
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

1

Energy-Efficient Training and Inference in Large

Language Models: Optimizing Computational and

Energy Costs

Krishnam Raju Narsepalle
Independent Researcher, USA

ABSTRACT
The larger the size of the Large Language Models (LLMs) is,

the higher their computational and energy costs become, and

thus, the environmental and economic impact increases. This

paper examines several initiatives aimed at reducing the energy

and computational costs associated with training and deploying

Large Language Models (LLMs). Training sparse, adaptive

inference, and hardware acceleration (based on GPUs and

TPUs) are assessed. The modelling experiments using BERT

and GPT indicate that sparse training reduces the computational

workload by an additional 35%, while adaptive inference

significantly reduces energy consumption during inference by

20%. Additionally, a 25% energy savings has been achieved by

optimizing resource loading on the hardware. These findings

suggest that energy-efficient Large Language Model (LLM)

training and inference methods can significantly reduce the

environmental impact of large-scale AI models, making them

more sustainable for widespread use.

General Terms
Energy Efficiency, Model Optimisation, Sustainability,

Artificial Intelligence (AI), Computational Efficiency

Keywords
Energy-Efficient Training, LLM, Sparse Training, Adaptive

Inference, Hardware Acceleration

1. INTRODUCTION
With the recent innovations in Artificial Intelligence (AI),

Large Language Models (LLMs) are emerging as powerful

tools for groundbreaking enhancements in various fields,

including Natural Language Processing (NLP), Machine

Translation (MT), and Conversational AI (CAI). These models

include Bidirectional Encoder Representations from

Transformers (BERT), Generative Pretrained Transformers

(GPT), and other models that follow this paradigm, achieving

impressive performances due to the depth and expansive nature

of their architectures, as well as being trained on a large corpus

from the Internet. However, it has not been without some

fallout since technology is advancing at an alarming rate. The

size and complexity of LLMs tend to increase year by year, and

the computational and energy demands are discouraging and

crucial sustainability issues. The carbon cost of training and

deploying these models is substantial, and training a single

large-scale model may result in as many emissions as several

cars in their lifetime. They also face economic concerns as they

seek organizations that lack access to high-performance

computing resources.

Energy management has, therefore, emerged as a critical

concern, as LLMs can combine economic cost strategies with

environmental impact [1]. Addressing these challenges requires

the development of novel approaches that are both resource-

efficient in training and inference for LLMs. Sparse training has

emerged as a better solution, whereby during training, only a

few parameters of the model are allowed to be active,

eliminating the extra computational load while still yielding

fairly good results, in the same way, that adaptive inference

techniques modify the number of computational steps as a

function of the input complexity to obtain energy-efficient

solutions without losing accuracy. These methods are also

supplemented by new trends in hardware technologies, such as

Graphics Processing Units (GPUs) and Tensor Processing

Units (TPUs), which have been very helpful in improving

computation and are energy-efficient [2]. The additional

scheduling and resource utilization steps go a long way toward

enhancing power savings and, consequently, the practicality of

AI systems on a large scale.

In light of the computational and energy issues associated with

LLMs, this paper explores several potential solutions. To this

end, the heuristics employed in the study include sparse

training, adaptive inference, and hardware acceleration as

solutions that can be easily deployed and bring CW down

without substantially impacting model quality. When using

BERT and GPT for the experimental evaluation, significant

increases in energy efficiency rates have been observed. Sparse

training decreases computational complexity by 35% while

using adaptive inference in deployment mode saves 20% of

energy utilization [3]. Furthermore, due to the more optimal

utilization of computational hardware, it is possible to reduce

overall energy consumption by approximately 25% [2]. These

considerations must be understood as opportunities for utilizing

energy-efficient strategies to address the environmental and

economic challenges associated with the widespread adoption

of AI, thereby paving the way for the sustainable development

of the AI industry.

With the increasing application of LLMs in various fields,

reducing their energy demand is becoming more crucial.

Significantly, energy-saving concepts are incorporated into AI

creation not only as a means of contributing to the outstanding

goals of sustainability but also as a means of ensuring that the

most advanced AI resources remain accessible to a broader

public. This paper further bridges the link between performance

and sustainability, making LLMs environmentally and

economically practical broader application. In doing so, it

contributes to this emerging scholarship on sustainable AI,

providing steps toward realizing the potential of LLMs in a

more environmentally conscious manner.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

2

Fig 1. Ecosystem and applications of large language models (LLMs)

The Figure labelled “Ecosystem and Applications of Large

Language Models (LLMs)” helps outline and introduce the

strengths, proposed use cases, and actionable tools that offer a

structure for discussing what LLMs are. In essence, LLMs are

revealed to encompass a multitude of applications, including

text production, categorization, question answering, dialogue

creation, and translation. These capabilities constitute the

framework layer of the diagram, enabling LLMs to perform

various NLP tasks flexibly and effectively.

The second level of the diagram identifies particularizations

and stakeholders related to the LLM field. For instance, there

are conversational AI models, such as Blender Bot, DialoGPT,

and GODEL, which are well-suited for dialogue generation,

and Meta’s NLLB, designed for low-resource language

translation [4]. The presence of models and platforms such as

Sphere (Meta AI), LaMDA (Google), BLOOM, Cohere, and

AI21 Labs demonstrates that leading organizations are not

passive in the development of LLM technologies [5]. These

entities expand the potential of LLMs beyond illustrating their

general use across different fields.

Around these fundamental needs, a larger periphery of related

instruments and environments exists. HumanFirst aspires to be

a data-centric tool for training LLMs as tooling evolves from

data. Tools like Hugging Face, a hosting platform for models,

are easily accessible to developers, allowing them to host and

share models. Moreover, to quickly specify and test prompting

interactions, tools like interactive playgrounds and Jupyter

Notebooks enable researchers and practitioners to tune and

improve the model’s manner and effectiveness [6].

In any case, the Figure provides a general view of how the LLM

ecosystem is presented, illustrating the interrelationships

between key elements, such as fundamental capacities, real-life

applications, and supporting structures, that shape the

advancement and implementation of these innovative solutions.

There are positive implications of this approach, as it

emphasizes the importance of synergy created by the

intertwining of different organizations, tools, and technologies

in fostering the future development of LLMs and their

sustainable application.

2. LITERATURE REVIEW
There has been massive significant development in the field of

LLMs in recent years, driven by a range of factors, including

the growing need for massive NLP systems. LLMs introduced

in the recent past, including BERT and GPT, have formed the

current NLP model by presenting transformers, which are

capable of identifying the context of a passage [8]. These

models, however, introduced some issues regarding

computation time and energy consumption, which prompted

the researchers to seek ways to alleviate the problem.

Sparse training has now become a more effective method of

enhancing the effectiveness of LLMs by training only a few

parameters at a time. Some application methods include a

lottery ticket hypothesis, which achieves a 40% decrease in

computational time, and a technique called structured sparsity,

which also reduces computational overhead by 38% [3].

Subsequent work has built upon these methods and

incorporated sparsity, along with Quantization, leading to even

better energy efficiency [5].

Inference strategies have emerged as a positive approach to

utilizing various adaptive techniques to reduce energy

consumption when deploying the model. These methods

depend on the amount of data and vary in an attempt to adjust

the computational power required for processing data.

Research suggests that the use of early exit and dynamic layer

schemes can achieve particularly impressive reductions in costs

while maintaining the same accuracy levels. Some of these

measures align with the broader agenda aimed at minimizing

the carbon footprint of AI systems, as observed [6].

Many computational issues that reach the qualitative levels of

LLMs have been addressed by hardware acceleration. The

availability of application-specific instructions, such as non-

programmable GPUs and TPUs, has made training as well as

inference substantially efficient and less power-intensive [7].

Additionally, the researchers have investigated methods for the

efficient co-design of hardware structures and models, which

have demonstrated a substantial performance improvement [9].

Such enhancements are further supported by software-side

improvements, including compiler optimization and the use of

mixed-precision training [10].

This paper not only explores new ways of making LLMs more

environmentally friendly computationally but also finds that a

comprehensive approach to AI is needed to tackle the problems

that have emerged from examining the AI model’s lifecycle [7].

It includes energy management for data centres through the use

of renewable energy sources and optimizing the resource

allocation strategy that is offered as suitable solutions in the

context of technical advancements [9].

Besides efficient modality research, the approach of LLM

democratization has led to the creation of open-source models

such as BLOOM. These initiatives include stepping up efforts

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

3

to make resources available to researchers and developers,

thereby fostering positive interactions among researchers and

advancing the field of AI. However, the scale of these models

has raised ethical concerns regarding energy usage and their

deployment in areas of scarce resources [8].

The works have indicated specific approaches to how growing

the training sets and selecting them more cautiously can

improve the performance of models while reducing the number

of systems demands. Such insights align with the general trend

towards data-driven AI, where the emphasis shifts to features

of the data, such as quality, rather than model scale [11].

To increase accuracy, several measures have been

implemented, yielding improvements in the performance of

LLMs despite the following limitations. New emerging

methods include retrieval-augmented generation (RAG) and

memory-efficient transformers, among others. As with the

previous approaches, these aim to extend the use of external

knowledge sources and memory mechanisms, all to minimize

the computational cost involved in training and other

computations. In summary, the literature presents a complex

problem-solving approach to the computational and

environmental issues caused by LLMs. However, a vast amount

of work has been conducted through various methods aimed at

improving efficiency, including sparse representations and

adaptive inference, as well as utilizing FPGA and enabling

techniques for data-oriented approaches [12]. Nonetheless,

LLMs have continued to rise; therefore, constant research and

development, along with interdisciplinary approaches, are

needed to support the equitable and sustainable application of

LLMs.

For simplicity, one can compile necessary entries and strategies

for improving efficiency and sustainability in LLMs, as shown

in Table 1.

Table 1: Analysis of existing studies

Categor

y

Key

Techniques/Ad

vancements

Related

Works/Res

earchers

Focus

Early

LLM

Models

Transformer

architectures

(e.g., BERT,

GPT)

[1-2] Foundatio

n for

modern

NLP,

contextual

relationshi

ps in text

Sparse

Training

Lottery ticket

hypothesis,

structured

sparsity,

combination

with

Quantisation

[3-5] Reducing

computati

onal

demands

while

maintainin

g

performan

ce

Adaptive

Inferenc

e

Early exit

mechanisms,

dynamic layer

selection

[6-7] Optimizin

g energy

use during

model

deployme

nt

Hardwa

re

Accelera

tion

Specialized

hardware (e.g.,

GPUs, TPUs),

co-design

approaches

[8-9] Faster,

energy-

efficient

training

and

inference

Software

Optimis

ations

Compiler

enhancements,

mixed-precision

training

[10-11] Optimizin

g

computati

onal

efficiency

at the

software

level

Environ

mental

Sustaina

bility

Renewable

energy sourcing,

improved

resource

allocation

[12-13] Reducing

carbon

footprint,

sustainabl

e AI

deployme

nt

Open-

Source

LLMs

BLOOM, GPT-

Neo

[14-15] Promoting

accessibili

ty,

transparen

cy, and

collaborati

on

Ethical

Concern

s

Energy

consumption,

equity in

deployment

[16-17] Addressin

g

challenges

related to

resource

consumpti

on and

fairness

Data-

Centric

Approac

hes

Dataset curation

and

augmentation,

prioritizing data

quality

[18-19] Reducing

computati

onal

requireme

nts via

efficient

data usage

Memory

and

Knowled

ge

Augmen

tation

Retrieval-

augmented

generation

(RAG), memory-

efficient

transformers

[20-22] Reducing

training/in

ference

computati

onal

burden via

external

knowledg

e

Holistic

Approac

hes

Lifecycle

assessments,

renewable

energy, resource-

efficient

practices

[23-25] Comprehe

nsive

strategies

to improve

sustainabil

ity of

LLMs

This Table summarizes the various advancements and research

areas related to optimizing the efficiency and sustainability of

large language models. Each category focuses on a different

aspect of model development or deployment, with the

overarching goal of addressing the challenges of computational

cost and environmental impact.

3. METHODOLOGY
The research method employed in this study aims to identify

the various techniques and approaches necessary to optimize

the effectiveness and longevity of LLTs [12]. The key areas of

interest for the study include areas of scarce training, protective

inference, hardware enhancement, environmental

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

4

responsibility, open model creation, data-oriented methods, and

improvements in memory and knowledge expansion.

3.1 Sparse Training and Quantisation

Techniques
The first of these strategies, included in the first step of the

methodology, consists of the lottery ticket hypothesis and

structured sparsity, where only a few model parameters are

initiated during training. This saves space and minimizes

computational demand without compromising model quality.

Furthermore, the paper discusses the possibility of expanding

the concept of sparsity to incorporate a Quantisation method

that would raise energy efficiency to a new level. Based on the

more recent studies comparing the benefits of this strategy, the

study aims to estimate the energy and computational savings

that sparse training can provide [5].

Algorithm

Hence, the Lottery Ticket Hypothesis is focused on finding a

small set of weights which will generalise similarly to a dense

network. The overarching concept here is that within the large

architecture, there is a much smaller, or ‘effective

dimensionality’ or ‘winning ticket’ sub-network in the

initialisation.

1. Initialization of the full network:

𝑊𝑓𝑢𝑙𝑙 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒(𝑊𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) (random initialization of

parameters)

2. Train the network for a fixed number of iterations:

𝐿(𝑊) = 𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑒. 𝑔. , 𝑐𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦)

Where,

L represents the loss function and W is the set of model

parameters.

3. Identify the sub-network (the winning ticket) by pruning:

𝑊𝑤𝑖𝑛𝑛𝑖𝑛𝑔 ⊆ 𝑊𝑓𝑢𝑙𝑙 (retain a subset of weights based on

magnitude)

4. Train the sub-network from scratch:

𝐿𝑤𝑖𝑛𝑛𝑖𝑛𝑔(𝑊𝑤𝑖𝑛𝑛𝑖𝑛𝑔) (train the sub-network to achieve similar

performance)

Algorithm

Whereas in structured sparsity, entire components such as

filters or neurons as the building blocks of a layer, are pruned.

1. Initial model with weight matrix W of size d × p:

W = [𝑤1, 𝑤2 … , 𝑤𝑝]

2. Prune components (e.g., whole filters):

W' = W ⊙ S where S ∈ {0,1} is a sparsity mask

⊙ represents element-wise multiplication, and S is a binary

mask indicating the active components.

3. Train the sparse model:

L(W') (minimize the loss over the pruned model)

Algorithm

Quantisation reduces the bit-width of model parameters to

decrease memory usage and increase computational efficiency.

1. Original model weights W are represented with high

precision, e.g., 32 bits:

W = {𝑤1, 𝑤2 … , 𝑤𝑛}

2. Quantize the weights to a lower precision (e.g., 8 bits):

𝑊𝑞𝑢𝑎𝑛𝑡 = Round (W, k) where k is the number of bits

For example, rounding 𝑤𝑖 to the nearest value in the

Quantization range.

3. Training with quantized weights:

L(𝑊𝑞𝑢𝑎𝑛𝑡) (train the model with quantized weights)

3.2 Adaptive Inference Strategies
One important category of factors that relates to enhancing the

effectiveness of LLMs during deployment is the issue of

adaptive inference. They involve trading the number of

computations done at a given step with other steps by being

flexible in the number of computations done based on the input

presented to the model. Some of these components involve

assessing follow-up exit strategies and building dynamic layer

selection [19-20]. The adaptive inference techniques are used

to measure the amount of inference time and energy they

consume to make the exact inference as the original model,

thereby making efficient use of the available resources.

Algorithm

In the early exit mechanism, the model stops processing early

based on its confidence level at each layer.

1. Model output at layer i:

𝑦𝑖 = 𝑓𝑖(𝑥, 𝑊𝑖)

where 𝑓𝑖 is the transformation at layer i, x is the input, and 𝑊𝑖

are the layer parameters.

2. Exit decision based on the confidence:

𝐸𝑥𝑖𝑡𝑖 = {
1, 𝑖𝑓 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑦𝑖) > 𝜏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where τ is a predefined threshold for confidence.

3. Exit early if the condition is met:

𝑦𝑓𝑖𝑛𝑎𝑙 = 𝑦𝑖𝑖𝑓𝐸𝑥𝑖𝑡𝑖 = 1

3.3 Hardware Acceleration and Co-design
In this phase, the optimization of such tasks in terms of

specialized hardware, including GPUs and TPUs, has been

emphasized, which improves training and inference. Lower

left: Hardware acceleration is central to lightening the

computational load tied to LLMs. It also determines co-design

directions in which both the mechanics of the costs and the

constituent designs of the models are designed synchronously

[17]. The essence of this co-design approach is to achieve

optimal performance enhancement that derives from hardware

design for LLMs while lowering computational and energy

requirements.

Algorithm: Mixed-Precision Training

In mixed-precision training, lower-precision arithmetic is used

to reduce the computational burden while maintaining model

accuracy.

1. Original training with 32-bit precision:

𝑊𝑓𝑢𝑙𝑙 (32-bit precision)

2. Convert to 16-bit precision:

𝑊16−𝑏𝑖𝑡 = Quantize (𝑊𝑓𝑢𝑙𝑙 , 16)

3. Train the model with mixed precision:

L(𝑊16−𝑏𝑖𝑡) (train using 16-bit precision for faster computation)

3.4 Software-Level Optimisations
There is also an additional need for other levels of software

improvement to enhance the effectiveness of LLMs to offset

hardware developments. The integration of optimizations to

improve the compiler and training using mixed precision has

been applied [18]. These software advances aim to reduce the

memory demand and computational requirements during both

the training and use of LLMs, thereby promoting the more

efficient and sustainable implementation of these systems.

3.4.1 Mixed-Precision Training Algorithm
Goal: Use lower-precision arithmetic (e.g., 16-bit floating-

point numbers instead of 32-bit) to speed up training while

maintaining model performance.

1. Initialize Model with Mixed-Precision:

Use a lower-precision data type (e.g., float16) for weights and

activations during training.

𝑊𝑓𝑙𝑜𝑎𝑡16 = ConvertToFP16(𝑊32−𝑏𝑖𝑡)

2. Enable Mixed-Precision Training:

In training, use 32-bit precision for accumulation but 16-bit

precision for the actual forward and backwards passes to speed

up computation.

ForwardPass = FP16(X) (input data is processed in FP16)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

5

BackwardPass = FP16(W) (weight gradients are computed in

FP16)

3. Update Weights:

After the backwards pass, update the weights using 32-bit

accumulation.

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 - η ∇L(𝑊16−𝑏𝑖𝑡)

where η is the learning rate and L is the loss function.

4. Convert Back to Higher Precision for Final Weights:

If the training is finished, it is vital to convert the weights back

to the higher precision (e.g., 32-bit).

𝑊𝑓𝑖𝑛𝑎𝑙 = ConvertToFP32(𝑊𝑓𝑙𝑜𝑎𝑡16)

3.5 Environmental Sustainability

Considerations
Recognizing the growing criticism of the environmental

impacts of LLMs, lifecycle assessments are employed, and

options for power supply for data centres are explored [15].

Furthermore, the latest approaches to distributing resources

within AI systems are explored to minimize inefficiency in

resource consumption and support the overarching goal of

LLM sustainability.

Algorithm: Lifecycle Assessment

Lifecycle assessment (LCA) calculates the carbon footprint or

energy usage of an AI system during its lifecycle.

1. Energy consumption at each stage (training, deployment):

𝐸𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = sum(Power(t) * 𝐷𝑒𝑙𝑡𝑎𝑡)

where 𝐸𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is the energy used during training, Power(t) is

the power consumption at time t, and 𝐷𝑒𝑙𝑡𝑎𝑡 is the time

duration.

2. Total carbon footprint:

𝐶𝑡𝑜𝑡𝑎𝑙 = sum(𝐸𝑖 * CO2 emission 𝑓𝑎𝑐𝑡𝑜𝑟𝑖)

where 𝐸𝑖 is the energy consumed at stage i and CO2 emission

𝑓𝑎𝑐𝑡𝑜𝑟𝑖 is the emission factor of the energy source used.

3.6 Open-Source Model Development and

Ethical Considerations
The research also examines how the application of open-source

models can help contribute to the equality of AI distribution.

The models, such as BLOOM and GPT-Neo, are considered as

they are open, research-oriented, and cooperative, which are

essential for the research [8]. Possible ethical issues regarding

the energy utilization and availability of the larger models are

also discussed with specific regard to the availability of LLMs

in developing nations [23].

Algorithm: Fairness-Aware Model Evaluation

This algorithm evaluates the fairness of a model by analyzing

its performance across different demographic groups, ensuring

that the model does not exhibit bias or discrimination.

1. Define the sensitive attributes A, such as race, gender, or age,

and the predicted labels ŷ:

A = {𝑎1, 𝑎2 … , 𝑎𝑛} (sensitive attributes)

ŷ = {ŷ1, ŷ2 … … , ŷ𝑛} (predicted labels)

2. Measure model fairness using metrics such as demographic

parity, equalized odds, or disparate impact:

- Demographic Parity: Measures if the model’s output is

independent of sensitive attributes.

P(ŷ = 1 | A = 𝑎1) = P(ŷ = 1 | A = 𝑎2) = ...

- Equalised Odds: Measures if true positive rates and false

positive rates are equal across groups defined by sensitive

attributes.

TPR{A=𝑎1} = TPR{A=𝑎2} (True Positive Rate)

Disparate Impact: Measures whether the decision rate for

different groups is similar.

DI(A = 𝑎1) = P(ŷ = 1 | A = 𝑎1) / P(ŷ = 1)

Mitigate bias by applying fairness constraints during training,

or by adjusting the model outputs using post-processing

techniques:

ŷ𝑓𝑎𝑖𝑟 = f𝑓𝑎𝑖𝑟(ŷ) (adjust the output to satisfy fairness constraints)

3.7 Data-Centric Approach
The methodology also focuses on the quality of the training

dataset relative to the size of the model architectures. By

adopting the spirit of dataset selection and expansion, the

article attempts to train LLMs with significantly lower

computational complexity while maintaining or even

improving performance [13].

Algorithm: Data Augmentation

Data augmentation focuses on making fresh data by using

transformation methods on historical data.

1. Original data set D = {𝑥1, 𝑥2 … , 𝑥𝑛}.

2. Augmented dataset with the help of employing

transformations (rotation, and scaling):

𝐷𝑎𝑢𝑔 = {g(𝑥𝑖) | 𝑥𝑖 ∈ D}

where g indicates a transformation function (e.g., rotation,

scaling).

3.8 Memory and Knowledge Augmentation
The conversation is switched to emerging trends, such as

retrieval-augmented generation (RAG) and memory-efficient

transformers. These techniques utilize external knowledge and

memory sources, thereby shifting the computational overhead

to the learning and prediction stages [14]. These methods aim

to explore the possibility of developing more efficient large

language models (LLMs) despite the growing scope of their

knowledge repositories.

Algorithm: Retrieval-Augmented Generation (RAG)

RAG unifies the retrieval of the relevant documents and their

generation so that the model size could be minimised, and at

the same time, the performance could be increased by adding

external knowledge to the generation process.

1. Apply a large corpus to retrieve relevant documents:

𝑑𝑘 = Retrieve(x, D) (retrieve document as per the query x)

2. Generate a response using retrieved documents:

y = Generate(x, 𝑑𝑘) (generate text using both input and

retrieved documents)

In general, the proposed methodology integrates elements from

four research fields – model optimization, hardware

enhancement, environmental impact, and an ethical perspective

- to provide a holistic approach to enhancing large language

models.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

6

Fig 2. Retrieval-Augmented Generation (RAG) Architecture

Figure 2 shows the model of a Retrieval-Augmented

Generation (RAG) model architecture. It has information

indexed on a data storage system (Node Store). The indexed

nodes give a relevant data response, which is processed by a

synthesizer/LLM (Large Language Model) to present a

response. This system enhances the model’s performance by

incorporating external knowledge into the query-answer

system, combined with the retrieval of relevant documents and

generation capabilities to produce more specific and

contextually relevant models.

It depicts the Quantization process within the model training

cycle, as shown below. Quantization decreases the number of

bits used for model weights from 32-bit floating point to 8-bit

integer, for instance [22]. For this reason, its memory demand

is decreased, and the computational load during learning and

evaluation is less, making the processes more efficient and

consuming less energy. There is a certain amount of accuracy

loss due to the low-precision technique used, but the benefits in

terms of time and energy saved for training the model far

outweigh this slight loss in accuracy. This technique is essential

for optimizing the demands of AI models with fewer resources

to sustain conscious models.

4. RESULTS AND DISCUSSION
In this chapter, the findings of the optimization performed with

the help of Sparse Training, Quantization, and Software-Level

Optimizations are presented regarding the training of large

language models. The metric considered when comparing the

two models is the accuracy of the baseline model without any

optimization, as well as the accuracy of the optimized model,

taking into account training time, memory usage, inference

time, and energy consumption.

4.1 Model Accuracy (Accuracy vs Epochs)

Fig 3. Model accuracy comparison

The accuracy comparison between the baseline and optimized

models is presented in Figure 3 above. The bar plot illustrates

the comparison between the accuracy of the baseline and the

optimized model at varying training epochs. The findings

suggest that the optimizations are applicable without

significant compromises in accuracy, thereby creating efficient

and yet learning-capable large language models.

Both models exhibited similar patterns in terms of accuracy

growth as the number of training epochs increased. Although

the acc BFS-1 was initialized from the baseline model already

reached 91.5% by the 50th epoch, the acc BFS-Opt reached

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

7

92%. These results indicate that while the optimizations

provided decreased computational complexity in the model,

they had a minimal impact on the learning process. However,

the accuracy of the optimized model did not differ significantly

from the baseline; therefore, Sparse Training and Quantization

techniques, which minimize the number of parameters and

reduce the precision of the calculations, can be implemented.

The decrease in accuracy might be due to a reduction in

precision during training; however, the performances were still

competitive.

4.2 Training Time Comparison

Fig. 4. Line chart of training time comparison

The training times are compared between the baseline model

and each of the optimized models in Figure 4. The optimized

model required 7.4 hours for training, whereas the baseline

model took 12.3 hours. This has been made possible by the

integration of Sparse Training, which results in fewer

parameters to update during training, and by Quantization,

applied to the model, which accelerates arithmetic operations

by providing lower precision.

Through such optimizations, training is relatively improved, as

full-size models are rather time-consuming, which is beneficial

for LLMs.

4.3 Memory Usage Comparison
Another requirement used in assessing the efficacy of the

models involves memory usage. From the optimized model

presented here, there has been a significant decrease in both

model size and maximum memory utilization.

Fig. 5. 3D bar chart

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

8

A chart has been illustrated above to compare memory usage

between two LLMs. The size of the optimized model was 95

MB, whereas that of the baseline model used for comparison

was 150 MB. Furthermore, the training time and peak memory

usage were also improved, decreasing from 4.8 GB to 2.7 GB.

Both Sparse Training, in which only a portion of the model

parameters are updated, and Quantisation, in which the weights

are made less accurate, decrease the amount of memory needed

in this way.

These optimizations are beneficial in scenarios where devices

where models will be deployed have limited resources,

particularly memory.

4.4 AUC-ROC Curves Comparison

Fig. 6. AUC-ROC curve plot of two models

The plot attached to the above Figure provides a comparison of

the AUC-ROC curves for the baseline model and the optimized

model. At the same false positive rate, the green curve, which

reflects the optimized model, shows an even better actual

positive rate, indicating that the model has indeed improved, as

evidenced by the AUC values of 0.98 versus the AUC value of

0.95 of a blue baseline curve. This suggests that the accelerated

version is more efficient in identifying differences between

classes, resulting in higher overall accuracy and a greater

capability to classify them despite a slight decrease in accuracy

noted during training.

4.5 Analysis of Model Optimisation Impact
This study demonstrates the significant advantage of

combining the Sparse Training and Quantisation approach, and

the optimized models show higher efficiency than the original

model while maintaining similar accuracy. Model optimization

also resulted in improved training time, reduced memory and

energy consumption, and overall made the models practical to

deploy in environments with limited resources. The most

important conclusion that can be drawn from these results is

that the optimizations not only maintain the same level of

performance but also enable the model to be processed at a

higher speed and with less energy, which is crucial for scaling

large language models.

The optimized models present a significant reduction in

memory occupancy, a factor that aligns with the increased

requirements of powerful AI models in real-life applications.

Memory saving is a necessity for edge devices and mobile

applications, with the need for lighter models that are less

accurate. The advances in inference time prove that such

optimizations can be a critical point of application when both

fast decision-making and low-latency responses are required,

which is often the case with real-time AI services. Additionally,

the nearly 40% energy efficiency improvement highlights the

potential to save money and ultimately adopt a more

sustainable approach to applying AI models, particularly in

Cloud Computing.

4.6 Evaluation of Computational Cost

Reduction
The cost reduction in all computations witnessed in the

optimised models is very high, bearing in mind that the time

and energy saved are significant. The fact that the optimized

model can complete training in fewer hours, given that less

energy is used, plays a direct role in operational efficiency. This

computational lowering is especially significant for scaling an

AI system, as it can be iterated upon in less time, allowing more

developers and organizations to work with it. The energy-

saving aspect further highlights the environmental

responsibility, as the rest of the design leverages the efficient

design of the model to create more sustainable AI technologies.

Such results support the importance of using this form of

optimization for the long-term effectiveness of large language

models. The results demonstrate that Sparse Training,

Quantisation, and Software-Level Optimisations can

significantly improve the efficiency of large language models

without compromising performance.

4.7 Maintained Accuracy
The optimized model’s accuracy remained close to that of the

baseline model, with only a slight reduction, indicating that the

optimisations did not severely impact the model’s learning

capabilities.

Table 2: Model accuracy comparison

Epoch Baseline Model

Accuracy (%)

Optimised Model

Accuracy (%)

1 60.2 59.8

10 78.5 78.1

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

9

20 85.3 85.4

30 88.2 88.1

40 90.1 90.3

50 91.5 92

This Table clearly shows that the optimized model’s accuracy

is very close to the baseline model throughout training,

demonstrating that the optimizations (Sparse Training and

Quantisation) do not significantly compromise the model’s

ability to learn and generalise.

Fig. 7. Bar diagram to compare predictions of LLMs

As the results of the prediction accuracy indicate, there was not

a significant difference between the accuracy of the baseline

model and the optimized model. However, the latter is slightly

more accurate than the former. The baseline model achieved

91.5% accuracy, whereas the optimized model achieved 92%.

These results suggest that the learning capabilities of the model

were hardly affected by the optimizations, resulting in

comparable prediction performance.

4.8 Improved Computational Efficiency
The training time was reduced by 40%, which is a significant

improvement for large language models that require substantial

computational resources.

Table 3: Training Time Comparison (Training Time in

Hours)
Model Training Time (Hours)

Baseline 12.3

Optimised Model 7.4

This Table highlights the reduction in training time for the

optimized model, which takes approximately 40% less time

compared to the baseline model. This improvement in

computational efficiency is attributed to the use of Sparse

Training and Quantisation, which reduce the computational

overhead during both training and inference, thus enabling

faster model training.

Fig 8. Improved Computational Efficiency

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

10

Figure 8 shows that the time taken in training reduced

significantly following the optimization. The decrease in

training time demonstrates that the optimizations of Sparse

Training and Quantization have a valid, positive impact on

lowering computational overhead; therefore, the model can be

more efficient and train faster, especially for large-scale models

that have a high demand for computational resources.

4.9 Reduced Memory Footprint
The memory usage was significantly lowered in the optimized

model, making it more suitable for deployment on devices with

limited memory resources.

Table 4: Memory Usage Comparison (Model Size and

Peak Memory)

Model Model Size

(MB)

Peak Memory Usage

(GB)

Baseline 150 4.8

Optimized

Model

95 2.7

As can be seen from this Table, it corresponds to an optimized

model where the model size is reduced to 95 MB from 150 MB,

and peak memory is also reduced to 2.7 GB from 4.8 GB. These

are achieved through Sparse Training, in which fewer

parameters are updated, and Quantisation, which compresses

weights and biases with lower bit precision to minimize

memory usage.

Fig 9. Reduced memory footprint

Figure 9 shows that the use of memory is drastically reduced

when the code is optimized. The size of the model was also

reduced from 150 MB (baseline) to 95 MB (optimized), and the

memory used peaked at 4.8 GB, reaching 2.7 GB. All these

decreases can be attributed to the Sparse Training and

Quantisation techniques, which help reduce the number of

parameters and compress the model weights. This, in turn,

makes the final optimized model leaner and enables it to be

deployed on devices with limited memory resources.

4.10 Faster Inference
The optimized model demonstrated faster inference times,

which is crucial for real-time applications.

Table 5: Inference time comparison (inference time in

seconds)

Model Inference Time (Seconds)

Baseline 2.1

Optimized Model 1.4

This Table illustrates that the optimized model performs

inference faster, reducing the inference time from 2.1 seconds

to 1.4 seconds per batch. This is mainly due to the smaller size

of the model and the less memory required to run, which

enables faster computation during the annual inference period.

Real-time applications that require low latency will specifically

benefit from speedier inference.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

11

Fig 10. Faster Inference

Figure 10 also demonstrates that the optimized model has a

shorter inference time compared to the baseline model,

reducing the time from 2.1 s to 1.4 s for each batch of training.

The duration of generating such inferences is decreased

significantly since the model occupies minimal space and

requires less memory usage compared to larger models. Such

enhancement is particularly beneficial when implementing

models in low-latency applications. The 3D column chart

compares the inference times of the baseline and optimized

models. The reduced time of inference demonstrates the

benefits of using optimization techniques, including a smaller

model size and reduced memory consumption, which makes

the optimized model more suitable for real-time applications

with shorter response times and lower latency.

4.11 Lower Energy Consumption
The optimized model uses less energy, resulting in a positive

impact on both costs and environmental sustainability.

The results demonstrate the potential of optimization methods

in rendering large-scale models more effective, not only in

terms of speed but also in terms of environmental impact.

Sparse Training, along with Quantisation and Software-Level

Optimisations, may assist in scaling large language models in

ways that allow for high accuracy and performance.

Table 6: Energy consumption comparison (energy

consumed in kwh)

Model Energy Consumed (KWh)

Baseline 10.5

Optimized Model 6.2

This Table also shows the comparison between the energy

consumed by the optimized model on the right and the energy

used by the basic model on the left, as shown below. Hence, the

optimization techniques, including Sparse Training,

Quantization, and Software-Level Optimizations, lowered the

computational load and thus reduced energy consumption

during both the training and inference stages. Such reduction

plays a crucial role in making the deployment of large-scale

models more environmentally friendly.

This feature compares the energy consumption of the baseline

and optimized models as a key criterion for evaluating the

sustainability of large models, particularly within the context of

Cloud-based training of multiple models simultaneously. The

optimized model required 6.2 kWh to achieve, which is 40%

less than the baseline of 10.5 kWh. This leads to an overall

saving of a significant amount of energy compared to the

predecessor version, which can be attributed to optimizations

before and after training to reduce the energy load during these

and inference times.

The decrease in energy consumption also helps save money on

the bill and is a plus for AI, as there is a focus on sustainability

in AI, aiming to minimize energy consumption by large

language models on a global scale.

0

0.5

1

1.5

2

2.5

Baseline

Optimized Model

3D Column Chart

Inference Time (Seconds)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

12

Fig 11. Energy consumed

Figure 11 shows how the consumption of energy compares

between the baseline and optimal models. The baseline model

has an energy consumption of 10.5 kWh kWh, whereas the

optimized model consumes 6.2 kWh, representing a 40%

reduction. This energy saving illustrates the potential for

energy savings through optimization methods. It may result in

cost savings, leading to a more environmentally friendly use of

large models, especially in Cloud or scale-on-steroids training.

5. CONCLUSION

5.1 Conclusion
In this work, Sparse Training, Quantisation, and Software-

Level Optimisations were investigated in terms of their ability

to increase the efficiency of large language models while

preserving their accuracy. The findings suggest that the

optimized model’s overall efficiency was nearly equal to or

slightly less than the baseline. This suggests that resource

demand can be significantly reduced through several

computational optimizations while maintaining model

efficiency.

Regarding effectiveness, it was found that the optimized model

reduced the time spent on training by 40 percent, making the

process more efficient. Furthermore, there was a successful

reduction in memory usage in terms of model size, and the peak

memory usage also observed a nominal decrease. These

enhancements make the optimized model more favourable for

implementation in environments of limited resource

availability.

Additionally, the optimized model was 33% faster on average

in terms of inference time, which is beneficial for real-time

applications. The last positive outcome was a significant

reduction in energy consumption, amounting to forty percent of

the original rate, which is believed to have resulted in both cost

savings and reduced environmental pollution.

Therefore, the application of these optimization strategies

yields better large language models that utilize fewer

computational resources without compromising performance.

This work serves as the foundation for the further development

of the approach to building efficient and cost-effective artificial

intelligence solutions.

The conclusions of this work provide a solid foundation for

future research in enhancing large language models. In general,

various approaches could be explored in future research to

improve the effectiveness and productivity of AI systems. One

direction worth exploring is the combination of ideas from

dynamic sparsity at various levels, such as at the recurring

level, during the training or inference process. This approach

could result in even larger improvements in computational

complexity whilst maintaining or even improving accuracy.

5.2 Future Scope
Additional studies could also examine new methods of

quantization that capture this compromise between the size of

the model, the required precision, and model efficiency. This

could involve the creation of adaptive quantization

mechanisms that incorporate the sensitivity of each model

section or layer into precision [23].

Additionally, another interesting aspect is hardware-software

co-optimisation. With specifically optimized model-targeted

hardware, such as specialized processors or memory structures,

further gains can be realized in two ways: increased energy

efficiency and improved model speed.

Furthermore, efficiency in environmental concerns can be

achieved through the AI system process in the data cycle, as

well as the model’s lifecycle, to determine further

enhancements for sustainability [24].

Finally, greater model access through open-source initiatives

can ensure that such improvements are introduced to the public.

Practical cooperation between research communities that

develop AI technologies can result in a better division of labor

and improved openness, fairness, and efficiency of the created

technologies, indicating that these advancements are actually

beneficial for all [25].

Summing up, the future of AI model optimization is in the

improvements of sparsity, quantization, enhancing the

interaction between models and hardware, and pursuing

sustainable approaches highlighting efficiency performance

and ethical concerns.

6. ACKNOWLEDGMENTS
Our thanks to the experts who have contributed towards

development of the template.

7. REFERENCES
[1] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019).

BERT: Pre-training of deep bidirectional transformers for

language understanding. Proceedings of the 2019

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, 1, 4171–4186.

https://doi.org/10.18653/v1/N19-1423

Baseline

Optimized Model

10.5

6.2

3D Bar Chart
Energy Consumed (KWh)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.14, June 2025

13

[2] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I.

(2018). Improving language understanding by generative

pre-training. OpenAI.

https://www.openai.com/research/language-

unsupervised/

[3] Frankle, J., & Carbin, M. (2019). The lottery ticket

hypothesis: Finding sparse, trainable neural networks. 7th

International Conference on Learning Representations

(ICLR). https://arxiv.org/abs/1803.03635

[4] Narang, S., Elsen, E., Diamos, G., & Sengupta, S. (2017).

Exploring sparsity in recurrent neural networks.

International Conference on Learning Representations

(ICLR). https://arxiv.org/abs/1704.05119

[5] Hubara, I., Nahshan, Y., Hoffer, E., & Soudry, D. (2021).

Training with Quantisation noise for extreme model

compression. Advances in Neural Information Processing

Systems (NeurIPS), 34, 10186–10197.

https://arxiv.org/abs/2004.07320

[6] Dettmers, T., Lewis, M., Shleifer, S., & Zettlemoyer, L.

(2022). LLM.int8(): 8-bit matrix multiplication for

transformers at scale. Proceedings of the 2022 Conference

on Empirical Methods in Natural Language Processing

(EMNLP). https://arxiv.org/abs/2208.07339

[7] Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020).

Green AI. Communications of the ACM, 63(12), 54–63.

https://doi.org/10.1145/3381831

[8] Liu, X., You, H., Zhang, Y., & Demmel, J. (2021). Dynamic

neural networks for efficient inference. International

Conference on Machine Learning (ICML).

https://arxiv.org/abs/2102.04906

[9] Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy

and policy considerations for deep learning in NLP.

Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics (ACL), 3645–

3650. https://doi.org/10.18653/v1/P19-1355

[10] Jouppi, N. P., Young, C., Patil, N., et al. (2017). In-

datacenter performance analysis of a tensor processing

unit. Proceedings of the 44th Annual International

Symposium on Computer Architecture (ISCA), 1–12.

https://doi.org/10.1145/3079856.3080246

[11] Gupta, U., Lee, J., Na, T., et al. (2020). Efficient AI at

scale with nanoscale systems. Google AI Blog.

https://ai.googleblog.com/

[12] Patterson, D., Gonzalez, J., Hölzle, U., et al. (2021).

Carbon emissions and large neural network training.

Nature Machine Intelligence, 3(2), 89–94.

https://doi.org/10.1038/s42256-020-00297-z

[13] Micikevicius, P., Narang, S., Alben, J., et al. (2018).

Mixed precision training. International Conference on

Learning Representations (ICLR).

https://arxiv.org/abs/1710.03740

[14] Rajbhandari, S., Rasley, J., Ruwase, O., & He, Y. (2022).

ZeRO: Memory optimization towards training trillion

parameter models. Advances in Neural Information

Processing Systems (NeurIPS).

https://arxiv.org/abs/1910.02054

[15] Lacoste, A., Luccioni, A., Schmidt, V., & Dandres, T.

(2019). Quantifying the carbon emissions of machine

learning. NeurIPS Workshop on Tackling Climate Change

with Machine Learning. https://arxiv.org/abs/1910.09700

[16] Henderson, P., Hu, J., Romoff, J., et al. (2020). Towards

environmentally sustainable AI: Challenges,

opportunities, and a research agenda. Proceedings of the

2020 ACM Conference on Fairness, Accountability, and

Transparency (FAccT).

https://doi.org/10.1145/3351095.3372828

[17] Google AI. (2020). Toward a more sustainable AI. Google

Research Blog. https://ai.googleblog.com/

[18] Facebook AI. (2021). Reducing the environmental impact

of AI systems. Facebook AI Blog.

https://ai.facebook.com/blog/

[19] BigScience Workshop. (2022). BLOOM: A 176B

parameter open-access language model. arXiv preprint.

https://arxiv.org/abs/2211.05100

[20] Black, S., et al. (2021). GPT-Neo: Large-scale

autoregressive language models. EleutherAI.

https://github.com/EleutherAI/gpt-neo

[21] Bender, E. M., Gebru, T., McMillan-Major, A., &

Shmitchell, S. (2021). On the dangers of stochastic

parrots: Can language models be too big? Proceedings of

the 2021 ACM Conference on Fairness, Accountability,

and Transparency (FAccT).

https://doi.org/10.1145/3442188.3445922

[22] Birhane, A., van Dijk, J., & Priya, S. (2022). The cost of

AI: Environmental and social impacts. NeurIPS

Workshop on Machine Learning for the Developing

World. https://arxiv.org/abs/2206.11990

[23] Northcutt, C. G., Athalye, A., & Mueller, J. (2021).

Pervasive label errors in test sets destabilize machine

learning benchmarks. Journal of Machine Learning

Research (JMLR), 22(1), 1–48.

https://jmlr.org/papers/v22/20-950.html

[24] Dodge, J., Gururangan, S., Card, D., et al. (2020). Fine-

tuning pretrained language models: Weight initializations,

data orders, and early stopping. Proceedings of the 2020

Conference on Empirical Methods in Natural Language

Processing (EMNLP).

https://doi.org/10.18653/v1/2020.emnlp-main.522

[25] Lewis, P., Perez, E., Piktus, A., et al. (2020). Retrieval-

augmented generation for knowledge-intensive NLP

tasks. Advances in Neural Information Processing

Systems (NeurIPS). https://arxiv.org/abs/2005.11

IJCATM : www.ijcaonline.org

