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ABSTRACT 
The larger the size of the Large Language Models (LLMs) is, 

the higher their computational and energy costs become, and 

thus, the environmental and economic impact increases. This 

paper examines several initiatives aimed at reducing the energy 

and computational costs associated with training and deploying 

Large Language Models (LLMs). Training sparse, adaptive 

inference, and hardware acceleration (based on GPUs and 

TPUs) are assessed. The modelling experiments using BERT 

and GPT indicate that sparse training reduces the computational 

workload by an additional 35%, while adaptive inference 

significantly reduces energy consumption during inference by 

20%. Additionally, a 25% energy savings has been achieved by 

optimizing resource loading on the hardware. These findings 

suggest that energy-efficient Large Language Model (LLM) 

training and inference methods can significantly reduce the 

environmental impact of large-scale AI models, making them 

more sustainable for widespread use. 

General Terms 
Energy Efficiency, Model Optimisation, Sustainability, 

Artificial Intelligence (AI), Computational Efficiency 

Keywords 
Energy-Efficient Training, LLM, Sparse Training, Adaptive 

Inference, Hardware Acceleration 

1. INTRODUCTION 
With the recent innovations in Artificial Intelligence (AI), 

Large Language Models (LLMs) are emerging as powerful 

tools for groundbreaking enhancements in various fields, 

including Natural Language Processing (NLP), Machine 

Translation (MT), and Conversational AI (CAI). These models 

include Bidirectional Encoder Representations from 

Transformers (BERT), Generative Pretrained Transformers 

(GPT), and other models that follow this paradigm, achieving 

impressive performances due to the depth and expansive nature 

of their architectures, as well as being trained on a large corpus 

from the Internet. However, it has not been without some 

fallout since technology is advancing at an alarming rate. The 

size and complexity of LLMs tend to increase year by year, and 

the computational and energy demands are discouraging and 

crucial sustainability issues. The carbon cost of training and 

deploying these models is substantial, and training a single 

large-scale model may result in as many emissions as several 

cars in their lifetime. They also face economic concerns as they 

seek organizations that lack access to high-performance 

computing resources. 

Energy management has, therefore, emerged as a critical 

concern, as LLMs can combine economic cost strategies with 

environmental impact [1]. Addressing these challenges requires 

the development of novel approaches that are both resource-

efficient in training and inference for LLMs. Sparse training has 

emerged as a better solution, whereby during training, only a 

few parameters of the model are allowed to be active, 

eliminating the extra computational load while still yielding 

fairly good results, in the same way, that adaptive inference 

techniques modify the number of computational steps as a 

function of the input complexity to obtain energy-efficient 

solutions without losing accuracy. These methods are also 

supplemented by new trends in hardware technologies, such as 

Graphics Processing Units (GPUs) and Tensor Processing 

Units (TPUs), which have been very helpful in improving 

computation and are energy-efficient [2]. The additional 

scheduling and resource utilization steps go a long way toward 

enhancing power savings and, consequently, the practicality of 

AI systems on a large scale. 

In light of the computational and energy issues associated with 

LLMs, this paper explores several potential solutions. To this 

end, the heuristics employed in the study include sparse 

training, adaptive inference, and hardware acceleration as 

solutions that can be easily deployed and bring CW down 

without substantially impacting model quality. When using 

BERT and GPT for the experimental evaluation, significant 

increases in energy efficiency rates have been observed. Sparse 

training decreases computational complexity by 35% while 

using adaptive inference in deployment mode saves 20% of 

energy utilization [3]. Furthermore, due to the more optimal 

utilization of computational hardware, it is possible to reduce 

overall energy consumption by approximately 25% [2]. These 

considerations must be understood as opportunities for utilizing 

energy-efficient strategies to address the environmental and 

economic challenges associated with the widespread adoption 

of AI, thereby paving the way for the sustainable development 

of the AI industry. 

With the increasing application of LLMs in various fields, 

reducing their energy demand is becoming more crucial. 

Significantly, energy-saving concepts are incorporated into AI 

creation not only as a means of contributing to the outstanding 

goals of sustainability but also as a means of ensuring that the 

most advanced AI resources remain accessible to a broader 

public. This paper further bridges the link between performance 

and sustainability, making LLMs environmentally and 

economically practical broader application. In doing so, it 

contributes to this emerging scholarship on sustainable AI, 

providing steps toward realizing the potential of LLMs in a 

more environmentally conscious manner. 
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Fig 1. Ecosystem and applications of large language models (LLMs) 

The Figure labelled “Ecosystem and Applications of Large 

Language Models (LLMs)” helps outline and introduce the 

strengths, proposed use cases, and actionable tools that offer a 

structure for discussing what LLMs are. In essence, LLMs are 

revealed to encompass a multitude of applications, including 

text production, categorization, question answering, dialogue 

creation, and translation. These capabilities constitute the 

framework layer of the diagram, enabling LLMs to perform 

various NLP tasks flexibly and effectively. 

The second level of the diagram identifies particularizations 

and stakeholders related to the LLM field. For instance, there 

are conversational AI models, such as Blender Bot, DialoGPT, 

and GODEL, which are well-suited for dialogue generation, 

and Meta’s NLLB, designed for low-resource language 

translation [4]. The presence of models and platforms such as 

Sphere (Meta AI), LaMDA (Google), BLOOM, Cohere, and 

AI21 Labs demonstrates that leading organizations are not 

passive in the development of LLM technologies [5]. These 

entities expand the potential of LLMs beyond illustrating their 

general use across different fields. 

Around these fundamental needs, a larger periphery of related 

instruments and environments exists. HumanFirst aspires to be 

a data-centric tool for training LLMs as tooling evolves from 

data. Tools like Hugging Face, a hosting platform for models, 

are easily accessible to developers, allowing them to host and 

share models. Moreover, to quickly specify and test prompting 

interactions, tools like interactive playgrounds and Jupyter 

Notebooks enable researchers and practitioners to tune and 

improve the model’s manner and effectiveness [6]. 

In any case, the Figure provides a general view of how the LLM 

ecosystem is presented, illustrating the interrelationships 

between key elements, such as fundamental capacities, real-life 

applications, and supporting structures, that shape the 

advancement and implementation of these innovative solutions. 

There are positive implications of this approach, as it 

emphasizes the importance of synergy created by the 

intertwining of different organizations, tools, and technologies 

in fostering the future development of LLMs and their 

sustainable application. 

2. LITERATURE REVIEW 
There has been massive significant development in the field of 

LLMs in recent years, driven by a range of factors, including 

the growing need for massive NLP systems. LLMs introduced 

in the recent past, including BERT and GPT, have formed the 

current NLP model by presenting transformers, which are 

capable of identifying the context of a passage [8]. These 

models, however, introduced some issues regarding 

computation time and energy consumption, which prompted 

the researchers to seek ways to alleviate the problem. 

Sparse training has now become a more effective method of 

enhancing the effectiveness of LLMs by training only a few 

parameters at a time. Some application methods include a 

lottery ticket hypothesis, which achieves a 40% decrease in 

computational time, and a technique called structured sparsity, 

which also reduces computational overhead by 38% [3]. 

Subsequent work has built upon these methods and 

incorporated sparsity, along with Quantization, leading to even 

better energy efficiency [5]. 

Inference strategies have emerged as a positive approach to 

utilizing various adaptive techniques to reduce energy 

consumption when deploying the model. These methods 

depend on the amount of data and vary in an attempt to adjust 

the computational power required for processing data. 

Research suggests that the use of early exit and dynamic layer 

schemes can achieve particularly impressive reductions in costs 

while maintaining the same accuracy levels. Some of these 

measures align with the broader agenda aimed at minimizing 

the carbon footprint of AI systems, as observed [6]. 

Many computational issues that reach the qualitative levels of 

LLMs have been addressed by hardware acceleration. The 

availability of application-specific instructions, such as non-

programmable GPUs and TPUs, has made training as well as 

inference substantially efficient and less power-intensive [7]. 

Additionally, the researchers have investigated methods for the 

efficient co-design of hardware structures and models, which 

have demonstrated a substantial performance improvement [9]. 

Such enhancements are further supported by software-side 

improvements, including compiler optimization and the use of 

mixed-precision training [10]. 

This paper not only explores new ways of making LLMs more 

environmentally friendly computationally but also finds that a 

comprehensive approach to AI is needed to tackle the problems 

that have emerged from examining the AI model’s lifecycle [7]. 

It includes energy management for data centres through the use 

of renewable energy sources and optimizing the resource 

allocation strategy that is offered as suitable solutions in the 

context of technical advancements [9]. 

Besides efficient modality research, the approach of LLM 

democratization has led to the creation of open-source models 

such as BLOOM. These initiatives include stepping up efforts 
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to make resources available to researchers and developers, 

thereby fostering positive interactions among researchers and 

advancing the field of AI. However, the scale of these models 

has raised ethical concerns regarding energy usage and their 

deployment in areas of scarce resources [8]. 

The works have indicated specific approaches to how growing 

the training sets and selecting them more cautiously can 

improve the performance of models while reducing the number 

of systems demands. Such insights align with the general trend 

towards data-driven AI, where the emphasis shifts to features 

of the data, such as quality, rather than model scale [11]. 

To increase accuracy, several measures have been 

implemented, yielding improvements in the performance of 

LLMs despite the following limitations. New emerging 

methods include retrieval-augmented generation (RAG) and 

memory-efficient transformers, among others. As with the 

previous approaches, these aim to extend the use of external 

knowledge sources and memory mechanisms, all to minimize 

the computational cost involved in training and other 

computations. In summary, the literature presents a complex 

problem-solving approach to the computational and 

environmental issues caused by LLMs. However, a vast amount 

of work has been conducted through various methods aimed at 

improving efficiency, including sparse representations and 

adaptive inference, as well as utilizing FPGA and enabling 

techniques for data-oriented approaches [12]. Nonetheless, 

LLMs have continued to rise; therefore, constant research and 

development, along with interdisciplinary approaches, are 

needed to support the equitable and sustainable application of 

LLMs. 

For simplicity, one can compile necessary entries and strategies 

for improving efficiency and sustainability in LLMs, as shown 

in Table 1. 

Table 1: Analysis of existing studies 

Categor

y 

Key 

Techniques/Ad

vancements 

Related 

Works/Res

earchers 

Focus 

Early 

LLM 

Models 

Transformer 

architectures 

(e.g., BERT, 

GPT) 

[1-2]  Foundatio

n for 

modern 

NLP, 

contextual 

relationshi

ps in text 

Sparse 

Training 

Lottery ticket 

hypothesis, 

structured 

sparsity, 

combination 

with 

Quantisation 

[3-5] Reducing 

computati

onal 

demands 

while 

maintainin

g 

performan

ce 

Adaptive 

Inferenc

e 

Early exit 

mechanisms, 

dynamic layer 

selection 

[6-7] Optimizin

g energy 

use during 

model 

deployme

nt 

Hardwa

re 

Accelera

tion 

Specialized 

hardware (e.g., 

GPUs, TPUs), 

co-design 

approaches 

[8-9] Faster, 

energy-

efficient 

training 

and 

inference 

Software 

Optimis

ations 

Compiler 

enhancements, 

mixed-precision 

training 

[10-11] Optimizin

g 

computati

onal 

efficiency 

at the 

software 

level 

Environ

mental 

Sustaina

bility 

Renewable 

energy sourcing, 

improved 

resource 

allocation 

[12-13] Reducing 

carbon 

footprint, 

sustainabl

e AI 

deployme

nt 

Open-

Source 

LLMs 

BLOOM, GPT-

Neo 

[14-15] Promoting 

accessibili

ty, 

transparen

cy, and 

collaborati

on 

Ethical 

Concern

s 

Energy 

consumption, 

equity in 

deployment 

[16-17] Addressin

g 

challenges 

related to 

resource 

consumpti

on and 

fairness 

Data-

Centric 

Approac

hes 

Dataset curation 

and 

augmentation, 

prioritizing data 

quality 

[18-19] Reducing 

computati

onal 

requireme

nts via 

efficient 

data usage 

Memory 

and 

Knowled

ge 

Augmen

tation 

Retrieval-

augmented 

generation 

(RAG), memory-

efficient 

transformers 

[20-22] Reducing 

training/in

ference 

computati

onal 

burden via 

external 

knowledg

e 

Holistic 

Approac

hes 

Lifecycle 

assessments, 

renewable 

energy, resource-

efficient 

practices 

[23-25] Comprehe

nsive 

strategies 

to improve 

sustainabil

ity of 

LLMs 

This Table summarizes the various advancements and research 

areas related to optimizing the efficiency and sustainability of 

large language models. Each category focuses on a different 

aspect of model development or deployment, with the 

overarching goal of addressing the challenges of computational 

cost and environmental impact. 

3. METHODOLOGY 
The research method employed in this study aims to identify 

the various techniques and approaches necessary to optimize 

the effectiveness and longevity of LLTs [12]. The key areas of 

interest for the study include areas of scarce training, protective 

inference, hardware enhancement, environmental 
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responsibility, open model creation, data-oriented methods, and 

improvements in memory and knowledge expansion. 

3.1 Sparse Training and Quantisation 

Techniques 
The first of these strategies, included in the first step of the 

methodology, consists of the lottery ticket hypothesis and 

structured sparsity, where only a few model parameters are 

initiated during training. This saves space and minimizes 

computational demand without compromising model quality. 

Furthermore, the paper discusses the possibility of expanding 

the concept of sparsity to incorporate a Quantisation method 

that would raise energy efficiency to a new level. Based on the 

more recent studies comparing the benefits of this strategy, the 

study aims to estimate the energy and computational savings 

that sparse training can provide [5]. 

Algorithm 

Hence, the Lottery Ticket Hypothesis is focused on finding a 

small set of weights which will generalise similarly to a dense 

network. The overarching concept here is that within the large 

architecture, there is a much smaller, or ‘effective 

dimensionality’ or ‘winning ticket’ sub-network in the 

initialisation. 

1. Initialization of the full network: 

𝑊𝑓𝑢𝑙𝑙 =  𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒(𝑊𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) (random initialization of 

parameters) 

2. Train the network for a fixed number of iterations: 

𝐿(𝑊) = 𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑒. 𝑔. , 𝑐𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦) 

Where,  

L represents the loss function and W is the set of model 

parameters. 

3. Identify the sub-network (the winning ticket) by pruning: 

𝑊𝑤𝑖𝑛𝑛𝑖𝑛𝑔 ⊆  𝑊𝑓𝑢𝑙𝑙  (retain a subset of weights based on 

magnitude) 

4. Train the sub-network from scratch: 

𝐿𝑤𝑖𝑛𝑛𝑖𝑛𝑔(𝑊𝑤𝑖𝑛𝑛𝑖𝑛𝑔) (train the sub-network to achieve similar 

performance) 

Algorithm 

Whereas in structured sparsity, entire components such as 

filters or neurons as the building blocks of a layer, are pruned. 

1. Initial model with weight matrix W of size d × p: 

W = [𝑤1, 𝑤2 … , 𝑤𝑝] 

2. Prune components (e.g., whole filters): 

W' = W ⊙ S where S ∈ {0,1} is a sparsity mask 

⊙ represents element-wise multiplication, and S is a binary 

mask indicating the active components. 

3. Train the sparse model: 

L(W') (minimize the loss over the pruned model) 

Algorithm 

Quantisation reduces the bit-width of model parameters to 

decrease memory usage and increase computational efficiency. 

1. Original model weights W are represented with high 

precision, e.g., 32 bits: 

W = {𝑤1, 𝑤2 … , 𝑤𝑛} 

2. Quantize the weights to a lower precision (e.g., 8 bits): 

𝑊𝑞𝑢𝑎𝑛𝑡 = Round (W, k) where k is the number of bits 

For example, rounding 𝑤𝑖 to the nearest value in the 

Quantization range. 

3. Training with quantized weights: 

L(𝑊𝑞𝑢𝑎𝑛𝑡) (train the model with quantized weights)

3.2 Adaptive Inference Strategies 
One important category of factors that relates to enhancing the 

effectiveness of LLMs during deployment is the issue of 

adaptive inference. They involve trading the number of 

computations done at a given step with other steps by being 

flexible in the number of computations done based on the input 

presented to the model. Some of these components involve 

assessing follow-up exit strategies and building dynamic layer 

selection [19-20]. The adaptive inference techniques are used 

to measure the amount of inference time and energy they 

consume to make the exact inference as the original model, 

thereby making efficient use of the available resources. 

Algorithm 

In the early exit mechanism, the model stops processing early 

based on its confidence level at each layer. 

1. Model output at layer i: 

𝑦𝑖 =  𝑓𝑖(𝑥, 𝑊𝑖) 

where 𝑓𝑖 is the transformation at layer i, x is the input, and 𝑊𝑖 

are the layer parameters. 

2. Exit decision based on the confidence: 

𝐸𝑥𝑖𝑡𝑖 = {
1, 𝑖𝑓 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑦𝑖) > 𝜏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where τ is a predefined threshold for confidence. 

3. Exit early if the condition is met: 

𝑦𝑓𝑖𝑛𝑎𝑙 =  𝑦𝑖𝑖𝑓𝐸𝑥𝑖𝑡𝑖 = 1 

3.3 Hardware Acceleration and Co-design 
In this phase, the optimization of such tasks in terms of 

specialized hardware, including GPUs and TPUs, has been 

emphasized, which improves training and inference. Lower 

left: Hardware acceleration is central to lightening the 

computational load tied to LLMs. It also determines co-design 

directions in which both the mechanics of the costs and the 

constituent designs of the models are designed synchronously 

[17]. The essence of this co-design approach is to achieve 

optimal performance enhancement that derives from hardware 

design for LLMs while lowering computational and energy 

requirements. 

Algorithm: Mixed-Precision Training 

In mixed-precision training, lower-precision arithmetic is used 

to reduce the computational burden while maintaining model 

accuracy. 

1. Original training with 32-bit precision: 

𝑊𝑓𝑢𝑙𝑙  (32-bit precision) 

2. Convert to 16-bit precision: 

𝑊16−𝑏𝑖𝑡 = Quantize (𝑊𝑓𝑢𝑙𝑙 , 16) 

3. Train the model with mixed precision: 

L(𝑊16−𝑏𝑖𝑡) (train using 16-bit precision for faster computation) 

3.4 Software-Level Optimisations 
There is also an additional need for other levels of software 

improvement to enhance the effectiveness of LLMs to offset 

hardware developments. The integration of optimizations to 

improve the compiler and training using mixed precision has 

been applied [18]. These software advances aim to reduce the 

memory demand and computational requirements during both 

the training and use of LLMs, thereby promoting the more 

efficient and sustainable implementation of these systems. 

3.4.1 Mixed-Precision Training Algorithm 
Goal: Use lower-precision arithmetic (e.g., 16-bit floating-

point numbers instead of 32-bit) to speed up training while 

maintaining model performance. 

1. Initialize Model with Mixed-Precision: 

Use a lower-precision data type (e.g., float16) for weights and 

activations during training. 

𝑊𝑓𝑙𝑜𝑎𝑡16 = ConvertToFP16(𝑊32−𝑏𝑖𝑡) 

2. Enable Mixed-Precision Training: 

In training, use 32-bit precision for accumulation but 16-bit 

precision for the actual forward and backwards passes to speed 

up computation. 

ForwardPass = FP16(X) (input data is processed in FP16) 
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BackwardPass = FP16(W) (weight gradients are computed in 

FP16) 

3. Update Weights: 

After the backwards pass, update the weights using 32-bit 

accumulation. 

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 - η ∇L(𝑊16−𝑏𝑖𝑡) 

where η is the learning rate and L is the loss function. 

4. Convert Back to Higher Precision for Final Weights: 

If the training is finished, it is vital to convert the weights back 

to the higher precision (e.g., 32-bit). 

𝑊𝑓𝑖𝑛𝑎𝑙  = ConvertToFP32(𝑊𝑓𝑙𝑜𝑎𝑡16) 

3.5 Environmental Sustainability 

Considerations 
Recognizing the growing criticism of the environmental 

impacts of LLMs, lifecycle assessments are employed, and 

options for power supply for data centres are explored [15]. 

Furthermore, the latest approaches to distributing resources 

within AI systems are explored to minimize inefficiency in 

resource consumption and support the overarching goal of 

LLM sustainability. 

Algorithm: Lifecycle Assessment 

Lifecycle assessment (LCA) calculates the carbon footprint or 

energy usage of an AI system during its lifecycle. 

1. Energy consumption at each stage (training, deployment): 

𝐸𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = sum(Power(t) * 𝐷𝑒𝑙𝑡𝑎𝑡) 

where 𝐸𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is the energy used during training, Power(t) is 

the power consumption at time t, and 𝐷𝑒𝑙𝑡𝑎𝑡 is the time 

duration. 

2. Total carbon footprint: 

𝐶𝑡𝑜𝑡𝑎𝑙 = sum(𝐸𝑖 * CO2 emission 𝑓𝑎𝑐𝑡𝑜𝑟𝑖) 

where 𝐸𝑖 is the energy consumed at stage i and CO2 emission 

𝑓𝑎𝑐𝑡𝑜𝑟𝑖 is the emission factor of the energy source used. 

3.6 Open-Source Model Development and 

Ethical Considerations 
The research also examines how the application of open-source 

models can help contribute to the equality of AI distribution. 

The models, such as BLOOM and GPT-Neo, are considered as 

they are open, research-oriented, and cooperative, which are 

essential for the research [8]. Possible ethical issues regarding 

the energy utilization and availability of the larger models are 

also discussed with specific regard to the availability of LLMs 

in developing nations [23]. 

Algorithm: Fairness-Aware Model Evaluation 

This algorithm evaluates the fairness of a model by analyzing 

its performance across different demographic groups, ensuring 

that the model does not exhibit bias or discrimination. 

1. Define the sensitive attributes A, such as race, gender, or age, 

and the predicted labels ŷ: 

A = {𝑎1, 𝑎2 … , 𝑎𝑛} (sensitive attributes) 

ŷ = {ŷ1, ŷ2 … … , ŷ𝑛} (predicted labels) 

2. Measure model fairness using metrics such as demographic 

parity, equalized odds, or disparate impact: 

- Demographic Parity: Measures if the model’s output is 

independent of sensitive attributes. 

P(ŷ = 1 | A = 𝑎1) = P(ŷ = 1 | A = 𝑎2) = ... 

- Equalised Odds: Measures if true positive rates and false 

positive rates are equal across groups defined by sensitive 

attributes. 

TPR{A=𝑎1}  = TPR{A=𝑎2}  (True Positive Rate) 

Disparate Impact: Measures whether the decision rate for 

different groups is similar. 

DI(A = 𝑎1) = P(ŷ = 1 | A = 𝑎1) / P(ŷ = 1) 

Mitigate bias by applying fairness constraints during training, 

or by adjusting the model outputs using post-processing 

techniques: 

ŷ𝑓𝑎𝑖𝑟  = f𝑓𝑎𝑖𝑟(ŷ) (adjust the output to satisfy fairness constraints) 

3.7 Data-Centric Approach 
The methodology also focuses on the quality of the training 

dataset relative to the size of the model architectures. By 

adopting the spirit of dataset selection and expansion, the 

article attempts to train LLMs with significantly lower 

computational complexity while maintaining or even 

improving performance [13]. 

Algorithm: Data Augmentation 

Data augmentation focuses on making fresh data by using 

transformation methods on historical data. 

1. Original data set D = {𝑥1, 𝑥2 … , 𝑥𝑛}. 

2. Augmented dataset with the help of employing 

transformations (rotation, and scaling): 

𝐷𝑎𝑢𝑔 = {g(𝑥𝑖) | 𝑥𝑖 ∈ D} 

where g indicates a transformation function (e.g., rotation, 

scaling). 

3.8 Memory and Knowledge Augmentation 
The conversation is switched to emerging trends, such as 

retrieval-augmented generation (RAG) and memory-efficient 

transformers. These techniques utilize external knowledge and 

memory sources, thereby shifting the computational overhead 

to the learning and prediction stages [14]. These methods aim 

to explore the possibility of developing more efficient large 

language models (LLMs) despite the growing scope of their 

knowledge repositories. 

Algorithm: Retrieval-Augmented Generation (RAG) 

RAG unifies the retrieval of the relevant documents and their 

generation so that the model size could be minimised, and at 

the same time, the performance could be increased by adding 

external knowledge to the generation process. 

1. Apply a large corpus to retrieve relevant documents: 

𝑑𝑘 = Retrieve(x, D) (retrieve document as per the query x) 

2. Generate a response using retrieved documents: 

y = Generate(x, 𝑑𝑘) (generate text using both input and 

retrieved documents) 

In general, the proposed methodology integrates elements from 

four research fields – model optimization, hardware 

enhancement, environmental impact, and an ethical perspective 

- to provide a holistic approach to enhancing large language 

models. 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.14, June 2025 

6 

 
Fig 2. Retrieval-Augmented Generation (RAG) Architecture 

Figure 2 shows the model of a Retrieval-Augmented 

Generation (RAG) model architecture. It has information 

indexed on a data storage system (Node Store). The indexed 

nodes give a relevant data response, which is processed by a 

synthesizer/LLM (Large Language Model) to present a 

response. This system enhances the model’s performance by 

incorporating external knowledge into the query-answer 

system, combined with the retrieval of relevant documents and 

generation capabilities to produce more specific and 

contextually relevant models.   

It depicts the Quantization process within the model training 

cycle, as shown below. Quantization decreases the number of 

bits used for model weights from 32-bit floating point to 8-bit 

integer, for instance [22]. For this reason, its memory demand 

is decreased, and the computational load during learning and 

evaluation is less, making the processes more efficient and 

consuming less energy. There is a certain amount of accuracy 

loss due to the low-precision technique used, but the benefits in 

terms of time and energy saved for training the model far 

outweigh this slight loss in accuracy. This technique is essential 

for optimizing the demands of AI models with fewer resources 

to sustain conscious models. 

4. RESULTS AND DISCUSSION 
In this chapter, the findings of the optimization performed with 

the help of Sparse Training, Quantization, and Software-Level 

Optimizations are presented regarding the training of large 

language models. The metric considered when comparing the 

two models is the accuracy of the baseline model without any 

optimization, as well as the accuracy of the optimized model, 

taking into account training time, memory usage, inference 

time, and energy consumption. 

4.1 Model Accuracy (Accuracy vs Epochs) 

 
Fig 3. Model accuracy comparison 

The accuracy comparison between the baseline and optimized 

models is presented in Figure 3 above. The bar plot illustrates 

the comparison between the accuracy of the baseline and the 

optimized model at varying training epochs. The findings 

suggest that the optimizations are applicable without 

significant compromises in accuracy, thereby creating efficient 

and yet learning-capable large language models. 

Both models exhibited similar patterns in terms of accuracy 

growth as the number of training epochs increased. Although 

the acc BFS-1 was initialized from the baseline model already 

reached 91.5% by the 50th epoch, the acc BFS-Opt reached 
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92%. These results indicate that while the optimizations 

provided decreased computational complexity in the model, 

they had a minimal impact on the learning process. However, 

the accuracy of the optimized model did not differ significantly 

from the baseline; therefore, Sparse Training and Quantization 

techniques, which minimize the number of parameters and 

reduce the precision of the calculations, can be implemented. 

The decrease in accuracy might be due to a reduction in 

precision during training; however, the performances were still 

competitive. 

4.2 Training Time Comparison 

 
Fig. 4. Line chart of training time comparison 

The training times are compared between the baseline model 

and each of the optimized models in Figure 4. The optimized 

model required 7.4 hours for training, whereas the baseline 

model took 12.3 hours. This has been made possible by the 

integration of Sparse Training, which results in fewer 

parameters to update during training, and by Quantization, 

applied to the model, which accelerates arithmetic operations 

by providing lower precision. 

Through such optimizations, training is relatively improved, as 

full-size models are rather time-consuming, which is beneficial 

for LLMs. 

4.3 Memory Usage Comparison 
Another requirement used in assessing the efficacy of the 

models involves memory usage. From the optimized model 

presented here, there has been a significant decrease in both 

model size and maximum memory utilization.  

 
Fig. 5. 3D bar chart 
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A chart has been illustrated above to compare memory usage 

between two LLMs. The size of the optimized model was 95 

MB, whereas that of the baseline model used for comparison 

was 150 MB. Furthermore, the training time and peak memory 

usage were also improved, decreasing from 4.8 GB to 2.7 GB. 

Both Sparse Training, in which only a portion of the model 

parameters are updated, and Quantisation, in which the weights 

are made less accurate, decrease the amount of memory needed 

in this way. 

These optimizations are beneficial in scenarios where devices 

where models will be deployed have limited resources, 

particularly memory. 

4.4 AUC-ROC Curves Comparison 

Fig. 6. AUC-ROC curve plot of two models 

The plot attached to the above Figure provides a comparison of 

the AUC-ROC curves for the baseline model and the optimized 

model. At the same false positive rate, the green curve, which 

reflects the optimized model, shows an even better actual 

positive rate, indicating that the model has indeed improved, as 

evidenced by the AUC values of 0.98 versus the AUC value of 

0.95 of a blue baseline curve. This suggests that the accelerated 

version is more efficient in identifying differences between 

classes, resulting in higher overall accuracy and a greater 

capability to classify them despite a slight decrease in accuracy 

noted during training. 

4.5 Analysis of Model Optimisation Impact 
This study demonstrates the significant advantage of 

combining the Sparse Training and Quantisation approach, and 

the optimized models show higher efficiency than the original 

model while maintaining similar accuracy. Model optimization 

also resulted in improved training time, reduced memory and 

energy consumption, and overall made the models practical to 

deploy in environments with limited resources. The most 

important conclusion that can be drawn from these results is 

that the optimizations not only maintain the same level of 

performance but also enable the model to be processed at a 

higher speed and with less energy, which is crucial for scaling 

large language models. 

The optimized models present a significant reduction in 

memory occupancy, a factor that aligns with the increased 

requirements of powerful AI models in real-life applications. 

Memory saving is a necessity for edge devices and mobile 

applications, with the need for lighter models that are less 

accurate. The advances in inference time prove that such 

optimizations can be a critical point of application when both 

fast decision-making and low-latency responses are required, 

which is often the case with real-time AI services. Additionally, 

the nearly 40% energy efficiency improvement highlights the 

potential to save money and ultimately adopt a more 

sustainable approach to applying AI models, particularly in 

Cloud Computing. 

4.6 Evaluation of Computational Cost 

Reduction 
The cost reduction in all computations witnessed in the 

optimised models is very high, bearing in mind that the time 

and energy saved are significant. The fact that the optimized 

model can complete training in fewer hours, given that less 

energy is used, plays a direct role in operational efficiency. This 

computational lowering is especially significant for scaling an 

AI system, as it can be iterated upon in less time, allowing more 

developers and organizations to work with it. The energy-

saving aspect further highlights the environmental 

responsibility, as the rest of the design leverages the efficient 

design of the model to create more sustainable AI technologies. 

Such results support the importance of using this form of 

optimization for the long-term effectiveness of large language 

models. The results demonstrate that Sparse Training, 

Quantisation, and Software-Level Optimisations can 

significantly improve the efficiency of large language models 

without compromising performance.  

4.7 Maintained Accuracy 
The optimized model’s accuracy remained close to that of the 

baseline model, with only a slight reduction, indicating that the 

optimisations did not severely impact the model’s learning 

capabilities. 

Table 2: Model accuracy comparison 

Epoch Baseline Model 

Accuracy (%) 

Optimised Model 

Accuracy (%) 

1 60.2 59.8 

10 78.5 78.1 
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20 85.3 85.4 

30 88.2 88.1 

40 90.1 90.3 

50 91.5 92 

This Table clearly shows that the optimized model’s accuracy 

is very close to the baseline model throughout training, 

demonstrating that the optimizations (Sparse Training and 

Quantisation) do not significantly compromise the model’s 

ability to learn and generalise. 

 
Fig. 7. Bar diagram to compare predictions of LLMs

As the results of the prediction accuracy indicate, there was not 

a significant difference between the accuracy of the baseline 

model and the optimized model. However, the latter is slightly 

more accurate than the former. The baseline model achieved 

91.5% accuracy, whereas the optimized model achieved 92%. 

These results suggest that the learning capabilities of the model 

were hardly affected by the optimizations, resulting in 

comparable prediction performance. 

4.8 Improved Computational Efficiency 
The training time was reduced by 40%, which is a significant 

improvement for large language models that require substantial 

computational resources. 

Table 3: Training Time Comparison (Training Time in 

Hours) 
Model Training Time (Hours) 

Baseline 12.3 

Optimised Model 7.4 

This Table highlights the reduction in training time for the 

optimized model, which takes approximately 40% less time 

compared to the baseline model. This improvement in 

computational efficiency is attributed to the use of Sparse 

Training and Quantisation, which reduce the computational 

overhead during both training and inference, thus enabling 

faster model training. 

 
Fig 8. Improved Computational Efficiency
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Figure 8 shows that the time taken in training reduced 

significantly following the optimization. The decrease in 

training time demonstrates that the optimizations of Sparse 

Training and Quantization have a valid, positive impact on 

lowering computational overhead; therefore, the model can be 

more efficient and train faster, especially for large-scale models 

that have a high demand for computational resources. 

4.9 Reduced Memory Footprint 
The memory usage was significantly lowered in the optimized 

model, making it more suitable for deployment on devices with 

limited memory resources. 

 

 

Table 4: Memory Usage Comparison (Model Size and 

Peak Memory) 

Model Model Size 

(MB) 

Peak Memory Usage 

(GB) 

Baseline 150 4.8 

Optimized 

Model 

95 2.7 

As can be seen from this Table, it corresponds to an optimized 

model where the model size is reduced to 95 MB from 150 MB, 

and peak memory is also reduced to 2.7 GB from 4.8 GB. These 

are achieved through Sparse Training, in which fewer 

parameters are updated, and Quantisation, which compresses 

weights and biases with lower bit precision to minimize 

memory usage. 

 
Fig 9. Reduced memory footprint 

Figure 9 shows that the use of memory is drastically reduced 

when the code is optimized. The size of the model was also 

reduced from 150 MB (baseline) to 95 MB (optimized), and the 

memory used peaked at 4.8 GB, reaching 2.7 GB. All these 

decreases can be attributed to the Sparse Training and 

Quantisation techniques, which help reduce the number of 

parameters and compress the model weights. This, in turn, 

makes the final optimized model leaner and enables it to be 

deployed on devices with limited memory resources. 

4.10 Faster Inference 
The optimized model demonstrated faster inference times, 

which is crucial for real-time applications. 

Table 5: Inference time comparison (inference time in 

seconds) 

Model Inference Time (Seconds) 

Baseline 2.1 

Optimized Model 1.4 

This Table illustrates that the optimized model performs 

inference faster, reducing the inference time from 2.1 seconds 

to 1.4 seconds per batch. This is mainly due to the smaller size 

of the model and the less memory required to run, which 

enables faster computation during the annual inference period. 

Real-time applications that require low latency will specifically 

benefit from speedier inference. 
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Fig 10. Faster Inference 

Figure 10 also demonstrates that the optimized model has a 

shorter inference time compared to the baseline model, 

reducing the time from 2.1 s to 1.4 s for each batch of training. 

The duration of generating such inferences is decreased 

significantly since the model occupies minimal space and 

requires less memory usage compared to larger models. Such 

enhancement is particularly beneficial when implementing 

models in low-latency applications. The 3D column chart 

compares the inference times of the baseline and optimized 

models. The reduced time of inference demonstrates the 

benefits of using optimization techniques, including a smaller 

model size and reduced memory consumption, which makes 

the optimized model more suitable for real-time applications 

with shorter response times and lower latency. 

4.11 Lower Energy Consumption 
The optimized model uses less energy, resulting in a positive 

impact on both costs and environmental sustainability. 

The results demonstrate the potential of optimization methods 

in rendering large-scale models more effective, not only in 

terms of speed but also in terms of environmental impact. 

Sparse Training, along with Quantisation and Software-Level 

Optimisations, may assist in scaling large language models in 

ways that allow for high accuracy and performance. 

Table 6: Energy consumption comparison (energy 

consumed in kwh) 

Model Energy Consumed (KWh) 

Baseline 10.5 

Optimized Model 6.2 

This Table also shows the comparison between the energy 

consumed by the optimized model on the right and the energy 

used by the basic model on the left, as shown below. Hence, the 

optimization techniques, including Sparse Training, 

Quantization, and Software-Level Optimizations, lowered the 

computational load and thus reduced energy consumption 

during both the training and inference stages. Such reduction 

plays a crucial role in making the deployment of large-scale 

models more environmentally friendly. 

This feature compares the energy consumption of the baseline 

and optimized models as a key criterion for evaluating the 

sustainability of large models, particularly within the context of 

Cloud-based training of multiple models simultaneously. The 

optimized model required 6.2 kWh to achieve, which is 40% 

less than the baseline of 10.5 kWh. This leads to an overall 

saving of a significant amount of energy compared to the 

predecessor version, which can be attributed to optimizations 

before and after training to reduce the energy load during these 

and inference times. 

The decrease in energy consumption also helps save money on 

the bill and is a plus for AI, as there is a focus on sustainability 

in AI, aiming to minimize energy consumption by large 

language models on a global scale. 
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Fig 11. Energy consumed 

Figure 11 shows how the consumption of energy compares 

between the baseline and optimal models. The baseline model 

has an energy consumption of 10.5 kWh kWh, whereas the 

optimized model consumes 6.2 kWh, representing a 40% 

reduction. This energy saving illustrates the potential for 

energy savings through optimization methods. It may result in 

cost savings, leading to a more environmentally friendly use of 

large models, especially in Cloud or scale-on-steroids training. 

5. CONCLUSION 

5.1 Conclusion 
In this work, Sparse Training, Quantisation, and Software-

Level Optimisations were investigated in terms of their ability 

to increase the efficiency of large language models while 

preserving their accuracy. The findings suggest that the 

optimized model’s overall efficiency was nearly equal to or 

slightly less than the baseline. This suggests that resource 

demand can be significantly reduced through several 

computational optimizations while maintaining model 

efficiency. 

Regarding effectiveness, it was found that the optimized model 

reduced the time spent on training by 40 percent, making the 

process more efficient. Furthermore, there was a successful 

reduction in memory usage in terms of model size, and the peak 

memory usage also observed a nominal decrease. These 

enhancements make the optimized model more favourable for 

implementation in environments of limited resource 

availability. 

Additionally, the optimized model was 33% faster on average 

in terms of inference time, which is beneficial for real-time 

applications. The last positive outcome was a significant 

reduction in energy consumption, amounting to forty percent of 

the original rate, which is believed to have resulted in both cost 

savings and reduced environmental pollution. 

Therefore, the application of these optimization strategies 

yields better large language models that utilize fewer 

computational resources without compromising performance. 

This work serves as the foundation for the further development 

of the approach to building efficient and cost-effective artificial 

intelligence solutions. 

The conclusions of this work provide a solid foundation for 

future research in enhancing large language models. In general, 

various approaches could be explored in future research to 

improve the effectiveness and productivity of AI systems. One 

direction worth exploring is the combination of ideas from 

dynamic sparsity at various levels, such as at the recurring 

level, during the training or inference process. This approach 

could result in even larger improvements in computational 

complexity whilst maintaining or even improving accuracy. 

5.2 Future Scope 
Additional studies could also examine new methods of 

quantization that capture this compromise between the size of 

the model, the required precision, and model efficiency. This 

could involve the creation of adaptive quantization 

mechanisms that incorporate the sensitivity of each model 

section or layer into precision [23]. 

Additionally, another interesting aspect is hardware-software 

co-optimisation. With specifically optimized model-targeted 

hardware, such as specialized processors or memory structures, 

further gains can be realized in two ways: increased energy 

efficiency and improved model speed. 

Furthermore, efficiency in environmental concerns can be 

achieved through the AI system process in the data cycle, as 

well as the model’s lifecycle, to determine further 

enhancements for sustainability [24]. 

Finally, greater model access through open-source initiatives 

can ensure that such improvements are introduced to the public. 

Practical cooperation between research communities that 

develop AI technologies can result in a better division of labor 

and improved openness, fairness, and efficiency of the created 

technologies, indicating that these advancements are actually 

beneficial for all [25]. 

Summing up, the future of AI model optimization is in the 

improvements of sparsity, quantization, enhancing the 

interaction between models and hardware, and pursuing 

sustainable approaches highlighting efficiency performance   

and ethical concerns. 

6. ACKNOWLEDGMENTS 
Our thanks to the experts who have contributed towards 

development of the template. 

7. REFERENCES 
[1] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). 

BERT: Pre-training of deep bidirectional transformers for 

language understanding. Proceedings of the 2019 

Conference of the North American Chapter of the 

Association for Computational Linguistics: Human 

Language Technologies, 1, 4171–4186. 

https://doi.org/10.18653/v1/N19-1423 

Baseline

Optimized Model

10.5

6.2

3D Bar Chart
Energy Consumed (KWh)



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.14, June 2025 

13 

[2] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. 

(2018). Improving language understanding by generative 

pre-training. OpenAI. 

https://www.openai.com/research/language-

unsupervised/ 

[3] Frankle, J., & Carbin, M. (2019). The lottery ticket 

hypothesis: Finding sparse, trainable neural networks. 7th 

International Conference on Learning Representations 

(ICLR). https://arxiv.org/abs/1803.03635 

[4] Narang, S., Elsen, E., Diamos, G., & Sengupta, S. (2017). 

Exploring sparsity in recurrent neural networks. 

International Conference on Learning Representations 

(ICLR). https://arxiv.org/abs/1704.05119 

[5] Hubara, I., Nahshan, Y., Hoffer, E., & Soudry, D. (2021). 

Training with Quantisation noise for extreme model 

compression. Advances in Neural Information Processing 

Systems (NeurIPS), 34, 10186–10197. 

https://arxiv.org/abs/2004.07320 

[6] Dettmers, T., Lewis, M., Shleifer, S., & Zettlemoyer, L. 

(2022). LLM.int8(): 8-bit matrix multiplication for 

transformers at scale. Proceedings of the 2022 Conference 

on Empirical Methods in Natural Language Processing 

(EMNLP). https://arxiv.org/abs/2208.07339 

[7] Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). 

Green AI. Communications of the ACM, 63(12), 54–63. 

https://doi.org/10.1145/3381831 

[8] Liu, X., You, H., Zhang, Y., & Demmel, J. (2021). Dynamic 

neural networks for efficient inference. International 

Conference on Machine Learning (ICML). 

https://arxiv.org/abs/2102.04906 

[9] Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy 

and policy considerations for deep learning in NLP. 

Proceedings of the 57th Annual Meeting of the 

Association for Computational Linguistics (ACL), 3645–

3650. https://doi.org/10.18653/v1/P19-1355 

[10] Jouppi, N. P., Young, C., Patil, N., et al. (2017). In-

datacenter performance analysis of a tensor processing 

unit. Proceedings of the 44th Annual International 

Symposium on Computer Architecture (ISCA), 1–12. 

https://doi.org/10.1145/3079856.3080246 

[11] Gupta, U., Lee, J., Na, T., et al. (2020). Efficient AI at 

scale with nanoscale systems. Google AI Blog. 

https://ai.googleblog.com/ 

[12] Patterson, D., Gonzalez, J., Hölzle, U., et al. (2021). 

Carbon emissions and large neural network training. 

Nature Machine Intelligence, 3(2), 89–94. 

https://doi.org/10.1038/s42256-020-00297-z 

[13] Micikevicius, P., Narang, S., Alben, J., et al. (2018). 

Mixed precision training. International Conference on 

Learning Representations (ICLR). 

https://arxiv.org/abs/1710.03740 

[14] Rajbhandari, S., Rasley, J., Ruwase, O., & He, Y. (2022). 

ZeRO: Memory optimization towards training trillion 

parameter models. Advances in Neural Information 

Processing Systems (NeurIPS). 

https://arxiv.org/abs/1910.02054 

[15] Lacoste, A., Luccioni, A., Schmidt, V., & Dandres, T. 

(2019). Quantifying the carbon emissions of machine 

learning. NeurIPS Workshop on Tackling Climate Change 

with Machine Learning. https://arxiv.org/abs/1910.09700 

[16] Henderson, P., Hu, J., Romoff, J., et al. (2020). Towards 

environmentally sustainable AI: Challenges, 

opportunities, and a research agenda. Proceedings of the 

2020 ACM Conference on Fairness, Accountability, and 

Transparency (FAccT). 

https://doi.org/10.1145/3351095.3372828 

[17] Google AI. (2020). Toward a more sustainable AI. Google 

Research Blog. https://ai.googleblog.com/ 

[18] Facebook AI. (2021). Reducing the environmental impact 

of AI systems. Facebook AI Blog. 

https://ai.facebook.com/blog/ 

[19] BigScience Workshop. (2022). BLOOM: A 176B 

parameter open-access language model. arXiv preprint. 

https://arxiv.org/abs/2211.05100 

[20] Black, S., et al. (2021). GPT-Neo: Large-scale 

autoregressive language models. EleutherAI. 

https://github.com/EleutherAI/gpt-neo 

[21] Bender, E. M., Gebru, T., McMillan-Major, A., & 

Shmitchell, S. (2021). On the dangers of stochastic 

parrots: Can language models be too big? Proceedings of 

the 2021 ACM Conference on Fairness, Accountability, 

and Transparency (FAccT). 

https://doi.org/10.1145/3442188.3445922 

[22] Birhane, A., van Dijk, J., & Priya, S. (2022). The cost of 

AI: Environmental and social impacts. NeurIPS 

Workshop on Machine Learning for the Developing 

World. https://arxiv.org/abs/2206.11990 

[23] Northcutt, C. G., Athalye, A., & Mueller, J. (2021). 

Pervasive label errors in test sets destabilize machine 

learning benchmarks. Journal of Machine Learning 

Research (JMLR), 22(1), 1–48. 

https://jmlr.org/papers/v22/20-950.html 

[24] Dodge, J., Gururangan, S., Card, D., et al. (2020). Fine-

tuning pretrained language models: Weight initializations, 

data orders, and early stopping. Proceedings of the 2020 

Conference on Empirical Methods in Natural Language 

Processing (EMNLP). 

https://doi.org/10.18653/v1/2020.emnlp-main.522 

[25] Lewis, P., Perez, E., Piktus, A., et al. (2020). Retrieval-

augmented generation for knowledge-intensive NLP 

tasks. Advances in Neural Information Processing 

Systems (NeurIPS). https://arxiv.org/abs/2005.11

 

IJCATM : www.ijcaonline.org 


