, accurately 

assessing drug efficacy against malaria parasites remains 

challenging due to the need for precise parasite quantification 

in blood-smeared images, a task traditionally performed using 

time-consuming microscopy methods. In this study, we 

propose a Convolutional Neural Network (CNN)-based deep 

learning model to enhance malaria parasite detection from 

Giemsa-stained thin blood smears. The proposed model 

incorporates advanced preprocessing techniques, including 

normalization, standardization, and staining, as well as data 

augmentation methods (e.g., random cropping, flipping, and 

rotation) and hyperparameter optimization to significantly 

improve performance. The primary dataset from the National 

Institutes of Health (NIH), consisting of 27,558 parasitized and 

uninfected cell images, was used to train and evaluate the 

model. A custom CNN architecture was compared with pre-

trained models like VGG-19, ResNet-50, and MobileNetV2 

based on accuracy, precision, recall and AUC. The best-

performing model achieved a training accuracy of 96.88%, 

validation accuracy of 95.55%, and test accuracy of 95.67% 

after 50 epochs. Performance metrics such as precision 

(97.37%), recall (97.75%), and AUC (99.19%) demonstrated 

high sensitivity and specificity, confirming the model’s 

robustness. A secondary dataset from the IEEE repository, 

containing 43,434 images, was used to validate the model, 

yielding near-identical performance and further confirming its 

generalizability across diverse datasets. These findings 

underscore the proposed model’s ability to accurately detect 

malaria parasites, offering a faster and more reliable alternative 

to traditional microscopy. Future work will explore integrating 

mobile-based imaging systems with cloud and edge-based 

inference for deployment in low-resource settings, aiming to 

enhance malaria treatment outcomes in underserved regions. 
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1. INTRODUCTION 
Malaria is a major national health concern around the world. It 

is transmitted by the parasite plasmodium falciparum, which is 

responsible for the majority of deaths and serious health 

problems in impoverished areas of Africa and other tropical 

regions. According to the latest World malaria report, there 

were 263 million cases of malaria in 2023 compared to 

252 million cases in 2022. The estimated number of malaria 

deaths stood at 597 000 in 2022 compared to 600 000 in 2022 

[1]. The main symptoms of malaria include fever, vomiting, 

headache, and tiredness. Parasitological studies, including 

microscopic tests and rapid diagnostic tests (RDT), are 

necessary to assess whether potential patients are infected with 

malaria or not. However, in locations where malaria 

parasitological tests are not easily accessible, the complexities 

of malaria diagnosis may result in misinterpretation and 

improper presumed therapy [2]. In the treatment of malaria, it 

is recommended that anti-malaria drugs be taken upon 

parasitological confirmation of the condition. A variety of 

contributions have been put in place to diagnose malaria easily 

and efficiently [3]. The fundamental approach entails collecting 

a blood sample from an infected person and sending it to a 

laboratory where an experienced health professional must 

distinguish between uninfected and parasitized cells. This 

diagnostic technique is time-consuming and labor-intensive. 

To minimize the cost of blood testing and reduce the personnel 

required for plasmodium parasite detection in blood samples, it 

is recommended to implement cost-effective automated 

diagnostic techniques, in one or more modalities, for the 

identification of infected erythrocytes containing plasmodium 

parasites [4]. The most critical stage before starting treatment 

of malaria is the detecting stage, as accurate diagnosis is 

essential for determining the appropriate treatment [5]. 

According to [6], several studies have been conducted on 

diagnosing malaria using machine learning techniques, with the 

majority focusing on the blood smear image method. They also 

stated that tons of blood smears are studied for the plasmodium 

parasite every year, using available methods such as Rapid 

Diagnostic Tests, Immunofluorescence Antibody Testing 

(IFA), Polymerase Chain Reaction (PCR) based techniques, 

Loop-mediated Isothermal Amplification (LAMP) technique, 

Light Microscopy, and others, which involve manual detection 

of malaria falciparum parasites and infected red blood cells by 

trained microscopists. Despite many of these evaluation 

strategies for detecting infection, the majority of microscopists 

in resource-limited areas have hurdles in improving diagnostic 

accuracy [7]. Machine learning has recently been applied in the 

public medical field for disease detection and prediction. With 

the availability of extensive healthcare datasets and 
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advancements in computational techniques, it is now capable 

of diagnosing a wide range of health disorders. Public health 

researchers have utilized several machine learning methods 

which have yielded promising results. [8] introduces the IDTL-

MPDC model for malaria detection using deep transfer 

learning, achieving 95.86% accuracy by integrating median 

filtering, Res2Net, differential evolution, and KNN. While it 

outperforms existing methods, its reliance on a single dataset 

and lack of interpretability and real-world validation highlights 

areas for improvement. The study by  [9] presents TL-SGAN, 

a model combining transfer learning and semi-supervised 

GANs for malaria detection with limited labeled data, 

achieving 96.6% accuracy. It reduces data dependency and 

training time but focuses only on binary classification and 

requires validation on diverse datasets. In a similar vein, [10] 

also proposes a deep learning-based framework (HPTDL-

MPDC) for automated malaria detection, combining VGG19 

for feature extraction and an LSTM-CNN model for 

classification, optimized with Adagrad. Achieving 91% 

accuracy on a large dataset, it outperforms existing methods, 

though it requires further clinical validation and testing on 

diverse datasets for broader applicability. [11] develops 

YOLO-mp models for real-time malaria detection, addressing 

annotation inconsistencies in datasets and optimizing YOLOv4 

for speed and accuracy. The refined Dataset B-centered 

improves data quality, and the lightweight YOLO-mp-3l model 

achieves 94.07% mAP, outperforming YOLOv4 while being 

faster and smaller, making it suitable for low-resource settings. 

The objectives of this study are: 

• To propose a more efficient computational method for the 

detection of malaria parasites from blood smear images 

• To perform an in-depth comparison of the proposed method 

with other existing approaches in the same domain using 

secondary data (online repository) 

The subsequent sections of the paper are organized as follows. 

The material and method/algorithm are introduced in Section 

2. Section 3 extensively discusses the results recorded. Lastly, 

the work is concluded in Section 4. 

2. THE MATERIALS AND METHODS 
This study focuses on comparing the performance of different 

deep learning methods in detecting Plasmodium parasites from 

medical images, aiming to improve malaria diagnosis accuracy 

and efficiency. This section provides an overview of the deep 

learning techniques considered, the data acquisition strategy 

adopted, and the algorithms used to achieve the study’s 

objective. 

The data acquisition strategy is critical for ensuring high-

quality, labeled medical images for training the models [12]. 

Details about the dataset, including its source, resolution, and 

annotation process, are discussed. The programming logic and 

algorithms employed, particularly the use of deep learning 

models like Convolutional Neural Networks (CNNs), are also 

outlined. 

The following sections cover data preprocessing and 

augmentation techniques, which are essential for preparing the 

raw images by enhancing their quality and expanding the 

dataset. The proposed architecture is then discussed, detailing 

the layers and components used to detect Plasmodium 

parasites, with a focus on the integration of pre-trained models 

and transfer learning strategies. The training process, including 

loss functions, optimization techniques, and hyperparameter 

tuning, is briefly explained. 

Finally, the section discusses various evaluation metrics, such 

as accuracy, sensitivity, specificity, precision, recall, F1-score, 

and the area under the ROC curve, which will be used to assess 

the effectiveness of the model in detecting malaria. These 

metrics are critical for evaluating the performance of the deep 

learning models and ensuring their suitability for medical 

applications. 

2.1 Deep Learning Models 
Deep learning is a powerful computational framework that 

relies on multiple convolutional filters to interpret data at 

various levels of abstraction. Unlike humans, deep learning 

algorithms require vast amounts of high-quality annotated data 

to make accurate predictions. This dependency on large 

datasets has historically hindered the widespread adoption of 

deep learning in fields like medicine, where annotated data is 

scarce and privacy concerns are prevalent [13], Neural 

networks, which are primarily composed of layers of 

interconnected neurons, can be employed to uncover 

fundamental relationships in datasets and extract meaningful 

features [14] In this context, several deep learning models have 

been investigated, each with distinct principles, advantages, 

and limitations. These models include Sequential CNN, pre-

trained VGG19, pre-trained ResNet50, and pre-trained 

MobileNet-v2 classifiers. All models were tested on the same 

dataset, with their outcomes compared to assess performance. 

These models were chosen because they are trained on the 

ImageNet database, which, despite requiring high 

computational power and large datasets, produces reliable and 

robust results. Given the computational limitations of the 

system used in this study, pre-trained models were leveraged to 

efficiently compare results while avoiding the need for 

extensive retraining. 

One of the core deep learning models, the Convolutional 

Neural Network (CNN), is widely used for image analysis and 

classification tasks. CNNs consist of convolutional, pooling, 

and fully connected layers [15]. which allow them to 

automatically extract features from images while preserving 

spatial hierarchies. The performance of a CNN can be 

mathematically expressed as: 

 

CJ
1 = μ ( ∑ ci

j−1

ml−1

i=1

∗ K i̇j

i + bj
l−1) (1) 

Typically, CNNs are built with three primary types of layers: 

convolutional layers, pooling layers, and fully connected 

layers, as illustrated in Fig. 1. Convolution blocks, which 

combine convolutional and pooling layers, are stacked together 

to form the network. The fully connected layer, usually found 

at the end of the network, is often used for segmentation or 

hypothesis testing. While CNNs are highly effective at 

processing large image datasets and automatically extracting 

hierarchical features, they do have limitations. These models 

require large amounts of labeled data and significant 

computational resources. Moreover, they may perform poorly 

on tasks with limited data or non-image inputs, which can pose 

challenges in certain domains. 

In response to these challenges, MobileNet was introduced by 

Google at CVPR 2017 as a lightweight CNN designed for 

mobile applications. By using depthwise separable 

convolutions, MobileNet reduces the computational load 

compared to traditional CNNs [17]. Building on this, 

MobileNetv2, introduced by [18], incorporates inverted 

residual blocks, further optimizing the model with fewer 

parameters and improved performance when processing 

images larger than 32𝑝𝑥 x 32𝑝𝑥. Each block in MobileNetv2 

includes a 1𝑥1 convolution with ReLU6 activation, followed 
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by a depthwise convolution and another 1𝑥1 convolution. This 

architecture not only reduces the model’s computational 

footprint but also ensures efficient performance for a variety of 

tasks, as demonstrated in Fig. 2. 

Another well-established deep learning model, VGG19, was 

developed by the Visual Geometry Group at Oxford and is 

known for its high accuracy in image recognition tasks. VGG19 

consists of 19 layers, including 16 convolutional layers, 3 fully 

connected layers, and 5 max-pooling layers. It is widely used 

for visual recognition and is often fine-tuned with transfer 

learning to adapt to specific datasets, such as ImageNet or more 

specialized tasks like malaria detection [19]. Despite its 

simplicity, VGG19 is highly effective at extracting hierarchical 

features, making it a popular model for many image 

classification challenges, as shown in Fig. 1. 

 

Fig 1: VGG-19 Architecture 

In addition to CNN and MobileNet, the ResNet architecture, 

introduced by [5], addresses performance degradation in deep 

learning models by employing residual connections. These 

connections allow the network to bypass certain layers, 

mitigating the vanishing gradient problem and enabling deeper 

networks without compromising performance. ResNet50, an 

improved version of ResNet, uses these residual blocks to 

maintain high performance even with complex architectures. 

The residual connection is mathematically expressed as: 

y = F(x, W + x) (2) 

where 𝑥 is the input and 𝑦 is the output. ResNet50 was used in 

this study with transfer learning.  

ResNet50 improves both training efficiency and classification 

accuracy, making it particularly effective for complex datasets. 

For this study, ResNet50 was employed with transfer learning, 

helping to enhance performance while reducing the need for 

extensive retraining [20]. 

Each of the deep learning models tested in this study CNN, 

MobileNetv2, VGG19, and ResNet50 offers unique advantages 

suited to different tasks. CNNs excel at feature extraction from 

large image datasets, MobileNetv2 is optimized for low-

resource environments such as mobile applications, VGG19 

provides high accuracy in image recognition tasks, and 

ResNet50 allows for deeper networks with better performance 

through residual connections [21]. By leveraging pre-trained 

models, the study makes use of the strengths of each 

architecture, addressing computational limitations while 

comparing their performance on a common dataset. 

Collectively, these models contribute valuable insights into the 

potential of deep learning for image classification and other 

machine learning applications. 

 

Fig 2: MobileNetv2 Architecture 

 

Fig 3: ResNet-50 Architecture 

2.2 Data Acquisition 
For this research, two different secondary datasets were 

considered. They are the malaria images (thin blood smear) 

dataset which was downloaded from the IEEE data repository 
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and malaria cell images which were also retrieved from the 

National Institutes of Health (NIH) website. The main reasons 

for adopting these datasets are that (a) they are used extensively 

by other researchers in the same or similar domain, and (b) they 

also produced higher accuracy results based on papers. Further 

descriptions of these datasets are stated in the sections that 

follow. 

2.1.1 National Institutes of Health Dataset 
This dataset was retrieved from the NIH data repository [22]. 

The dataset contains 27,558 cell images which are organized 

into two folders labeled as parasitized and uninfected. Each of 

these subfolders contains 13,779 images as represented in 

Table I below. The data was taken from 150 P. falciparum and 

50 healthy patients and it was photographed at Chittagong 

Medical College Hospital, Bangladesh using a smartphone by 

placing it on the conventional light microscope [23]. 

Table 1: Malaria Image Dataset from NIH Repository 

This data, however, was further restructured into three units, 

for training, testing, and validation. A detail of this is explained 

in section 5 of this report. Figure 5 and 6 are sample displays 

of the images in the dataset for parasitized and uninfected cells.  

2.1.2 IEEE Data 
This dataset is retrieved from the IEEE data repository [24]. In 

total, it contains 43,434 cell images which are organized into 

three folders labeled training, testing, and single prediction. 

The training and testing folders have subfolders labeled as 

parasitized and uninfected. The distribution of the samples in 

these folders is summarized in Table 2.  

 

 

 

Table 2: IEEE Dataset Repository 

 

Set 

Labels 

Parasitized Uninfected 

Testing 7,952 7,880 

Training 13,800 13,800 

Single 

Prediction 

1 1 

2.3 Programming Logic and Algorithms 
The programming language used for the implementation of this 

work is python programming language version 3.12.4 and 

anaconda software which provided access to a coding 

environment called Jupiter notebook. The following open-

source libraries which made it possible to perform certain 

special functions during the implementation process were used. 

• OS – enabled us to load the image files from the hard 

disk to Jupiter notebook 

• OpenCV and skimage – helped in processing our images  

• Keras API and TensorFlow 

• Matplotlib and Seaborn – helped in the visualization of 

the images in the Jupiter notebook 

• Pandas – for analysis and normalization of data 

• NumPy – for mathematical computations and further 

computational analysis 

2.4 The Proposed Architecture 
The architecture of the proposed malaria detection model is 

systematically outlined, as depicted in the schematic diagram 

in Fig. 4. The workflow begins with input data acquisition 

(microscopic images of blood smears), followed by 

preprocessing to enhance data quality through normalization 

and augmentation techniques. The processed dataset is then 

divided into training, validation, and test subsets, ensuring 

robust model evaluation. The core of the architecture involves 

model training, where a customed sequential convolutional 

neural network (CNN) is developed to classify the images as 

infected or uninfected. Finally, the trained model is saved for 

deployment, facilitating future use in malaria detection 

systems. 

 

Fig 4: Pipeline for the Proposed method 

2.5 Data Preprocessing and Augmentation 
Data preprocessing plays a crucial role in improving image 

quality, as images can be affected by various types of noise, 

such as camera angle and the position of the image at the time 

of capture [25]. To address this, several methods are applied to 

clean the images and reduce noise. In this work, during the 

preprocessing stage, all malaria images are first transformed to 

a specified target size, and their pixel values are rescaled to a 

unit value. This process according to [26] ensures that all 

images are of uniform size before being passed into the model 

Label Number of Images 

Parasitized 13,779 

Uninfected  13,779 
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for training. To suppress high intensities and enhance the 

images by detecting their edges, digital image filtering 

techniques are employed. These filtering techniques are 

essential in improving the overall quality of the images [27]. 

One of such technique used in this study is image resizing, 

which is an important preprocessing technique in the image 

recognition domain. Typically, deep convolutional learning 

frameworks are trained more efficiently using smaller-sized 

images, as larger images require the network to process four 

times as many pixels, increasing computational costs and 

training time. In this study, the original dimensions of the 

parasitized and uninfected images in the dataset are 

heterogeneous, with variations in size and resolution observed 

across the samples. Consequently, all images are resized 

uniformly to a target size of [224, 224], and their pixel values 

are rescaled to unit values before being input into the model. 

This resizing technique helps to reduce the training time and 

conserves computational resources, such as CPU power and 

memory [28]. In addition to resizing, Gaussian filtering is 

employed to further enhance the image quality. This technique 

helps reduce noise and blur areas in the image by applying a 

filter that focuses on specific areas of the image. The filter 

passes as a geometric kernel across each pixel in the region of 

interest, giving greater weight to pixels near the center of the 

kernel, while those at the periphery have less influence on the 

final value. The Gaussian filter is essentially an approximation 

of Gaussian mathematical concepts, and when applied to an 

image, the dimensions of the matrix used to modify the image 

are first calculated [29]. These dimensions are typically odd 

numbers, which ensures that the center pixel is the focal point 

of the calculation. The kernel itself is squared, with an equal 

number of rows and columns, and the values within it are 

computed using the Gaussian function: 

𝑓(x, y) =
1

2πσ2
− e

x2+y2

2σ2 (3) 

where 𝑥 and 𝑦 are the coordinates, and σ represents the standard 

deviation. This function allows for the creation of a Gaussian 

kernel of any size by adjusting the parameters accordingly. The 

effect of applying the Gaussian filter is illustrated in Fig. 8, 

which shows a comparison between the original image and the 

one after the filter has been applied. In the other hand, the edges 

of an image represent its most fundamental features, capturing 

a significant number of internal properties of an image. As 

such, edge detection is one of the most important tasks in the 

field of image processing. Among the various approaches used 

for edge detection, the most common are differential and 

filtering techniques [30]. However, the more traditional 

differential and gradient-based edge detection techniques are 

often complicated and yield unsatisfactory results [31]. 

Operators such as Prewitt, Roberts, and Laplacian, although 

widely used, are highly sensitive to noise and tend to perform 

poorly under noisy conditions [32]. 

In this study, the Sobel edge detection technique was employed 

to extract edge features from the images for further analysis. 

The Sobel operator was chosen for its ability to smooth random 

noise in images [33], especially since the introduction of 

median filters. This makes it a reliable method for edge 

detection in the context of image processing. However, it is 

worth noting that, despite its advantages, this technique did not 

yield significant contributions to the work during the 

experiments. This observation warrants further investigation, 

and future work will explore the potential causes of this 

phenomenon in more detail. Figure 9 illustrates a comparison 

between the original image and the image after the Sobel edge 

detection technique has been applied. Another preprocessing 

technique that has been explored in this study is normalization, 

which as has been defined by [34], as the process of converting 

image pixels to a common scale across all images in a dataset. 

This technique is widely used in computer vision applications 

to accelerate model learning. Specifically, normalization 

involves dividing the pixel values of an image by the highest 

value that a pixel can take. In this study, normalization was 

achieved by dividing each image in the dataset by 255, a 

method easily implemented using OpenCV and the Python 

programming language. This process becomes essential 

because when using raw images and passing them directly to 

the model, the computation of these pixel values can become 

complex and computationally expensive.  

Therefore, normalizing the pixel values to a range from 0 to 1 

helps reduce computational costs and makes the processing 

faster and more efficient [35], as the resulting values are 

smaller. 

2.6 Splitting Data into Training, Validation 

and Testing 
In the first experiment, the dataset was partitioned into three 

subsets: training, validation, and testing. To optimize 

computational efficiency, 70% of the dataset was designated 

for training, 10% for model validation, and 20% for evaluating 

the performance of the model on the test set. In the second 

experiment, the dataset was again divided into three subsets, 

but with different proportions: 60% for training, 10% for 

validation, and 30% for testing. The outcomes of these 

experiments are discussed in the subsequent section. 
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Fig 5: CNN Architecture [16] 

 

 

Fig 6: Some samples of parasitized malaria cells 

 

Fig 7: Some samples of uninfected malaria cells 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.14, June 2025 

59 

2.7 Activation Functions 

The activation function is a critical component of a neural 

network, providing the necessary nonlinear transformation that 

enables the network to model complex relationships within 

data. It defines the output of each neuron in response to a set of 

inputs, thereby determining the neural network’s ability to 

approximate intricate functions. Activation functions are 

inspired by biological neural networks, particularly the firing 

patterns of neurons in the human brain when activated by 

various stimuli [36]. In the present study, two distinct 

activation functions were employed to optimize the model 

during the training phase. The Rectified Linear Unit (ReLU) is 

a widely used nonlinear activation function in deep neural 

networks, particularly effective in multi-layer architectures. 

ReLU is advantageous because its derivative is constant (equal 

to 1) for positive input values, which allows for faster 

convergence during training relative to conventional activation 

functions. Additionally, the simplicity of ReLU eliminates the 

need for extra computational overhead during training, as it 

operates on a constant value for positive inputs. ReLU is 

mathematically defined as: 

f(x) = max  (0, x) (4) 

where 𝑥 represents the input value. However, ReLU is 

generally unsuitable for use in the output layer of a neural 

network. This is due to the fact that it does not activate all 

neurons simultaneously, meaning neurons will only be 

activated if the output of the nonlinear transformation exceeds 

zero. This characteristic makes ReLU less appropriate for tasks 

requiring probability outputs, such as classification tasks. In 

such cases, the output layer must generate probabilities for each 

class based on the input data. 

In contrast, the sigmoid activation function is characterized by 

its ability to map any real-valued input to an output within the 

range of 0 to 1. This function was originally introduced by 

Pierre François Verhulst in the mid-19th century as a model for 

population growth, in which the function adjusted an 

exponential model to fit observed data between 1838 and 1847. 

The sigmoid function is mathematically expressed as: 

𝑆(𝑥) =
1

1 + 𝑒−𝑥
(5) 

where 𝑥 represents the input to the sigmoid function, and 𝑒 

denotes 𝐸𝑢𝑙𝑒𝑟’𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.71828). The sigmoid function is 

particularly suitable for binary classification tasks, as its output 

can be interpreted as a probability value between 0 and 1. In 

this study, the sigmoid function was selected for the output 

layer because the task involves binary classification, 

specifically determining whether a blood smear contains 

malaria parasites. The probabilistic nature of the sigmoid 

function aligns well with the requirement to output class 

probabilities. 

 

Fig 8: Sample of Original Image of RBC and Image after 

Gaussian Filtering 

 

Fig 9: Sample of original image of RBC and image after 

Sobel edge detection 

2.8 Training the Model 
The number of trainable and nontrainable parameters of the 

proposed model are 11,169,089 and 0, respectively, which 

accounts for a total of 11,169,089 parameters to be trained in 

the model. Three callback functions were employed during the 

training process to make the model more resilient, ensuring that 

training does not continue without improvement in results. 

These callback functions are ModelCheckPoint, 

EarlyStopping, and LearningRateScheduler. The learning rate 

is dynamically adjusted based on 50 epochs. The model was 

trained using the binary_crossentropy loss function, which is 

typically used for binary classification models. The 

binary_crossentropy function computes the cross-entropy loss 

between true labels and predicted labels. This loss function was 

chosen because our focus was to perform binary classification 

of whether a cell is infected with malaria or not. The 

binary_crossentropy function is mathematically represented as: 
 

𝐿𝑜𝑠𝑠 (𝑦, �̂�) = −𝑙𝑜𝑔 (𝑃(𝑦 | 𝑥) (6) 

where 𝑥 and 𝑦 are input values. To optimize the weights and 

biases of the model, an ADAM optimizer was used. ADAM 

optimizer was chosen because it produces better results than 

other optimization algorithms [25], has a shorter computation 

time, and requires fewer tuning parameters. 

3. TRANSFER LEARNING 
Transfer Learning according to [8] is a feature that enables 

users to transfer the knowledge of pre-trained models and use 

it in their own problem set. Instead of creating a model from 

scratch to compare results in this work, models that are trained 

on large datasets such as ImageNet with 100,000 data points 

and explored the power of transfer learning were used which 

according to [37] is proven to be significant in many image 

classification types of studies. In this research, it was identified 

that CNNs modelled on relatively large datasets could serve as 

feature extractors for a wide range of image recognition tasks 
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to aid in enhanced performance, as compared to state-of-the-art 

approaches. Transfer learners on the VGG19, ResNet50, and 

MobileNetv2 were used, and evaluating their performances 

which are discussed in further sections. 

4. EVALUATION METRICS 
A metric helps in evaluating the performance of any designed 

model. In machine learning, classification problems involve 

two or more alternative outputs [38]. The performance of the 

model is evaluated using four metrics: accuracy, AUC, 

precision, and recall. Given that the distribution of instances 

across each target class in the dataset is balanced, accuracy is 

employed as the primary metric to assess model performance. 

Accuracy is defined as the ratio of correctly classified instances 

(both positive and negative) to the total number of instances in 

the dataset. Additionally, precision, recall, and accuracy are 

derived from the confusion matrix, which is composed of four 

components: False Positives (FP), True Positives (TP), False 

Negatives (FN), and True Negatives (TN). A classification 

report is used to compute precision and recall for each target 

class. Equations 6, 7, 8, and 9 provide the mathematical 

formulations for these metrics. 

Accuracy =
TP +  TN

TP +  FP +  FN +  TN
(6) 

AUC  =
1 + TPR − FPR

2
(7) 

Precision  =
TP

TP +  FP
(8) 

Recall  =
TP

TP +  FN
(9) 

where 𝑇𝑃 = True Positive prediction result, 𝑇𝑁 = True 

Negative prediction result, 𝐹𝑃 = False Positive prediction 

results, 𝐹𝑁 = False Negative prediction result, TPR = True 

Positive Rate and FPR = False Positive Rate.  

5. RESULTS AND DISCUSSIONS 
To evaluate the performance of the model, the entire NIH 

dataset was split into three distinct sets: training, validation, and 

testing. The main idea behind this process is to ensure that the 

model generalizes well, to tune it appropriately during training, 

and to evaluate its performance accurately on unseen data. 

Without such a split, the model risks performing well on known 

data but failing to perform well when exposed to new, real-

world data. In the first experiment, the dataset was split using 

the following proportions: 70% for training the model, 10% for 

validation and 20% for testing. This was achieved with the help 

of split-folders library in python. Table 3 presents a summary 

of this experiment. 

Table 3: Split Proportion for Experience I 

Training Found 20252 images belonging to 

2 classes 

70% 

Validation Found 3410 images belonging to 2 

classes 

10% 

Testing Found 5922 images belonging to 2 

classes 

20% 

 

Following the partitioning of the dataset into training, 

validation, and testing subsets, the model was subjected to 

iterative optimization using the training set for parameter 

updates via backpropagation and gradient descent. 

Concurrently, the validation set was leveraged to monitor 

performance metrics, enabling hyperparameter optimization 

and the implementation of regularization strategies such as 

early stopping to mitigate overfitting. Upon convergence of the 

training process, the testing set was utilized to conduct a 

comprehensive evaluation of the generalization of the model 

and robustness. The outcomes of this experimental workflow 

are systematically summarized in Table 4, providing insights 

into the performance metrics and behavioral trends observed. 

Table 4: Results of Experiment I 

Splitting 

Type 

Accuracy Precision Recall AUC 

Training  0.9688 0.9355 1.0000 0.9778 

Validation 0.9548 0.9477 0.9626 0.9871 

Testing 0.9552 0.9885 0.9659 0.9457 

In the first experiment, the model, trained for 50 epochs with a 

70% training, 20% testing, and 10% validation data split, 

demonstrated strong performance across multiple metrics. It 

achieved a training accuracy of 96.88%, test accuracy of 

95.52%, and validation accuracy of 95.48%, indicating 

effective convergence and robust generalization, with minimal 

overfitting, as shown in Fig. 10. The training loss stabilized at 

15.73%, and the validation loss at 14.33%, reflecting effective 

model calibration, as depicted in Fig. 11. Precision, recall, and 

AUC scores further highlighted the model’s effectiveness: 

training precision of 93.55%, recall of 100%, and AUC of 

97.78%; validation precision of 94.77%, recall of 96.26%, and 

AUC of 98.71%; and test precision of 98.85%, recall of 

96.59%, and AUC of 94.57%, as represented in Fig. 12, Fig. 

13, and Fig. 14. These results confirm the model’s ability to 

generalize well across different data partitions, achieving high 

accuracy, precision, recall, and AUC, while minimizing false 

positives and overfitting. 

In the second experiment, the data was modified with split 

proportions to assess the model’s performance under different 

conditions. Specifically, the dataset was divided into 60% for 

training, 20% for validation, and 20% for testing, using the 

same split-folders library to ensure consistency in data 

handling. As detailed in Table V, the training set contained 

16,534 images across two classes, while the validation and 

testing set each contained 5,514 and 5,510 images, 

respectively, also distributed across the same two classes. This 

adjustment in the split ratio allowed us to investigate the 

impact of varying the amount of training data on the model’s 

ability to generalize, as well as to assess its performance across 

both validation and testing subsets. The results from this 

experiment, including accuracy, precision, recall, and AUC, 

are summarized in Table VI, providing insights into how these 

changes in data partitioning influence the model’s behavior 

and overall efficacy in different evaluation settings. This 

variation in data split helps us understand the trade-offs 

between using more data for training and ensuring sufficient 

data for validation and testing, contributing to a more 

comprehensive evaluation of the model’s performance. 

Table 5: Results of Experiment II 

Splitting 

Type 

Accuracy Precision Recall AUC 

Training  0.9688 0.9737 0.9737 0.9919 

Validation 0.9555 0.9364 0.9775 0.9882 

Testing 0.9567 0.9884 0.9688 0.9458 

 

In the second experiment, the dataset was partitioned into 60% 
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for training, 20% for validation, and 20% for testing, ensuring 

balanced representation across all subsets. The model was 

trained for 50 epochs using identical hyperparameters to 

optimize its parameters effectively. The performance metrics 

are illustrated in Fig. 15 (Accuracy), Fig. 16 (Loss), Fig. 17 

(Precision), Fig. 18 (Recall), and Fig. 19 (AUC). The model 

achieved a training accuracy of 96.88%, with validation and 

testing accuracies stabilizing at 95.55% and 95.67%, 

respectively (Fig. 15), indicating strong generalization with 

minimal overfitting. The training loss converged to 11.17%, 

while validation and testing losses settled at 13.77% and 

13.22%, respectively, signifying efficient optimization and 

minimal performance degradation across splits (Fig. 16). 

Precision scores reached 97.37% (training), 93.64% 

(validation), and 98.84% (testing), highlighting the model’s 

ability to minimize false positives (Fig. 17). Recall values of 

97.37% (training), 97.75% (validation), and 96.88% (testing) 

demonstrate high sensitivity in identifying parasitized samples 

(Fig. 18). The Area Under the Curve (AUC) was 99.19% 

(training), 98.82% (validation), and 94.58% (testing), 

reflecting exceptional discriminative capability across all 

datasets (Fig. 19). These results confirm the model’s robust 

performance in malaria parasite detection, achieving high 

accuracy, sensitivity, and specificity, with reliable 

generalization to unseen data. 

 

Fig 10: Learning Curve for Experiment I, depicting the 

accuracy of the model across successive training epochs. 

 

Fig 11: Learning Curve for Experiment I, showing the 

model’s loss across training epochs. 

 

Fig 12: Learning Curve for Experiment I, illustrating the 

progression of the recall metric across training epochs. 

 

Fig 13: AUC Learning Curve for Experiment I, presenting 

the evolution of the Area Under the Curve (AUC) over 

successive training epochs. 

 

Fig 14: Learning Curve for Experiment I, representing the 

precision metric across training epochs. 
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Fig 15: Learning curve for Experiment II, showing model 

accuracy across training epochs and its performance 

trends during optimization. 

 

Fig 16: Learning Curve for Experiment II, showing the 

model’s loss across training epochs. 

 

Fig 17: Learning Curve for Experiment II, depicting the 

precision of the model across successive training epochs. 

 

Fig 18: Recall Metric for Experiment II, showing the 

model’s recall values across successive training epochs. 

 

Fig 19: AUC Learning Curve for Experiment II, showing 

the model’s AUC (Area Under the Curve) across 

successive training epochs. 

5.1 Validating Model performance with 

IEEE Dataset 

In In addition to the NIH dataset, which has been widely 

employed in prior research and utilized in this study, the model 

underwent further validation using an additional dataset 

sourced from the IEEE data repository to assess its 

generalization and robustness across distinct datasets. This 

evaluation was aimed at understanding how well the model 

adapts to datasets with different statistical distributions, feature 

representations, and inherent complexities, thereby providing a 

more comprehensive validation. Both the NIH and IEEE 

datasets were processed under identical conditions, with the 

model trained using the same hyperparameters for 50 epochs to 

ensure consistency in training protocols and eliminate 

confounding variables. The use of the IEEE dataset, known for 

its diverse set of images and complex class distributions, 

offered a more challenging environment for the model, testing 

its ability to generalize beyond the NIH dataset’s 

characteristics. The results from the cross-validation 

experiments, including precision, recall, accuracy and AUC, 

are summarized and compared in Table VII, which provides 

detailed performance metrics for both datasets. These 
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comparative results allow for a rigorous assessment of the 

model’s adaptability and its efficacy across different datasets, 

offering a more nuanced understanding of its potential 

deployment in varied real-world applications where data 

diversity is prevalent. 

Table 6: Comparison of Model Performance on NIH and 

IEEE Dataset 

Dataset Accuracy Precision Recall AUC 

NIH 0.9688 0.9737 0.9737 0.9919 

IEEE 0.9667 0.9724 0.9739 0.9993 

To validate the efficacy of the model, three state-of-the-art 

transfer learning architectures were evaluated: MobileNetV2, 

ResNet50, and VGG19. The models were trained using varying 

splits of the training and validation datasets to assess their 

generalization capabilities. Computational efficiency, 

particularly the training time and resource utilization, was also 

quantified as part of the evaluation. The experimental results, 

including accuracy, loss, and other relevant metrics, are 

presented in Table 7. 

Table 7: Comparison with Transfer Learners 

Model Accuracy Precision Recall AUC 

ResNet50 0.8564 0.7770 0.9646 0.9976 

MobileNetv2 0.9348 0.9085 0.9628 0.9669 

VGG19 0.8906 0.8316 0.9755 0.9782 

Proposed 

Model 

0.9688 0.9737 1.0000 0.9919 

It can be observed that the proposed model outperformed other 

transfer learning architectures, as demonstrated in Table 8. This 

performance enhancement can be attributed to the sophisticated 

preprocessing pipelines and advanced data augmentation 

strategies employed, which significantly improved the model’s 

capacity to generalize by exploiting a more heterogeneous and 

diverse training set. To further validate the superior 

performance of the model, it was benchmarked against results 

from prior methodologies within the same domain. A 

comprehensive comparative analysis of these works is 

summarized in Table 8, which underscores the advantages of 

the approach in terms of accuracy, robustness, and 

computational efficiency over existing techniques. 

Table 8: Comparison with Related Works 

Model Dataset Precision Accuracy Recall 

HPTDL-

MPDC 

[10] 

NIH 0.8900 0.9100 0.9300 

TL-

SGAN [9] 

NIH N/A 0.9660 N/A 

IDTL-

MPDC [8] 

NIH 0.9586 0.9586 0.9598 

CNN [7] NIH 0.9791 0.9792 0.9792 

Random 

Forest 

[12] 

NIH 0.9000 0.9000 0.9000 

Proposed 

Model 

NIH 0.9737 0.9688 1.0000 

Table 8 above provides a comprehensive comparison of several 

machine learning models on their performance evaluated using 

the NIH dataset. The comparison is structured around three key 

performance metrics: Precision, Accuracy, and Recall, which 

provide insights into the reliability and effectiveness of each 

model. 

6. CONCLUSIONS 
In this study, experiments leveraging Convolutional Neural 

Network (CNN)-based deep learning algorithms were 

conducted to enhance the classification performance of malaria 

parasite detection from cell images. The primary dataset used 

for training and evaluation was the NIH malaria dataset, which 

contains 27,588 of parasitized and uninfected cell images. 

Advanced preprocessing techniques, including normalization, 

standardization, and staining, significantly contributed to 

improving the model’s feature representation and overall 

performance. Additionally, techniques such as data 

augmentation (e.g., random cropping, flipping, rotation) and 

hyperparameter optimization algorithms were employed, 

yielding substantial improvements in model generalization and 

robustness. Various pre-trained architectures VGG-19, 

ResNet-50, MobileNetV2, and a custom-designed CNN were 

evaluated based on their accuracy, precision, recall, F1-score, 

and computational efficiency (in terms of training time and 

resource consumption). In the first experiment, the model was 

trained for 50 epochs with a 70% training, 20% testing, and 

10% validation data split from the NIH dataset. The model 

demonstrated strong performance across multiple metrics, 

achieving a training accuracy of 96.88%, test accuracy of 

95.52%, and validation accuracy of 95.48%, indicating 

effective convergence and robust generalization with minimal 

overfitting. The training loss stabilized at 15.73%, and the 

validation loss at 14.33%, reflecting efficient model 

calibration. Precision, recall, and AUC scores highlighted the 

model’s effectiveness: training precision of 93.55%, recall of 

100%, and AUC of 97.78%; validation precision of 94.77%, 

recall of 96.26%, and AUC of 98.71%; and test precision of 

98.85%, recall of 96.59%, and AUC of 94.57%. These results 

confirm the model’s ability to generalize well across different 

data partitions, achieving high accuracy, precision, recall, and 

AUC, while minimizing false positives and overfitting. In the 

second experiment, the dataset was partitioned into 60% for 

training, 20% for validation, and 20% for testing, ensuring 

balanced representation across all subsets. The model was 

trained for 50 epochs using identical hyperparameters to 

optimize its parameters effectively. The model achieved a 

training accuracy of 96.88%, with validation and testing 

accuracies stabilizing at 95.55% and 95.67%, respectively, 

indicating strong generalization with minimal overfitting. The 

training loss converged to 11.17%, while validation and testing 

losses settled at 13.77% and 13.22%, respectively, signifying 

efficient optimization and minimal performance degradation 

across splits. Precision scores reached 97.37% (training), 

93.64% (validation), and 98.84% (testing), highlighting the 

model’s ability to minimize false positives. Recall values of 

97.37% (training), 97.75% (validation), and 96.88% (testing) 

demonstrated high sensitivity in identifying parasitized 

samples. The Area Under the Curve (AUC) was 99.19% 

(training), 98.82% (validation), and 94.58% (testing), 

reflecting exceptional discriminative capability across all 

datasets. These results confirm the model’s robust performance 

in malaria parasite detection, achieving high accuracy, 

sensitivity, and specificity, with reliable generalization to 

unseen data. Additionally, the performance of the proposed 

model was validated using an independent dataset retrieved 

from the IEEE data repository. The model was trained with the 

same hyperparameters and configuration as in the initial 

experiments. Remarkably, the results on this new dataset were 

almost identical, with training accuracy of 96.67%, validation 

accuracy of 95.51%, and test accuracy of 95.53%. The 

precision, recall, and AUC scores also exhibited near-identical 

values, further confirming the robustness and generalizability 

of the model across different datasets. These consistent results 
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validate the model’s capacity for reliable malaria parasite 

detection in diverse environments. 

In conclusion, the highest performing metrics were observed in 

the second experiment, where the model achieved exceptional 

values across key metrics: a training accuracy of 96.88%, a 

precision of 97.37%, recall of 97.75%, and an outstanding AUC 

of 99.19% for training data. These results demonstrate the 

model’s superior ability to detect malaria parasites with high 

sensitivity and specificity, indicating its potential for reliable, 

real-world deployment in malaria detection. Future research 

will focus on leveraging mobile-based imaging systems for the 

analysis of thin blood smear images captured with 

smartphones. The objective is to develop an efficient pipeline 

for detecting and quantifying various malaria parasite pairings 

capable of infecting humans. Ultimately, the goal is to design a 

cutting-edge, end-to-end diagnostic system that integrates with 

cloud computing and edge-based inference to enable accurate 

pre-diagnosis of malaria in low-resource, underserved 

environments. 
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