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ABSTRACT 

This research aims to enhance automatic speech recognition 

(ASR) by integrating multimodal data—specifically, text 

transcripts and Mel spectrograms generated from raw audio 

signals. The study explores the often-overlooked role of 

phonological features and spectrogram-based representations 

in improving the accuracy of spoken word recognition. A dual-

path approach is adopted: EfficientNetV2 is utilized to extract 

features from spectrogram images, while a Speech2Text 

transformer model is employed to generate text transcripts. For 

evaluation, the study uses ten-word categories from version 2 

of the Google Speech Commands dataset. To reduce noise in 

the audio samples, a Kalman filter is applied, ensuring cleaner 

signal processing. The resulting Mel spectrograms are resized 

to 256×256 pixels to produce two-dimensional visual 

representations of the audio data. These images are then 

classified using EfficientNetV2, pre-trained on the ImageNet 

dataset. In parallel, a grapheme-to-phoneme (G2P) model is 

used to convert Speech2Text outputs into phonemes. These are 

further processed through a technique called phoneme slicing, 

which extracts core phonological units—such as fricatives, 

nasals, liquids, glides, plosives, approximants, taps/flaps, trills, 

and vowels—based on articulatory features like manner and 

place of articulation. The proposed system employs a late 

fusion strategy that combines phoneme embeddings with 

image-based embeddings to achieve high classification 

accuracy. This fusion not only boosts ASR performance but 

also underscores the value of incorporating linguistic and 

phonological knowledge into spoken language understanding. 

Through comprehensive ablation analysis, the study 

demonstrates that the integration of spectrograms and 

phonological analysis sets a new benchmark, outperforming 

existing models in terms of accuracy and interpretability. 
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1. INTRODUCTION 
The world we live in is full of rich sensory information—what 

we see, hear, and read all come together to shape how we 

perceive and understand our surroundings [1, 2]. In the field of 

speech technology, Audio-Visual Speech Recognition (AVSR) 

taps into both sound and visual cues, such as lip movements, to 

interpret spoken language. This combined approach is 

especially useful in noisy environments, where lip movements 

provide reliable clues even when audio signals are unclear [3]. 

Building such systems requires not just the raw speech signals 

but also an understanding of context and language structure. 

ASR, a key AI technology, enables machines to interpret and 

respond to spoken language. Typically, ASR systems work 

with audio inputs (like .wav files), which go through processes 

like noise reduction and feature extraction—often involving 

spectrograms. From there, an acoustic model identifies 

phonemes, and Hidden Markov Models (HMMs) are used to 

predict the most likely sequence of words based on a language 

model. Accurate ASR performance depends heavily on clear 

pronunciation. Mispronunciations or accent variations, 

especially across speakers from different linguistic 

backgrounds, can reduce recognition accuracy. This becomes 

particularly important in contexts like English as a Foreign 

Language (EFL) education, where ASR systems can help 

learners improve their pronunciation and fluency. In such 

cases, detecting and correcting pronunciation errors becomes a 

crucial part of making these tools more effective and supportive 

for learners [4]. 

Speech-related technologies generally follow one of two 

approaches: a knowledge-driven approach, where experts 

provide standardized or canonical speech samples, and a data-

driven approach, which leverages large collections of varied, 

non-standard speech recordings. While knowledge-driven 

methods are typically more effective for generating speech, 

data-driven approaches tend to perform better in recognizing 

speech, identifying pronunciation errors, and managing the 

wide range of pronunciation variations found in real-world 

speech. This flexibility makes data-driven methods particularly 

valuable for handling diverse speaker populations. In the 

broader field of natural language processing (NLP), data-driven 

strategies—especially those based on supervised machine 

learning—have become essential for tackling complex 

language-related tasks. These include optical character 

recognition (OCR), document classification, and sentiment 

analysis, where models learn patterns from annotated datasets 

to make accurate predictions [5, 6]. 

Understanding phonological errors is crucial, as these errors are 

often shaped by a learner’s native language and tend to be 

specific to each linguistic background [7, 8]. For instance, the 

phonological features of a learner’s first language can 

significantly influence how English is pronounced, often 

leading to systematic variations and errors. Addressing this 

issue, the present study focuses on the phonological challenges 

encountered by Arab learners of EFL—a group that has 

received limited attention in existing research. To bridge this 

gap, the study proposes an automated system designed to detect 

and correct phonological errors in English speech. The goal is 
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to provide learners with timely, personalized feedback, thereby 

supporting more effective pronunciation practice and fostering 

greater motivation to improve their spoken English skills. 

Recent progress in large-scale ASR architectures has 

demonstrated significant improvements in English speech 

recognition tasks [9, 10]. In particular, models trained with self-

supervised learning objectives—such as wav2vec 2.0 [11], 

w2v-BERT [12], and BigSSL [13]—have further pushed the 

boundaries of performance. These advances build upon 

traditional supervised ASR frameworks by incorporating vast 

amounts of annotated data. However, the effectiveness of such 

models remains heavily dependent on the availability of large-

scale training datasets. It is important to note that simply 

increasing model size does not necessarily yield better 

performance, especially in contexts where training data is 

limited—such as non-English languages or other low-resource 

scenarios. Since much of the current ASR research and datasets 

are centered around English [13], there is an ongoing challenge 

in adapting these high-performing English ASR models—such 

as RNN-T [14]—to support other languages effectively [15]. 

Addressing this challenge holds the potential to extend the 

benefits of ASR to a broader, more linguistically diverse global 

population. The main contributions of this paper are as follows: 

• The research enhances ASR by merging text transcripts and 

mel spectrograms, emphasizing the unexplored potential of 

spectrograms and phonology in improving spoken word 

accuracy.  

• Employing a dual method involving the Speech2Text 

transformer and the EfficientNetV2, this study utilizes the 

Google Speech Command dataset version 2 with ten-word 

categories. Mel spectrogram images are resized to 256 x 256 

pixels and classified using ImageNet and EfficientNetV2.  

• Phoneme slicing, which extracts vital phonological elements 

while considering articulation, is integrated. A late fusion 

method, blending phone and image embeddings, delivers 

exceptional accuracy and underscores the significance of 

phonological analysis in speech interpretation, establishing a 

new benchmark.  

The paper is structured into the following sections: Section 2 

offers a comprehensive review of speech recognition literature, 

Section 3 introduces the proposed dense architecture for 

consolidating posterior scores, Section 4 delineates the 

experimental framework and summarizes the outcomes, and 

finally, Section 5 concludes the paper and suggests avenues for 

future research. 

2. RELATED WORK 
Working with spoken language data, whether for developing 

language technologies or conducting (socio)linguistic research, 

often requires high-quality transcriptions. These transcripts are 

usually created at the orthographic or word level, but depending 

on the specific application, additional layers of annotation—

such as sentiment, syntactic structure, or phonetic features—

may also be included. However, manual transcription remains 

a time-consuming and resource-intensive task, posing a 

significant bottleneck for many projects. To address this 

challenge, there is increasing interest in using ASR as a tool 

within the transcription and annotation workflow. This 

typically involves generating automated transcripts using ASR, 

which are later reviewed and refined by human annotators. For 

example, DARLA [16], a tool developed for linguistic 

research, employs ASR through its BedWord service to 

generate fully automated transcripts for audio data. Similarly, 

[17] examine the role of ASR in supporting under-resourced 

languages, contributing to their documentation and 

preservation. In another example, [18] demonstrate how ASR 

can be effectively integrated into language documentation 

workflows, offering tangible benefits for linguists in the field. 

Further, [19] present an end-to-end ASR model that not only 

generates orthographic transcripts but also provides additional 

linguistic annotations, such as phoneme sequences and part-of-

speech tags. 

This work builds upon an autoregressive Transformer network 

designed to support multiple speech-related tasks, including 

ASR, speech translation, and speech synthesis. In earlier 

research, distinct model architectures were typically developed 

for each individual task in the speech processing domain. For 

ASR, widely adopted frameworks include Connectionist 

Temporal Classification (CTC) [20, 21], Attention-based 

Encoder-Decoder (AED) networks [22], and Transducer 

models that incorporate either Recurrent Neural Networks 

(RNNs) or Transformer-based architectures [23]. In the area of 

speech synthesis, AED-based methods such as Tacotron [24], 

Tacotron 2 [25], and TransformerTTS [26] have become 

popular due to their ability to generate high-quality speech. 

Additionally, duration-based approaches like FastSpeech [27], 

FastSpeech 2 [28], and RobuTrans [29] have been widely used 

for their efficiency and robustness in generating natural-

sounding speech. Beyond speech tasks, a variety of 

Transformer-based architectures—including encoder-only 

models [30], decoder-only models [31], and encoder-decoder 

configurations [32, 33]—have been extensively applied in 

broader NLP applications. These include tasks such as machine 

translation, text summarization, and question answering, 

reflecting the versatility and effectiveness of Transformer 

networks across modalities. 

Self-supervised pre-trained models have brought significant 

advancements in the field of low-resource speech recognition. 

By leveraging large volumes of unlabeled multilingual speech 

data, these models are capable of learning cross-lingual 

phoneme-level representations, enabling them to generalize 

across various languages—even those with limited labeled 

resources. Fine-tuning these multilingual pre-trained models 

has shown promising results, often achieving notably low 

Word Error Rates (WER), even when only a small amount of 

task-specific data is available [34, 35]. However, deploying 

such powerful models in real-world scenarios, especially on 

resource-constrained devices like smartphones and laptops, 

poses a significant challenge. Models such as XLS-R and 

XLSR-53, while highly effective, consist of hundreds of 

millions of parameters, which makes them unsuitable for 

devices with limited computational power and memory. To 

bridge this gap between model performance and practical 

deployment, there is a growing need for lightweight 

multilingual speech models—particularly for use in industrial 

applications and minority language contexts. One promising 

solution is model pruning, a technique designed to reduce the 

number of parameters in a neural network without significantly 

affecting its accuracy. Guided by the lottery ticket hypothesis, 

researchers have shown that it is possible to extract a smaller, 

efficient subnetwork from a larger model that can perform 

comparably well [36]. A notable approach in this direction is 

PARP (Pruning and Auto-Regressive Fine-Tuning), which 

introduces a systematic method to identify and fine-tune these 

sparse subnetworks within self-supervised speech 

representation models. Through iterative pruning and fine-

tuning, PARP effectively reduces model complexity while 

preserving performance, making it a valuable technique for 

bringing state-of-the-art speech recognition to low-resource 

and mobile environments [37]. 
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Deep neural networks (DNNs) have brought transformative 

improvements across a range of fields, including computer 

vision (CV) [38] and NLP [39]. In the domain of speech 

processing, DNNs have demonstrated clear advantages over 

traditional methods, particularly in tasks such as phoneme 

recognition (PR) and ASR [40]. Their strength lies in the ability 

to learn complex hierarchical patterns from large volumes of 

labeled data [41]. Despite these advancements, DNN-based 

models often face limitations when applied in low-resource 

settings, where annotated data is scarce. This gap has led to 

growing interest in SSL as an emerging paradigm within deep 

learning research [42]. SSL offers a promising alternative by 

enabling models to learn directly from raw input data, without 

requiring extensive manual annotation. In SSL, models are 

initially trained on unlabeled data using pretext tasks that allow 

them to learn meaningful representations. These pretrained 

models are then fine-tuned on specific downstream tasks, such 

as phoneme recognition and ASR, using a smaller amount of 

labeled data. This approach not only enhances model 

performance in low-resource environments but also broadens 

the applicability of deep learning in speech-related tasks by 

reducing dependence on large annotated datasets. 

Despite the impressive progress made with SSL models, 

several challenges persist. One notable limitation is that 

training these models typically demands large volumes of 

unlabeled audio data, high computational power—often 

requiring multiple GPUs—and extended training durations. 

These resource-intensive requirements can hinder accessibility, 

particularly for researchers or developers working in low-

resource environments. Additionally, there has been limited 

exploration of strategies for training SSL models effectively 

when only a small amount of data is available [41]. In the field 

of self-supervised speech representation learning, existing 

approaches can broadly be categorized into three main types, 

each distinguished by its underlying training objective: 

generative, contrastive, and predictive learning [43, 44, 45]. 

These frameworks guide the model in learning meaningful 

patterns from unlabelled data, laying the foundation for 

improved performance in downstream speech tasks. 

3. PROPOSED METHODOLOGY 
In this section, we explore decision-level fusion techniques, 

which have shown promising results in enhancing 

classification performance [70–74]. Building on the approach 

proposed by Mehra et al. (2024), we adopt a strategy that 

utilizes the maximum weighted score to integrate outputs from 

two distinct channels.  

Recent findings by Zhang et al. (2023) further emphasize the 

effectiveness of late fusion, where features extracted from 

different segments of an enhanced input signal are combined, 

leading to improved categorization outcomes. After the training 

stage, late fusion has been widely adopted by researchers as a 

method for merging outputs from multiple modalities into a 

unified representation. In our work, we employ this technique 

by combining probabilistic scores from different modalities, 

which is expected to significantly enhance the accuracy of our 

speech recognition system. 

3.1 Text-transcripts pre-processing 
During the data preprocessing phase, we begin by generating 

text transcripts from audio samples using a pre-trained 

Speech2Text model. These transcripts are then converted into 

phonemes through a grapheme-to-phoneme (G2P) model. To 

accurately capture the sounds, stress patterns, and articulatory 

features of spoken words, we utilize the CMU Pronouncing 

Dictionary, a comprehensive resource containing phonetic 

transcriptions for over 125,000 English words. After cleaning 

and normalizing the text, we extract phonemes from the aligned 

transcripts, paying particular attention to syllable structures and 

stress. For consistency, we adopt the standard phonetic 

representation of each word and omit the numerical stress 

markers—such as 0 (no stress), 1 (primary stress), and 2 

(secondary stress)—to focus purely on the phonemic content.  

For example, the word about might be transcribed as [AH0, B, 

AW1, T], from which we retain only the phoneme sequence 

[AH, B, AW, T] after removing the stress indicators. Each 

transcript is segmented into individual words, which are then 

represented by their corresponding phonemes. It’s important to 

note that exact phoneme matches may vary due to differences 

in pronunciation across speakers, which adds an additional 

layer of complexity to the alignment process [48]. The detailed 

categorization of phonological features is illustrated in Fig. 1. 

 

Fig 1: Various types of phonological attributes 

3.2 Phoneme transformation and 

embeddings 
The phonemes, along with suprasegmental features such as 

stress patterns [50], are converted into numerical embeddings 

using XLNet [49]. XLNet, an advanced variant of the 

Transformer-XL architecture, is trained using an 

autoregressive learning objective. Unlike traditional models, 

XLNet captures bidirectional context by maximizing the 

likelihood over all possible permutations of the input sequence, 

allowing it to understand both past and future dependencies 

more effectively. Each resulting embedding has a 

dimensionality of 768 × 1, representing the rich phonological 

and contextual features of the input. These embeddings are then 

aggregated to generate final representations for each word 

category. The resulting vectors serve as inputs to the proposed 

neural network architecture, enabling the model to process and 

classify spoken words with improved accuracy and contextual 

awareness. 

In this study, specific phonological features are extracted from 

the phoneme representations, focusing on categories such as 

fricatives, nasals, liquids, glides, plosives, approximants, 

taps/flaps, trills, and vowels. These features are analyzed by 

considering both the manner and place of articulation. To 

ensure consistency in phonetic representation, the CMU 

Pronouncing Dictionary is employed, which adheres to 

American English pronunciation standards and reflects 

principles of the International Phonetic Alphabet (IPA). The 

method captures detailed articulatory distinctions. For instance, 

plosives—also known as stop consonants—briefly block 

airflow and include voiced sounds like /b/, /d/, /g/ and voiceless 

ones like /p/, /t/, /k/. Fricatives, such as /f/, /s/, /v/, and /z/, are 

characterized by their high amplitude and turbulent airflow. 

Nasals (e.g., /m/, /n/, /ŋ/) allow air to pass through the nasal 

cavity, while glides (or semivowels) like /j/ and /w/ involve 

smooth transitions between articulatory positions. Taps and 

flaps represent rapid, single-contact sounds, such as the 

American English /t/ in "butter," whereas trills are produced by 

the vibration of an articulator, commonly found in languages 
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like Spanish. Liquids, including /l/ and /r/, involve minimal 

constriction and allow continuous airflow, while approximants 

are produced with articulators that come close without creating 

turbulence. Vowels, distinguished by their relatively high pitch 

and amplitude, contrast with consonants in terms of airflow and 

vocal tract configuration. The analysis accounts for articulation 

points—such as dorsal, labial, coronal, and radical—providing 

a comprehensive framework for phoneme classification. 

Although the CMU dictionary provides a reliable phonetic 

foundation, variations in pronunciation across speakers pose 

challenges. To mitigate this, the approach incorporates 

phoneme filtering and normalization strategies, offering a 

unified representation of speech sounds.  

Once the distinct phoneme classes—namely fricatives, vowels, 

plosives, nasals, and glides—are isolated, they are transformed 

into phoneme embeddings using the XLNet model. These 

embeddings are organized based on their phoneme types and 

maintain a dimensionality of 768 × 1 for each word category. 

The resulting phoneme representations are then input into the 

proposed neural network architecture for further processing. To 

assess the contribution of each phoneme type and their 

segmented phonological patterns to spoken word recognition, 

an ablation analysis is performed. This evaluation helps 

determine the individual and collective impact of these features 

on the overall system performance. 

3.3 Audio denoising and pre-processing 
The processing begins with the application of the Kalman filter 

to the raw audio samples. In the context of audio processing, 

the Kalman filter plays a crucial role in distinguishing the 

desired speech signal from background noise or interference. It 

operates by modeling the system state—encompassing both the 

signal and noise components—and iteratively updating its 

estimates with each new observation. This adaptive estimation 

process enables effective noise suppression and enhancement 

of the overall audio quality. Kalman filters are widely used in 

domains such as speech enhancement, echo cancellation, active 

noise control, sonar and radar processing, and audio 

restoration. Following noise reduction, the cleaned audio 

signals are converted into two-dimensional mel spectrogram 

images using the Librosa library. These spectrograms undergo 

several pre-processing transformations, including translation, 

rotation, and resizing, to standardize the data. All spectrogram 

images are resized to a fixed dimension of 256 × 256 pixels to 

ensure consistency across the dataset. These uniformly pre-

processed images are then input into the EfficientNetV2 model. 

The posterior probabilities generated by this model are 

subsequently passed to the proposed neural architecture 

illustrated in Fig. 2 for further processing. 

3.4 Proposed architecture 
The integrated visual and textual embeddings, obtained from 

earlier stages, are each processed through two separate 

feedforward neural network architectures tailored to their 

respective feature modalities. The first model is designed to 

handle the posterior scores derived from the EfficientNetV2 

output. This model begins with a flattening layer and is 

followed by a sequence of fully connected dense layers with 

batch normalization. These layers consist of 1024, 512, 256, 

and 64 units, respectively, and utilize the hyperbolic tangent 

("tanh") activation function, which aids in capturing both 

positive and negative signal representations. In parallel, the 

second model is structured to process posterior scores obtained 

from phoneme embeddings—capturing the linguistic 

information of the spoken data.  

This network also starts with a flattening layer, followed by 

dense layers containing 512, 256, and 64 units. Unlike the first, 

this model does not apply batch normalization and instead uses 

the Rectified Linear Unit ("ReLU") activation function, which 

is well-suited for learning sparse and efficient representations. 

Both models are trained using the stochastic gradient descent 

(SGD) optimization strategy, with adaptive learning rate 

control provided by the Adam optimizer (Duchi et al., 2011) 

[51], known for its robust performance across a wide range of 

deep learning applications. The loss function employed for 

training is sparse categorical cross-entropy, which is 

particularly effective for multi-class classification tasks 

involving discrete target labels. 
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Fig 2: A Multimodal Framework for Enhanced Speech Recognition via Phoneme Embeddings and Spectrogram Features

4. EXPERIMENTAL RESULTS 

4.1 Hyperparameters 
 Our experiments were conducted using Python 3.10.0 on a 

macOS Big Sur system powered by the Apple M1 chip. To 

ensure transparency and encourage reproducibility, we have 

made our code publicly available for future research. Given the 

computational intensity of our work—particularly in 

processing audio data and running transformer-based models—

we utilized Google Colab Pro with GPU acceleration to manage 

training and evaluation more efficiently. It’s important to note 

that Colab Pro offers up to 32 GB of RAM, a limitation we 

accounted for during model training and memory management. 

We used the Librosa library extensively for audio processing 

tasks, which helped streamline feature extraction and 

spectrogram generation. In our core experiment, we utilized 

pre-trained probabilistic scores generated by the 

EfficientNetV2 transformer as input to a custom neural 

network. The model was trained over 100 epochs, allowing it 

to effectively learn from the data. We adopted the ReLU 

activation function to introduce non-linearity, which has 

proven beneficial for classification tasks. For optimization, we 

employed the Adam algorithm, chosen for its adaptive learning 

rate and robust convergence properties. To convert spoken 
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language into text, we used the Speech2Text transformer. 

These transcripts were then mapped to phonemes and 

phonological patterns to reflect the actual pronunciation of 

words. For this step, we leveraged the CMU Pronouncing 

Dictionary—a widely used resource that provides standardized 

phonetic representations for English words. This conversion 

not only improved transcript accuracy but also facilitated 

detailed linguistic analysis, including the identification of stress 

markers, articulation types, and sound properties relevant to 

speech recognition and phonological error detection. 

4.2 Ablation analysis 
In this section, we present an ablation study aimed at evaluating 

the contribution of both audio-based and linguistic features, as 

well as the effectiveness of their combined use, on the 

performance of our dense neural network model. Through a 

detailed analysis of the decision-level fusion framework 

integrated into our model, we systematically examine the role 

of individual audio and text-based components. This includes 

assessing their pairwise interactions across different speaker 

groups (e.g., male vs. female) and analyzing the underlying 

characteristics of the deep learning architecture itself. The 

findings from this ablation study provide valuable insights into 

the strengths and limitations of each feature type and the 

conditions under which their fusion leads to performance 

improvements. A summary of the key observations is presented 

below. 

Here are the key technical findings: 

• In our dense framework, image-based classification 

outperforms text-based classification. 

• Dual branching audio-visual and text modalities 

perform better than other individual audio/visual/text 

components. 

• When classifying spoken words, the audio-visual-

based outperforms text-based approach. 

• A future area of exploration involves utilizing spoken 

utterances for the classification of unlabeled speech 

data, which is deemed highly necessary. 

• Combining phoneme categories for 10-word subjects 

achieves test accuracies of 90.20% with stress 

markers (768 X 1 embeddings). 

• Ablation analysis using XLNet-transformer shows 

varying accuracy for different phoneme 

combinations as shown in Table 3. Stress markers are 

crucial for identifying spoken words from text 

transcripts. 

• In summary, dual modalities are effective. However, 

EfficientNetV2 performed better than XLNet for 

speech command classification. 

Table 1 presents a detailed comparison of our proposed late 

fusion strategy—which integrates audio-visual and text 

features through a neural layered model—with several state-of-

the-art methods.  

Table 1. Assessing performance in comparison to the 

state-of-the-art results for the 10-word category within the 

Google Speech Command Dataset 

Comparison for 10-word categories ACC 
(%) 

MFCC + CNN  (Haque et al., 2020) 

 

93.28% 

GFCC + CNN  (Abdelmaksoud et al., 2021) 

 

93.09% 

MFCC + LSTM-RNN (Wazir et al., 2019) 

 

95.44% 

MFCC + LSTM-RNN (Zia and Zahid, 2019) 

 

95.14% 

MelSpec + LSTM (Lezhenin et al., 2019) 

 

95.07% 

DenseNet + BiLSTM (Zeng and Xiao, 2018) 

 

94.88% 

RNN neural attention (de Andrade et al., 2018) 

 

94.11% 

EdgeCRNN  (Wei et al., 2021) 

 

98.20% 

Semi Supervised audio tagging (Cances and 

Pellegrini, 2021) 

 

95.58% 

Attention based s2s model  (Higy and Bell, 2018) 

 

97.50% 

TripletLoss-res15 (Vygon and Mikhaylovskiy, 

2021) 

98.38% 

BC-ResNet-8 (Kim et al., 2021) 98.70% 

KWT-3 (Berg et al., 2021) 98.49% 

MatchboxNet-3x2x64 (Majumdar and Ginsburg, 

2020) 

97.63% 

ConvMixer (Ng et al., 2022) 98.21% 

Embedding + Head (Lin et al., 2020) 97.70% 

Wav2KWS (Seo et al., 2021) 98.52% 

Proposed approach (Spectrogram + Phonemes-

XLNet) 
99.80% 

 

All models were assessed under uniform conditions, utilizing 

the same dataset and similar experimental settings to ensure a 

fair comparison. Compared to the approach proposed by Haque 

et al. (2020), which used a convolutional neural network (CNN) 

with MFCC features, our method achieved a significant 

improvement in accuracy. Notably, our model reached a test 

accuracy of 99.80% across ten spoken word categories, 

emphasizing its strength and reliability, especially in well-

resourced scenarios where ample training data is available.  

Table 2. Improving Speech Recognition Using Universal 

Sentence Encoder on the 10-Word Google Speech 

Commands Dataset Without Phonological Stress Markers 

APPROA
CH 

Methodolog
y proposed 

on 10-word 
categories 

TRAIN 
ACCURAC

Y (%) 

TEST 
ACCURAC

Y (%) 

Phonetic 
approach 

Phonemes 
(With stress 

markers) 
XLNet 

92.40 90.20 

Visual-
based 

approach 

EfficientNet
V2 

99.99 99.78 
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Decision-

level 
Fusion 

Phonemes 

(With stress 
markers) 
XLNet + 

EfficientNet
V2 

_ 99.80 

 

Table 3. Evaluation metrics to check the effect of stress 

markers and spectrograms on the 10-word Google Speech 

Commands dataset 

LINGUISTIC 
PHONOLOGICA

L APPROACH 

(With stress 
marker) (768X 1) 

XLNet 
embeddings 

TRAIN 
ACCURACY 

(%) 

TEST 
ACCURACY 

(%) 

Plosives 

 

75.36 75.15 

Fricatives 

 

60.21 57.90 

Glides 

 

53.52 52.61 

Nasals 

 

67.53 66.83 

Traps 

 

65.72 65.46 

Liquids 

 

65.44 64.02 

Trills 

 

73.07 71.28 

 

Table 2 provides a detailed view of the phonological attributes 

analysis, conducted using XLNet-transformer embeddings with 

dimensions of 768 x 1 per spoken word category for 10 

subjects. The results demonstrate the accuracy of phoneme 

identification, revealing that fricatives achieved 57.90%, 

plosives reached 75.15%, glides scored 52.61%, nasals 

achieved 66.83%, traps attained 65.46%, liquids scored 

64.02%, and trills exhibited an accuracy of 71.28%. Notably, 

plosives and trills outperformed other phonological attributes. 

This analysis underscores the significance of stress markers in 

linguistic understanding, as they play a crucial role in 

identifying spoken words through text transcripts. The 

EdgeCRNN model, introduced by Wei et al. (2021), which 

integrates feature enhancement through depth-wise separable 

convolution and residual connections, achieved an accuracy of 

98.20%. Despite the demonstrated strength of Gammatone 

Frequency Cepstral Coefficients (GFCCs) in emotion 

detection, our approach outperformed the CNN-GFCC model 

proposed by Abdelmaksoud et al. (2021), which reported an 

accuracy of 93.09%. Similarly, our method surpassed the 

DenseNet-BiLSTM architecture—recommended for keyword 

spotting—with a reported accuracy of 94.88%. We also 

compared our system against other well-established models. 

For instance, in the domain of Urdu acoustic modeling, our 

approach outperformed the LSTM-based architecture proposed 

by Zia and Zahid (2019). Additionally, we achieved better 

results than the Deep CO-Training (DCT) algorithm reported 

by Cances and Pellegrini (2021). On the GSCD dataset, our 

method recorded a notable accuracy of 97.50%, exceeding that 

of attention-based encoder-decoder models such as the one by 

Higy and Bell (2018), which are known for their competitive 

performance. In the context of speech command recognition, 

our model demonstrated strong competitiveness when 

benchmarked against various state-of-the-art techniques. These 

included TripletLoss-res15 (Vygon & Mikhaylovskiy, 2021) at 

98.38%, BC-ResNet-8 (Kim et al., 2021) at 98.70%, KWT-3 

with self-attention (Berg et al., 2021) at 98.49%, RNN with 

neural attention (de Andrade et al., 2018) at 94.11%, 

MatchboxNet-3x2x64 (Majumdar & Ginsburg, 2020) at 

97.63%, ConvMixer (Ng et al., 2022) at 98.21%, keyword 

spotting using Embedding + Head (Lin et al., 2020) at 97.70%, 

and Wav2KWS (Seo et al., 2021) at 98.52%. Notably, our 

method not only matches but often exceeds the performance of 

these models—particularly those based on transformer 

architectures—demonstrating its effectiveness and robustness 

for spoken command recognition across multiple benchmarks. 

Table 4. Category-wise mathematical analysis of speech 

command 

Categories Precision Recall F1-Score 

Go 0.99 1.00 0.99 

No 1.00 0.99 1.00 

On 1.00 0.99 1.00 

Off 1.00 0.99 1.00 

Yes 1.00 0.99 1.00 

Down 0.99 1.00 0.99 

Left 1.00 0.99 1.00 

Stop 1.00 0.99 1.00 

Up 1.00 0.99 0.99 

Right 1.00 0.99 0.99 

 

Our findings further suggest that higher-dimensional 

representations tend to yield more accurate results, contrasting 

the assumption that lower dimensionality is inherently 

beneficial. As shown in Table 3, the inclusion of phonemes 

with suprasegmental features—such as stress markers—led to 

a notable accuracy of 90.20%. In parallel, the visual modality, 

represented by mel spectrograms processed through 

EfficientNetV2 and our custom neural network, achieved an 

impressive accuracy of 99.78%. When we integrated the 

outputs of EfficientNetV2 with phoneme embeddings 

generated via XLNet, the combined system reached a peak 

accuracy of 99.80%. These results underscore the importance 

of incorporating stress markers within phonological features 

and highlight how high-dimensional embeddings enhance 

model performance. The synergistic fusion of phonetic 

information, suprasegmental cues, and visual speech 

representations through advanced deep learning models 

significantly boosts the accuracy of spoken word recognition. 

Table 4 provides a detailed breakdown of precision, recall, and 
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F1-scores for each individual speech command category. 

Among these, precision serves as a crucial evaluation metric, 

measuring the proportion of correctly predicted positive 

instances out of all instances the model classified as positive, 

as defined in Equation (1). In essence, precision captures the 

model’s accuracy in identifying true positives while 

minimizing false alarms, offering valuable insight into how 

well the system distinguishes correct commands from incorrect 

ones. 

precision =                                                                  (1) 

recall =                                                                     (2) 

  f1−Score =                                             (3) 

 Recall, also referred to as sensitivity or the true positive rate, 

serves as an essential performance metric. It is calculated as the 

ratio of true positives to the total number of actual positive 

cases, as shown in Eq. (2). This measure reflects the model’s 

effectiveness in identifying all relevant positive instances, with 

an emphasis on minimizing false negatives. 

In this framework, true positives, true negatives, false 

negatives, and false positives are denoted by tp, tn, fn, and fp, 

respectively. To assess the model’s overall performance, we 

calculate the F1-score using the harmonic mean of precision 

and recall, as defined in Eq. (3). This metric is particularly 

valuable as it provides a balanced evaluation by incorporating 

both precision and recall into a single measure of accuracy. 

 

Fig 3: Multiclass evaluation ROC for classifying 

10-word categories using EfficientNetV2 

In our experimental setup, the 10-word categories 

demonstrated consistently high values across precision, recall, 

and F1-score metrics, indicating strong classification 

performance. As supported by the mathematical formulations, 

the statistical outcomes are summarized in Table 4. This table 

highlights that the majority of the classes were accurately 

classified, with only a few exhibiting slight deviations. Figures 

3 presents the outcomes derived from our utilization of 

EfficientNetV2.  

5. CONCLUSIONS 
In conclusion, this research has effectively addressed the 

challenge of enhancing the precision of spoken word detection 

in ASR. We accomplished this by amalgamating multimodal 

data, specifically text transcripts and mel spectrograms, and 

employing the Speech2Text transformer to separate text from 

spectrograms, resulting in substantial improvements in spoken 

word identification accuracy. Through a comprehensive 

analysis of spectrograms and phonology, we gained valuable 

insights into speech articulation, contributing to a more robust 

understanding of linguistic data embedded in spoken speech. 

Our experiments, conducted on the Google Speech Command 

dataset version 2, utilized the ImageNet picture pool and 

second-generation EfficientNetV2 transformer for mel 

spectrogram image classification, affirming the efficacy of our 

proposed method. The integration of the G2P model further 

enhanced our comprehension of spoken speech by converting 

text transcripts into phonemes, allowing us to isolate specific 

phonological components. Ablation analysis was performed to 

assess the influence of spectrograms and phonological 

characteristics on the classification process, providing essential 

insights for system optimization. The late fusion technique, 

which combined phone embeddings and image embeddings, 

effectively extracted spoken words from rapid samples, 

underscoring the practicality of our approach. Notably, our 

experimental results exhibited substantial improvements in 

voice recognition accuracy compared to existing methods, 

establishing a new benchmark in spoken word recognition. By 

incorporating linguistic insights and leveraging diverse 

resources, our system achieved exceptional performance in 

ASR. Overall, this study represents a significant advancement 

in the field of automatic speech recognition, paving the way for 

future research in multimodal data analysis and promising more 

sophisticated and efficient speech processing systems.  
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