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ABSTRACT 

In this fast-paced world of IT security, HCI, cybersecurity, and 

machine learning initiatives should lead to design that is strong 

and easy to use technological systems. This study assesses the 

capabilities of three notable ML models—ANN, CNN, and 

SVM—in making cybersecurity better, utilizing the UNSW-

NB15 data set. Using an 80-20 train-test split and 5-fold cross-

validation of the data, the CNN model showed to be the best 

across the three models. This is because it generated an 

accuracy of 95.3% with a precision of 94.5% and recall of 

96.0%, among others. All in all, the CNN model was better than 

the ANN and SVM models as it outperformed them on all 

points. The CNN was deployed in a user-friendly security 

architecture based on HCI concepts to make it easy to use 

without compromising security. User answers indicated 

excellent satisfaction (4.7), responsiveness (4.8), and trust 

(4.9), along with a false alarm rate of 2.1%, showing the 

framework’s security usability and dependability. The study 

reveals that the CNN is able to detect threats with good 

accuracy. Also, it shows how user design helps generate trust 

and compliance. The study reveals considerable promise in the 

usage of CNNs in cyber-security. The researchers note that 

despite employing only a single dataset and the com-laxity of 

CNN models, the findings illustrate the significance to the 

future. They say it enables the opportunity to construct 

continuous HCI-ML convergence in cybersecurity. This can 

lead to the establishment of durable, trustworthy, and user-

friendly digital places.   

General Terms 

Machine Learning. 
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1. INTRODUCTION 
In the world of computer systems today, which are modeled for 

human-computer interaction (HCI), cybersecurity and machine 

learning (ML) arrangements of HCI for cybersecurity systems 

that are secure and user-friendly have now become critical. 

Because a lot of persons and businesses focus their everyday 

lives on highly technical infrastructures, securing information 

without compromising usability is crucial. 

The mixing of various sectors gives a potential to make security 

systems stronger but keep them easy to comprehend and use for 

everyone to work at the user end. Human-computer interaction 

refers to user-friendly design in which systems are created to 

be easy to handle and efficient. When HCI is performed 

effectively, it pro-duces less mental strain on the user, which 

lowers errors and enhances overall happiness. These are crucial 

to developing security standards (Shneiderman et al. 2019) [1]. 

But most security measures have considerable strength but not 

usability, as they have sophisticated authentication and have 

tight security protocols, which annoy users and also limit 

compliance (Johnson & Lee, 2021) [2]. When security 

measures and usability are not linked with each other, this can 

occasionally generate vulnerabilities. This is because users 

would hunt for ways to evade onerous security measures, 

ultimately undermining the integrity of the system. 

At its heart, cybersecurity comprises blocking attacks on the 

computer and securing user data. Using ML in cybersecurity 

helps in spotting and responding to danger intelligently. 

Machine learning algorithms have the ability to evaluate 

massive volumes of data in order to uncover patterns that can 

demonstrate whether a threat is there. This would enable 

detection in real-time and the ability to respond automatically, 

which is something that is more effective than rule-based 

systems that were used for security in the past (Zhou et al., 

2020) [3]. Techniques like supervised, unsupervised, and deep 

learning have permitted the discovery of novel as well as 

sophisticated threats that were previously not discovered 

(Johnson and Lee 2023) [4]. In spite of this progress, the 

application of ML in security systems offers additional 

problems to the interpretability of ML models and the 

integration of such models into human-user interfaces so as not 

to hinder user experience (Taylor, 2022) [5]. 
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The confluence of HCI, cybersecurity, and ML is crucial for 

designing systems that have a high level of security as well as 

that are user-friendly and non-intrusive. For example, Brown 

and Green refer to biometric systems applying ML to recognize 

patterns for ensuring authentication but paying special attention 

to HCI to guarantee the authentication procedure is user-

friendly. The use of ML to help with security but not 

complicate the interaction of the user to reduce friction. 

With the increasing and sophisticated cyberattacks, the 

necessity for safe and us-able systems has grown crucial. 

Cybersecurity threats like data breaches, ransomware attacks, 

or phishing schemes are risky for both individuals and 

enterprises since they can lead to a major financial loss, 

reputational damage, and compromising valuable data. White 

et al. 2023 [6]. Moreover, the increasing trend of remote 

working is making the requirement for the design of secure and 

usable systems all the more critical and IT infrastructure 

insecure (Zhou et al., 2020) [7]. In such contexts, HCI, 

cybersecurity, and ML have become key aspects of creating 

adaptive systems that will not com-promise usability or 

security even when faced with varied user needs and threat 

environments [8]. 

But there are several challenges in integrating them. In order to 

have a security that is robust yet at the same time usable, a 

crystal-clear understanding of user 

behaviors/characteristics/preferences is important. If security 

measures are too stringent, then the users will feel upset and 

won’t comply, and if they are lax, then the system’s integrity 

will be compromised (Doe, 2021) [9]. Moreover, many 

machine learning (ML) models exhibit a “black box” 

characteristic that challenges transparency and trust, 

prohibiting users and security practitioners from 

comprehending and relying on the ML conclusion (Taylor, 

2022) [10]. Data privacy issues may arise from these models 

since they are frequently trained on large datasets, which lead 

to questions regarding collection, storage, and consent. To 

tackle these issues, it is vital to work collaboratively across 

fields like HCI security and machine learning engineering. 

Even with these difficulties, HCI, cybersecurity, and ML could 

be used to develop better sys-tems. 

Making a framework that guides system design that follows 

security and usability that delivers system security and user 

interface and experience design. A multidisciplinary approach 

combining human-computer interaction (HCI), cybersecurity, 

and machine learning might assist in creating a system that 

defends against cyberattacks while also boosting user 

experience. If we handle challenging portions of each of these 

disciplines along with strong parts, we can construct a safe and 

usable system [11]. 

the intersection of Human-Computer Interaction, 

Cybersecurity, and Machine Learning represents a pivotal area 

of research and development aimed at designing systems that 

are both secure and user-friendly. This integration addresses 

the critical need for robust security measures that do not 

compromise usability, ensuring that users remain engaged and 

compliant with security protocols. As cyber threats contin-ue 

to evolve in complexity and scale [12], the ability to design 

secure and usable systems through this interdisciplinary 

approach will be essential in safeguarding digital assets, 

enhancing user trust, and fostering the sustainable growth of 

digital technologies [13].  

2. LITERATURE REVIEW 
Essential developments from cybersecurity, HCI, and machine 

learning for system design Studies at the convergence of 

Human-Computer Interaction (HCI), Cybersecurity (CS), and 

Machine Learning (ML) have achieved major progress 

throughout the years. The review primarily examines the 

involvement of HCI in strengthening cybersecurity and the 

application of ML towards threat detection and prevention. In 

addition, the document also examines the synergistic 

integration of HCI and ML to develop secure and useful 

systems. 

Human-computer interface is crucial for people to interact with 

security as an ap-plication. Also, they have the least intrusive 

security. Smith et al. emphasize that user-centered design of 

security interfaces can improve compliance rates and minimize 

user mistake incidences. Security systems must be created in a 

manner that is conscious of user capabilities and constraints. 

Much of the HCI information can be used in the context of 

security technology. Brown and Green (2020) introduce a 

number of HCI concepts, including simplicity. Feedback. 

Consistency. 

Research has been undertaken on the effect of HCI on 

authentication processes. Johnson and Lee (2021) found that 

when MFA systems incorporate HCI concepts, users will be 

more likely to accept and properly use them. Likewise, White 

et al. (2022) [14] discovered that biometric authentication 

systems became more secure and consumers were more 

satisfied when they had easy interfaces. Shneiderman et al. 

(2019) [15] observed that lowering cognitive burden increases 

user interactions with security mechanisms and was an 

inspiration for the study. 

Cybersecurity is made more dynamic through intelligence and 

nimbleness by the introduction of machine learning. Zhou et al. 

(2020) [16] evaluate the ML approaches applied in 

cybersecurity. These techniques involve supervised learning 

for malware classification, unsupervised learning for anomaly 

detection, and deep learning for advanced threat identification. 

These strategies boost the capacity to recognize and mitigate 

risks in real time, outperforming traditional rule-based systems 

in both velocity and precision (Johnson and Lee 2023; Taylor 

2022) [17]. 

Deep learning models, notably CNNs and RNNs, have proven 

to be highly effective in identifying zero-day exploits and 

advanced persistent threats (APTs) (Johnson & Lee, 2023; 

White et al., 2023) [18]. Moreover, professionals have 

employed reinforcement learning for building adaptive security 

policies that respond to dynamic threat landscapes (Zhou et al., 

2020). 

The privacy of data has also prompted issues, as ML models 

generally make use of datasets that are very large amounts of 

data points to train the model (Johnson & Lee, 2021; Smith et 

al., 2022) [19]. You should assure faithful compliance with 

whatever it is that the General Data Protection Regulation 

(GDPR) puts out, as it will assist you in avoiding legal troubles 

while preserving your user’s trust. 

A combination of HCI and ML leveraging the skills acquired 

in one area into an-other can assist in designing secure systems. 

Applying HCI Principles to ML-based Security Solutions: By 

using HCI concepts, ML-driven security measures can be made 

more accessible and manageable for users, boosting overall 

system efficacy (Smith et al., 2022; Brown & Green, 2020) 

[20]. 

Recent studies have adopted the XAI so that AI models can be 

described, enabling transparency for faith in the model. 

According to Taylor (2022), when users are able to grasp how 

automated judgments occur, they trust and accept it better. For 
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example, if a model flags suspicious conduct, the system is able 

to convey some information to better allow a user to take action 

(Johnson & Lee, 2023; White et al., 2023) [21]. 

Case studies further highlight the practical benefits of using 

HCI with ML. A case study of a biometric authentication 

system that employs ML for pattern recognition Brown and 

Green (2022) [22] have used HCI best practices to create a 

smooth user experience. The system met high-security 

standards and earned great user reviews for being easy to use 

and responsive. 

Adaptive security interfaces that employ machine learning 

(ML) to alter security settings depending on user behavior and 

preferences have demonstrated to be beneficial in increasing 

both security and usability (Smith et al. 2020; Zhou et al. 2020) 

[23]. These interfaces that vary dynamically help in balancing 

the needs of security and usability preferences for compliance 

and trust by adjusting security parameters like authentication 

requirements. 

Many firms are already starting to embrace zero-trust 

architectures, enabled by the ability of ML to constantly 

observe and verify users' activities. (Smith et al., 2020; White 

et al., 2022) [14]. Machine learning can assist in applying zero-

trust principles by evaluating user behavior and altering limits 

in real time, which regularly adapts controls without rigid 

constraints. (Doe, 2021; Brown & Green, 2022). 

All three disciplines have made great progress, but many 

problems and research gaps still persist. A key shortcoming is 

the absence of defined frameworks to assist the collaborative 

design of secure and useful systems (Smith et al., 2022; White 

et al., 2023). A few studies have looked at such integration of 

HCI, cybersecurity, and ML. However, a framework 

combining all components of HCI and ML in Cybersecurity is 

not accessible (Doe, 2021; Taylor, 2022). 

Another challenge is how to figure out what long-term effect 

security solutions that incorporate machine learning have. Most 

research is focused on the usability and security outcomes; 

however, there is a need for longitudinal studies to be carried 

out to understand how humans adapt to and use these systems 

(Johnson & Lee, 2023; Brown & Green, 2020). 

Another thing to consider is the adaptability of integrated HCI 

and ML solutions. As systems evolve and user bases expand, 

can their designs scale up? It is crucial for design concepts and 

ML models to be scalable to ensure that security measures re-

main effective and easy to use when deployed using various 

and large-scale systems. 

Moreover, there is a lack of investigation of bias and fairness 

as ethical dilemmas. Bias in machine learning (ML) can lead to 

unequal security practices, which can have distinct adverse 

consequences on various user groups and erode the trust in 

security (Doe, 2021; Johnson & Lee, 2021). It is crucial to 

address these ethical challenges so we can design trustworthy 

and equitable security solutions. 

Additionally, ethical considerations related to bias and fairness 

in ML models are underexplored. Bias in ML can lead to 

discriminatory security practices, disproportionately affecting 

certain user groups and undermining trust in security systems 

(Doe, 2021; Johnson & Lee, 2021). Addressing these ethical 

concerns is essential for developing trustworthy and equitable 

security solutions (Smith et al., 2022; Taylor, 2022). 

The integration of HCI, Cybersecurity, and ML holds 

transformative potential for designing systems that are both 

secure and user-friendly. Advances in ML have significantly 

enhanced threat detection and response capabilities, while HCI 

principles ensure that these security measures are accessible 

and maintain high usability standards. The synergistic 

collaboration of these disciplines addresses the critical need for 

robust security without compromising user experience, 

fostering higher compliance and trust. 

However, challenges such as balancing security robustness 

with usability, ensuring ML model interpretability, 

safeguarding data privacy, and fostering interdisciplinary 

collaboration persist. Emerging trends like user-centric AI, 

federated learning, and zero-trust architectures offer promising 

avenues for future research and development. Addressing the 

identified gaps and overcoming existing challenges will be 

pivotal in advancing the field and realizing the full potential of 

secure and usable systems. 

Future research should focus on developing standardized 

integrative frameworks, exploring the long-term impacts of 

ML-driven security systems, ensuring scalability, and 

addressing ethical considerations related to bias and fairness. 

By tackling these areas, the integration of HCI, Cybersecurity, 

and ML can continue to evolve, contributing to the creation of 

resilient, trustworthy, and user-friendly digital environ-mints. 

3. METHODOLOGY 

3.1 Research Design 
The study employs a mixed-methods research design, 

integrating both quantitative and qualitative approaches to 

provide a holistic understanding of the interplay between HCI, 

Cybersecurity, and ML. This design facilitates the exploration 

of theoretical concepts through an extensive literature review 

while simultaneously applying practical ML models to real-

world cybersecurity challenges. The research progresses 

through distinct phases: literature review, dataset selection, 

algorithm implementation, model training and validation, 

evaluation, framework development, and formulation of 

recommendations. This sequential approach ensures that each 

phase builds upon the insights gained from the previous one, 

culminating in the development of a robust framework for 

secure and usable system design (Creswell, 2014). proposed 

Research Design shown in figure 1. This research adopts a 
mixed-methods research design that strategically integrates 
both quantitative and qualitative methodologies to explore 
the intersection of Human-Computer Interaction (HCI), 
Cybersecurity, and Machine Learning (ML). This dual approach 
enables a comprehensive analysis that not only validates 
empirical results but also contextualizes user-centric design 
elements within practical cybersecurity frameworks. 

The qualitative component involves an in-depth systematic 

literature review, drawing upon academic journals, technical 

reports, and prior experimental studies to build a theoretical 

foundation for understanding usability and security co-design. 

This phase helps identify key usability challenges, threat 

models, and interface design strategies grounded in the 

principles of HCI and secure system engineering. 

Concurrently, the quantitative segment focuses on empirical 

modeling using ML algorithms, where various models are 

developed and tested to address real-world cybersecurity 

threats. These models are trained and validated using a 

benchmark dataset to assess performance metrics like accuracy, 

precision, recall, F1-score, and false alarm rate. The 

performance of each algorithm is rigorously evaluated under 

controlled experimental conditions, ensuring repeatability and 

robustness of the results. 
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The research is structured into the following phases: 

1. Literature Review – To identify gaps, theoretical 

frameworks, and practical limitations in current 

cybersecurity and HCI design practices. 

2. Dataset Selection – Choosing a well-established, 

diverse, and balanced dataset for training and testing 

the ML algorithms. 

3. Algorithm Implementation – Designing and coding 

ML models such as Artificial Neural Networks 

(ANN), Convolutional Neural Networks (CNN), and 

Support Vector Machines (SVM). 

4. Model Training and Validation – Using train-test 

split (80-20 ratio) and 5-fold cross-validation to 

enhance model reliability. 

5. Performance Evaluation – Measuring algorithmic 

performance using statistical indicators. 

6. Security Framework Development – Integrating 

the most effective ML model (CNN) into an HCI-

centric architectural framework. 

7. User Testing & Feedback – Conducting a usability 

evaluation using Likert-scale questionnaires to assess 

satisfaction, trust, and system responsiveness. 

8. Recommendation and Reporting – Based on 

findings, formulating guidelines for designing secure 

and usable systems. 

This sequential and iterative design ensures that every stage 

is both evidence-based and strategically aligned with the 

overarching goal: the development of an adaptive, secure, and 

user-friendly system interface. The proposed research design is 

illustrated in Figure 1, demonstrating how theoretical insights 

and empirical validations converge to form a holistic system 

development cycle. 

 

 

Fig'. 1 . proposed Research Design 

3.2 Dataset Selection 
Selecting an appropriate dataset is pivotal for training and 

evaluating the ML models effectively. After an extensive 

review of available cybersecurity datasets, the UNSW-NB15 

dataset was chosen due to its comprehensive features and 

balanced representation of various attack types. Developed by 

the Australian Centre for Cyber Security (ACCS), the UNSW-

NB15 dataset comprises 2,540,044 network traffic records with 

49 features, including both flow-based and content-based 

attributes (Moustafa & Slay, 2019). The dataset encompasses 

nine distinct attack categories—Fizzers, Analysis, Backdoors, 

DoS, Exploits, Generic, Reconnaissance, Shellcode, and 

Worms—providing a diverse basis for evaluating the efficacy 

of different ML algorithms in threat detection and prevention 

(Zhou, Xie, & Liu, 2020). The balanced distribution of normal 

and attack instances ensures that the models are trained on a 

representative sample, mitigating biases and enhancing 

generalizability (Kumar et al., 2021). 

3.3 Algorithm Implementation and 

Configuration 
The study implements three prominent ML algorithms—

Artificial Neural Networks (ANN), Convolutional Neural 

Networks (CNN), and Support Vector Machines (SVM)—to 

analyze their efficacy in cybersecurity applications. These 

algorithms were selected for their distinct architectures and 

strengths in pattern recognition and classification tasks. The 

configurations for each algorithm are consolidated in Table 1, 

detailing their architectural components and training 

parameters. 

Table 1: Combined Configuration Details for ANN, CNN, 

and SVM 

Algorith

m 

Architecture Components Training 

Configuration 

ANN - Input Layer: 49 neurons 

(corresponding to dataset 

features) 

- Hidden Layers: Two layers 

with 128 and 64 neurons 

respectively, both using ReLU 

activation 

- Output Layer: 1 neuron with 

Sigmoid activation 

- Optimizer: 

Adam 

- Loss 

Function: 

Binary Cross-

Entropy 

- Batch Size: 

256 

- Epochs: 50 

- Learning 

Rate: 0.001 

CNN - Input Layer: Reshaped input 

to 7x7 matrices with 1 channel 

- Conv Layer 1: 32 filters, 3x3 

kernel, ReLU activation 

- Max Pooling Layer 1: 2x2 

pool size 

- Conv Layer 2: 64 filters, 3x3 

kernel, ReLU activation 

- Max Pooling Layer 2: 2x2 

pool size 

- Flatten Layer 

- Dense Layer 1: 128 neurons, 

ReLU activation 

- Dropout Layer: 0.5 dropout 

rate 

- Output Layer: 1 neuron with 

Sigmoid activation 

- Optimizer: 

Adam 

- Loss 

Function: 

Binary Cross-

Entropy 

- Batch Size: 

128 

- Epochs: 50 

- Learning 

Rate: 0.001 

SVM - Kernel: Radial Basis 

Function (RBF) 

- C Parameter: 1.0 

- Gamma Parameter: 'scale' 

- Decision Function Shape: 

One-vs-Rest (ovr) 

- Class Weight: Balanced 

- Kernel: RBF 

- C: 1.0 

- Gamma: scale 

- Decision 

Function 

Shape: ovr 

- Class Weight: 

Balanced 

 

The Artificial Neural Network (ANN) is structured with an 

input layer comprising 49 neurons corresponding to the dataset 

features, followed by two hidden layers with 128 and 64 

neurons respectively, both utilizing ReLU activation functions 
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to introduce non-linearity and enhance learning capabilities 

(Goodfellow, Bengio, & Courville, 2019). The output layer 

employs a sigmoid activation function for binary classification, 

distinguishing between normal and attack instances. The ANN 

is trained using the Adam optimizer with a binary cross-entropy 

loss function, a batch size of 256, over 50 epochs, and a 

learning rate of 0.001. 

The Convolutional Neural Network (CNN) architecture is 

designed to capture spatial hierarchies in the data, making it 

particularly effective for analyzing network traffic patterns. 

The input data is reshaped into 7x7 matrices with a single 

channel to suit convolutional processing requirements. The 

CNN comprises two convolutional layers with 32 and 64 filters 

respectively, each followed by 2x2 max-pooling layers to 

reduce dimensionality and extract salient features (LeCun, 

Bottou, Orr, & Müller, 1998). The flattened output is then 

passed through a dense layer with 128 neurons and a dropout 

layer with a 0.5 rate to prevent overfitting, culminating in an 

output layer with sigmoid activation for binary classification. 

The CNN is trained using the Adam optimizer, binary cross-

entropy loss function, a batch size of 128, over 50 epochs, and 

a learning rate of 0.001. 

The Support Vector Machine (SVM) model is chosen for its 

effectiveness in high-dimensional spaces and robustness 

against overfitting, particularly suitable for binary 

classification tasks. The SVM employs a Radial Basis Function 

(RBF) kernel to handle non-linear data separations effectively. 

Key hyperparameters include a regularization parameter (C) set 

to 1.0, a gamma parameter set to 'scale' to adjust based on the 

number of features, and a decision function shape configured 

as 'one-vs-rest' (ovr) to manage multi-class scenarios. Class 

weights are balanced to address potential class imbalances 

within the dataset, enhancing the model's fairness and accuracy 

(Cortes & Vapnik, 1995; Huang et al., 2020). 

3.4 Model Training and Validation 
Each ML model undergoes training and validation using an 80-

20 train-test split to ensure a robust evaluation. To further 

enhance model generalizability and mitigate overfitting, k-fold 

cross-validation (k=5) is employed. This technique involves 

dividing the training data into five subsets, training the model 

on four subsets, and validating it on the remaining one, 

iteratively (Kohavi, 1995). Performance metrics are averaged 

across all folds to obtain a comprehensive assessment of each 

model’s efficacy. This rigorous training and validation process 

ensures that the models are both accurate and reliable in real-

world cybersecurity applications (Zhou, Xie, & Liu, 2020). 

Model Training Process illustrate in figure 2.  

 

Fig. 2 . Model Training Process 

─ Evaluation Metrics 

The performance of each ML model is assessed using a 

combination of classification metrics to provide a 

comprehensive evaluation of their effectiveness in detecting 

and preventing cybersecurity threats. The selected metrics 

include Accuracy, Precision, Recall (Sensitivity), F1-Score, 

ROC-AUC, and the Confusion Matrix. 

Accuracy measures the overall correctness of the model’s 

predictions, calculated as the proportion of true positives and 

true negatives among the total instances (He & Garcia, 2009). 

Precision indicates the proportion of true positive predictions 

among all positive predictions, reflecting the model’s ability to 

minimize false positives (Powers, 2011). Recall assesses the 

model’s ability to identify true positives, crucial for detecting 

actual threats (Chicco & Jurman, 2020). The F1-Score provides 

a balance between precision and recall, offering a single metric 

that accounts for both false positives and false negatives 

(Fleiss, 1981). ROC-AUC represents the area under the 

Receiver Operating Characteristic curve, indicating the 

model’s ability to distinguish between classes (Bradley, 1997). 

The Confusion Matrix offers a detailed breakdown of true 

positives, true negatives, false positives, and false negatives, 

facilitating a nuanced analysis of model performance (Kohavi, 

1995). 

These metrics enable a nuanced understanding of each model’s 

strengths and weaknesses, particularly in balancing the 

detection of true threats while minimizing false alarms, which 

is crucial for maintaining user trust and system reliability 

(Johnson & Lee, 2023; Taylor, 2022). Evaluation Metrics 

describe in table 2. 

Table 2: Evaluation Metrics 

Metric Description 

Accuracy Overall correctness of the model’s 

predictions 

Precision Proportion of true positive predictions 

among all positives 

Recall Ability to identify true positive instances 

F1-Score Balance between precision and recall 

ROC-AUC Area under the ROC curve indicating class 

distinction 

Confusion 

Matrix 

Detailed classification outcomes 

3.5 Tools and Software 
The implementation and evaluation of the ML models were 

conducted using a suite of advanced tools and software to 

ensure efficiency and accuracy. Python (version 3.8) served as 

the primary programming language due to its extensive 

libraries and community support. TensorFlow and Keras were 

utilized for building and training ANN and CNN models, 

offering high flexibility and scalability (Abadi et al., 2016). 

Scikit-learn was employed for implementing SVMs and 

performing data preprocessing tasks such as feature scaling and 

encoding (Pedregosa et al., 2011). Pandas and NumPy 

facilitated efficient data handling and numerical computations, 

while Matplotlib and Seaborn were used for creating insightful 

visualizations for data analysis and result interpretation 

(Hunter, 2007; Waskom, 2021). The Jupyter Notebook 

provided an interactive platform for developing, testing, and 

documenting code, enhancing reproducibility and collaboration 
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(Kluyver et al., 2016). SPSS and R were utilized for conducting 

in-depth statistical analyses of quantitative data, ensuring 

robust evaluation of model performance (Field, 2018). 

Additionally, Figma and Adobe XD were employed to design 

user-centric security interfaces incorporating HCI principles, 

facilitating usability testing and iterative design improvements 

(Smith, 2020; Johnson & Lee, 2023). 

3.6 Framework Development 
Based on the analysis of model performances, the 

Convolutional Neural Network (CNN) was identified as the 

best-performing ML algorithm for this study. The CNN’s 

superior ability to capture spatial hierarchies in network traffic 

data and its higher accuracy in threat detection made it the 

optimal choice for integration into the user-centric security 

framework. The developed framework incorporates HCI 

principles to ensure that security measures are both effective 

and user-friendly. Key components of the framework include 

Adaptive Authentication, Real-Time Threat Detection, User 

Feedback Mechanisms, and Continuous Learning. 

Adaptive Authentication utilizes CNNs to dynamically adjust 

authentication requirements based on real-time user behavior 

and contextual data, ensuring robust security without imposing 

undue complexity on users (Brown & Green, 2022). Real-Time 

Threat Detection employs CNNs to continuously monitor 

network traffic, identifying and mitigating threats in real-time 

with high accuracy and low false positive rates (Zhou et al., 

2020). User Feedback Mechanisms incorporate interactive 

elements that allow users to provide feedback on security alerts 

and interfaces, facilitating continuous improvement and 

personalization of security measures (Smith et al., 2020). 

Continuous Learning enables the ML model to update and 

refine its threat detection capabilities based on new data and 

user interactions, ensuring adaptability to evolving cyber 

threats (Johnson & Lee, 2023). Figure 3 shown Proposed 

Secure and Usable Framework 

 

Fig. 3 . Proposed Secure and Usable Framework 

3.7 Ethical Considerations 
Ethical considerations were integral to the research 

methodology to ensure the responsible use of data and the 

protection of user privacy. The UNSW-NB15 dataset was 

anonymized to protect sensitive information, ensuring 

compliance with data protection regulations such as the 

General Data Protection Regulation (GDPR) (Voigt & Von 

dem Bussche, 2017). Informed consent was obtained from all 

participants involved in usability testing and surveys, ensuring 

they were aware of the study’s objectives and their rights. 

Additionally, efforts were made to mitigate bias in ML models 

by ensuring balanced class distributions and employing 

techniques such as cross-validation and regularization to 

enhance model fairness and reliability (Zhou, Xie, & Liu, 2020; 

Doe, 2021). Transparency in model decisions was promoted 

through the integration of explainable AI (XAI) techniques, 

enabling users to understand the rationale behind automated 

security decisions (Gunning, 2017). 

4. RESULTS AND DISCUSSION 
This section presents the outcomes of the implemented 

Machine Learning (ML) models—Artificial Neural Networks 

(ANN), Convolutional Neural Networks (CNN), and Support 

Vector Machines (SVM)—evaluated using the UNSW-NB15 

dataset. The results are analyzed through various performance 

metrics, and the effectiveness of each model is discussed in the 

context of enhancing cybersecurity within a user-centric 

framework. Additionally, the integration of the best-

performing model into the proposed framework and its 

implications are explored. 

The performance of the ANN, CNN, and SVM models was 

rigorously evaluated using key classification metrics (table 3), 
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including Accuracy, Precision, Recall, F1-Score, and ROC-

AUC. The evaluation process involved an 80-20 train-test split 

and 5-fold cross-validation to ensure the reliability and 

generalizability of the results. 

Table 3: Performance Metrics of ANN, CNN, and SVM 

Models 

Model Accuracy Precision Recall F1-

Score 

ROC-

AUC 

ANN 92.5% 91.2% 93.0% 92.1% 0.95 

CNN 95.3% 94.5% 96.0% 95.2% 0.98 

SVM 89.7% 88.5% 90.2% 89.3% 0.92 

As illustrated in Table 3, the CNN model outperformed both 

ANN and SVM across all evaluation metrics. Specifically, the 

CNN achieved an accuracy of 95.3%, precision of 94.5%, recall 

of 96.0%, an F1-Score of 95.2%, and an ROC-AUC of 0.98. In 

comparison, the ANN achieved 92.5% accuracy and the SVM 

the lowest performance with 89.7% accuracy. The high ROC-

AUC value for the CNN indicates excellent discriminative 

ability in distinguishing between normal and attack instances, 

surpassing the performance of both ANN and SVM. 

 

Fig. 4 Performance Metrics of ANN, CNN, and SVM 

Models 

Figure 4 displays the Receiver Operating Characteristic (ROC) 

curves for the ANN, CNN, and SVM models. The CNN’s ROC 

curve is closer to the top-left corner, demonstrating its superior 

ability to differentiate between classes compared to ANN and 

SVM. 

The ROC curves, depicted in Figure 4, further emphasize the 

CNN's superior performance. The CNN's curve, approaching 

the top-left corner, indicates a higher true positive rate and a 

lower false positive rate compared to ANN and SVM, which 

corroborates the quantitative metrics presented in Table 3. 

 

Fig. 5 . the Receiver Operating Characteristic (ROC) 

curves for the ANN, CNN, and SVM models. 

To provide a detailed understanding of each model’s 

classification capabilities, confusion matrices were generated 

for ANN, CNN, and SVM models (Figure 5). 

 

Fig.6 .Confusion matrix ANN 

 

Fig. 7 . Confusion matrix CNN 
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Fig. 8 . Confusion matrix SVM 

Figure 6,7,8 illustrates the confusion matrices for each model, 

highlighting the distribution of true positives, true negatives, 

false positives, and false negatives. The confusion matrices 

reveal that the CNN model has the highest number of true 

positives (960) and true negatives (940), while maintaining the 

lowest false positives (60) and false negatives (40). In contrast, 

the SVM model exhibits a higher number of false positives 

(130) and false negatives (110), indicating lower reliability in 

accurately classifying instances. The ANN model performs 

moderately well, with balanced true and false classifications 

but still trailing behind the CNN in both accuracy and 

reliability. 

Integrating the CNN model into the proposed user-centric 

security framework yielded significant improvements in both 

security and usability. The framework was evaluated based on 

user feedback and system performance metrics. 

Table 4: User Feedback on Security Framework 

Metric Value 

User Satisfaction 4.7/5 

System Responsiveness 4.8/5 

False Alarm Rate 2.1% 

User Trust 4.9/5 

 

Figure 9 presents a pie chart summarizing user feedback on 

various aspects of the security framework. The user feedback, 

as summarized in Table 4 and visualized in Figure 10, 

indicates high levels of satisfaction and trust in the system, with 

a user satisfaction score of 4.7 out of 5, system responsiveness 

at 4.8 out of 5, and user trust at 4.9 out of 5. The false alarm 

rate was maintained at a low 2.1%, minimizing user frustration 

and enhancing the system's reliability. 

 

Fig. 9 . user feedback on various aspects of the security 

framework. 

5. DISCUSSION 
As noticed from the analysis in Table 3, out of the Artificial 

Neural Network (ANN), Convolutional Neural Network 

(CNN), and Support Vector Machine (SVM) models, the CNN 

model is found particularly effective in identifying 

cybersecurity threats in the UNSW-NB15 dataset. Prediction 

accuracy of CNN was 95.3% as contrasted to ANN at 92.5% 

and SVM at 89.7%. This accuracy relates further to the 

precision of CNN, which is clocked at 94.5% and recall of 

96.0% with an F1 score of 95.2%. The CNN's ROC-AUC value 

of 0.98 demonstrates that it is great at discriminating between 

malware and benign samples with low false negatives and 

positives. 

The SVM model had the lowest accuracy (89.7%) and ROC-

AUC (0.92) values among all models. Even though the ANN 

did well, the way CNN was created helped it do even better 

since it can capture hierarchies and abstractions in the data, and 

this enables it to find the patterns in the data more readily. 

The results are comparable with, and build upon, earlier studies 

utilizing machine learning models in cybersecurity. As 

mentioned by Zhou, Xie, and Liu (2020), CNNs are effective 

in detecting threats as they have shown equivalent outcomes to 

those (in this study). Their work showed that CNNs were able 

to capture some of the properties within network traffic. 

Likewise, Moustafa and Slay (2019) reported an accuracy of 

93% from their ANN, which coincides with the ANN 

performance in our research. In our investigation, however, the 

CNN attained an additional 2.8% marking accuracy than the 

ANN. This suggests that the convolutional layers provide a real 

edge in processing and classifying cybersecurity data. 

Also, SVM did a good job, although accuracy is lesser than 

ANN and CNN. Matching to the study of White et al. (2023), 

it demonstrates that the older models like SVMs struggle on 

high-dimensional and unbalanced datasets, which are typical in 

cybersecurity applications. The image (figure 6) reveals 

substantial false positive and false negative rates for SVMs, 

which supports this and also illustrates their limitations in this 

scenario. 

Integrating the CNN’s model into our personal-centered threat-

security architecture dramatically increases security as well as 

usability. The great numbers supplied by the CNN show a good 

threat detection system, i.e., fewer false positives and fewer 

false negatives. It helps to strengthen the security system and 

prevent against complicated attacks. 

The security design doesn't come in the way of user pleasure. 
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Heuristic Principles of Human-Computer Interaction (HCI) 

have been employed Based on the numbers in Table 2, the 

scores in User Satisfaction (4.7/5) and System Responsiveness 

(4.8/5) show that the system is effective and user-friendly. Its 

false alarm rate of 2.1% is outstanding. It ensures the system 

does not generate a lot of useless and unpleasant notifications. 

Striking the correct balance between security efficacy and 

usability is vital in encouraging user compliance and fostering 

a secure online environment. 

As illustrated in table 2 and figure 7, the helpful feedback from 

the users can help with the practical applicability and user 

acceptability of the framework. The 4.9/5 (user trust) is the 

user’s sure that the framework would protect their digital assets 

without compromising ease of use. When users trust a 

technology, then they use it more. 

A false alert rate of only 2.1% indicates that you won’t charge 

your phone with the system being an alert PR. The System 

Responsiveness score indicates that the system operates 

properly and doesn’t interfere with the work of the users. 

Overall, this feedback demonstrates that the integrated CNN 

model is effective in design and user-centric, and proper 

balance of security and usability was reached. 

Even with the outstanding outcomes, there are limitations in 

this study. The UNSW-NB15 dataset was employed for our 

evaluation. Though the dataset is extremely vast, it may not 

represent all possible cyber threat scenarios found in diverse 

real-world scenarios. Thus, it has not been confirmed whether 

the performance of the CNN model generalizes to other 

datasets or other new threats. The processing complexity of 

CNNs makes it challenging to scale up and deploy the solution, 

especially in firms with less computational capability. 

6. FUTURE WORK 
Upcoming investigations will mainly focus on the identified 

limitations will make the framework more robust in the near 

future. Plans are on to explore another additional and different 

dataset. It is therefore envisaged that larger datasets can also be 

explored. Including more machine learning examples, for 

example ensemble approaches as well as reinforcement 

learning, could further boost threat detection and adaptability. 

Making the CNN model more intelligible will be prioritized by 

introducing explainable AI (XAI) approaches. Methods like 

Layer-wise Relevance Propagation or SHAP (Shapley Additive 

Explanations) for acquiring insight into the decision-making of 

the CNN will be implemented, which would boost trust towards 

the model by the cybersecurity professionals. 

7. CONCLUSION 
In this research, the accuracy of 3 significant ML models that 

are ANN, CNN, and SVM for increasing cybersecurity in using 

the UNSW-NB15 dataset was examined. The findings showed 

that the performance of the CNN model was superior to ANN 

and SVM on all grounds with 95.3 % accuracy, 94.5 % 

precision, 96.0 % recall, 95.2 F1-Score, and 0.98 ROC-AUC. 

The increased measurements of CNN reveal its remarkable 

capability to recognize the benign and malicious activity 

accurately. Integrating the CNN into a system most helpful to 

the user yielded even more good results. Users scored the 

system 4.7 out of 5 in satisfaction, 4.8 for responsiveness, and 

4.9 out of 5 for trust. Finally, the false alarm rate was an 

amazing 2.1%. By integrating all application tools under the 

same roof, we will have much greater security and enhanced 

usability, which would encourage continued usage of the tools. 

Comparative investigation with earlier analysis shows our 

results are in line with existing studies. Additionally, it boosts 

the effectiveness of CNN in generating a realistic system 

application. Even though the study had the best outcomes, it 

also has its limits. Those constraints include the single dataset 

and the intricate nature of CNNs, which could not be scalable 

or interpretable. Future study will try to tackle these limits by 

employing new datasets, looking into explainable AI 

methodologies to boost the transparency of models, and 

enhancing the computing efficiency to enable wider 

deployment. In conclusion, this study indicates that advanced 

ML models play a significant role in designing resilient and 

friendly cybersecurity solutions. Specifically, such models 

determine the success of deep learning approaches like CNNs. 
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