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ABSTRACT 

Kidnapping for ransom continues to pose a significant security 

threat in Nigeria, and the rapid identification of hand-carried 

weapons in surveillance footage could offer early warnings to 

law enforcement agencies. This study presents a 

computationally efficient two-stage vision pipeline that 

integrates the speed of You Only Look Once (YOLOv5s) with 

the localization capability of a Faster RCNN (ResNet50FPN) 

to detect knives and related weapons in real time. The system 

is evaluated in a zero-shot manner, utilizing off-the-shelf 

Common Objects in Context (COCO) weights without any 

domain-specific fine-tuning on the 928-image Sohas weapon 

dataset. Experimental results indicate that the hybrid cascade 

achieves image-level coverage of 99.6% and processes a frame 

in 0.19 seconds on a single Tesla T4 GPU (approximately 5 

fps), meeting the latency requirements of typical Nigerian 

Closed-Circuit Television (CCTV) deployments. However, the 

detection accuracy was modest: the mean Average Precision 

was 0.0019 at IoU 0.50 and 0.0168 at IoU 0.30, indicating that 

localization error is the predominant failure mode. When 

compared with recent fine-tuned models that report mAP ≈ 

0.65–0.75 on weapon-specific datasets, the zero-shot baseline 

quantifies the performance gap attributable to the domain shift. 

Qualitative analysis further identified the small-object scale, 

metallic false positives, and class imbalance as major sources 

of error. The presented code, pretrained weights, and 

evaluation logs were released to provide an open, reproducible 

benchmark for subsequent research. By establishing both the 

feasibility of real-time inference on commodity hardware and 

the limitations of generic weights, this work lays the foundation 

for future, domain-adapted systems aimed at mitigating 

kidnapping incidents in Nigeria through automated weapon 

detection. 
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1. INTRODUCTION 
Kidnapping for ransom has evolved into a severe public safety 

crisis in Nigeria, eroding civil liberties, discouraging local 

investment, and expanding billions of naira in ransom 

payments every year. According to the National Bureau of 

Statistics (NBS), 2,235,954 abductions and 614,937 homicide 

cases were recorded nationwide between May 2023 and April 

2024, which shadowed those from any previous twelve-month 

period in the country’s history [1]. The geographic distribution 

of attacks is broad: while the northwest geopolitical zone 

remains at the epicenter, high-profile mass abductions have 

also occurred in the South–South oil belt, the Federal Capital 

Territory, and along major highways connecting state capitals 

[2,3]. Owing to the tactical use of firearms and edged weapons, 

such incidents are typically fast moving: assailants brandish a 

knife or gun, shatter vehicle windows, and subdue victims 

within seconds before disappearing into adjoining forests or 

urban alleyways. The compressed time scale renders 

conventional patrol-based policing reactive; by the time alerts 

reach security services, hostages have already been moved to 

transient camps where rescue is both dangerous and costly [4]. 

To overcome this tactical advantage, state and local 

governments have begun installing closed-circuit television 

(CCTV) networks as part of “Safe City” initiatives. Lagos, for 

example, plans to deploy over 13,000 Internet-Protocol (IP) 

cameras, with similar projects underway in Abuja, Kaduna, and 

Port Harcourt [5]. While cameras increase coverage, they also 

exacerbate the cognitive load on human analysts: watching 

dozens of live feeds in real time is exhausting and error-prone. 

The obvious technological countermeasure is automated video 

analytics capable of flagging suspicious activity, specifically, 

the visual presence of hand-carried weapons that often 

foreshadow kidnapping. If a reliable detector can raise an alert 

within the first few seconds of weapon exposure, security teams 

may disrupt the attack before the hostages are taken. This 

motivation places weapon detection at the intersection of 

computer vision, public safety, and human rights. 

Modern object detection begins with two-stage architectures 

such as Region Convolution Neural Network (R-CNN), Fast R-

CNN, and Faster R-CNN, which generate candidate regions 

and then refine them [6,7]. These networks achieve high 

localization accuracy on generic benchmarks but historically 

incur significant inference latency. One-stage “single shot” 

models spearheaded by the You Only Look Once (YOLO) 

family address this limitation: YOLOv3 delivered real-time 

performance on commodity Graphics Processing Unit (GPUs); 
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YOLOv5, released in 2020, introduced lighter backbones and 

auto anchor computation that further improved speed-accuracy 

trade-offs; and YOLOv7/YOLOv8 add reparameterization 

tricks and transformer heads. Comparative studies on weapon 

datasets consistently rank YOLO variants among the top 

performers in terms of mAP (mean Average Precision) and 

throughput [8]. However, small hand-carried weapons such as 

knives, daggers, or locally fabricated firearms remain 

challenging targets because (i) they occupy less than 2% of the 

pixel area in many surveillance frames, and (ii) occlusions by 

clothing or environmental clutter degrade their characteristic 

contours. 

Hybrid pipelines, in which a YOLO network proposes coarse 

boxes that are subsequently refined by a two-stage detector, 

offer an attractive compromise. R-CNN-style refinement can 

correct the spatial imprecision of YOLO anchors, especially for 

elongated objects like knives, without incurring the full 

computational cost of sliding window region proposals. 

Systems of this genre have been reported with impressive 

laboratory metrics: in a controlled five-class surveillance 

dataset, a YOLOv4 + Faster R-CNN ensemble achieved mAP 

96% at 19 fps on a laptop-grade NVIDIA MX250 [9]. A 

systematic review of 58 papers published between 2020 and 

2023 identified YOLO and Faster R-CNN as the most 

frequently deployed architectures in weapon detection, 

concluding that hybrid designs yield the best balance between 

recall and precision for small objects [10]. Nevertheless, these 

results rely heavily on meticulous fine-tuning using domain-

specific imagery. The underlying backbones are first pre-

trained on COCO (Common Objects in Context) or Open 

Images, and then retrained for tens of epochs on bespoke 

weapon datasets that often contain fewer than 10,000 images. 

While effective in the lab, the same models suffer drastic 

performance drops when transferred unchanged to new regions, 

lighting conditions, or camera geometries, a phenomenon 

broadly referred to as a domain shift. Consequently, little is 

known about how an “off-the-shelf” hybrid detector would 

perform in resource-constrained, heterogeneous surveillance 

environments found in Nigerian cities and rural highways.  

Current research on weapon detection reveals two significant 

gaps, particularly pertinent to the Nigerian context: 

1. Domain independence of benchmarks. Most studies 

present results based on proprietary or synthetic 

datasets that fail to capture the visual intricacies of 

Nigerian kidnapping scenarios, such as poorly lit 

village roads, commercial buses with tinted 

windows, or crowded roadside markets. Without 

baseline measurements under these specific 

conditions, policymakers are unable to assess the 

readiness of existing technology for practical 

deployment. 

2. Undocumented runtime on low-cost hardware. State-

of-the-art studies typically benchmark on high-end 

GPUs (RTX 3090, A100); however, due to budgetary 

limitations, Nigerian law enforcement agencies often 

resort to renting cloud-based Tesla T4 or even K80 

instances. The lack of transparent runtime data on 

such hardware obscures the trade-offs between 

accuracy and operational cost. 

These deficiencies undermine the practical applicability of 

current research: a model claiming 95% laboratory mAP is of 

limited utility if it cannot operate at 5 fps on cost-effective 

infrastructure or if its accuracy significantly diminishes when 

deployed in Abuja traffic cameras. Therefore, an open and 

reproducible assessment of zero-shot performance (that is, 

without fine-tuning) is essential to inform procurement, 

training, and risk assessment strategies. 

The aim of this study is to design, implement, and empirically 

evaluate a computationally efficient two-stage computer vision 

pipeline capable of real-time detection of hand-carried 

weapons in Nigerian surveillance footage. This initiative aims 

to support early warning systems that mitigate kidnapping 

incidents in the long term. The specific objectives of the study 

are to:  

1. Implement the lightweight hybrid detector. 

2. Establish a zero-shot performance baseline for hand-

carried weapon detection. 

3. Compare the baseline with state-of-the-art, fine-

tuned studies. 

4. Provide recommendations to stakeholders on 

potential directions for making this system viable. 

The present study undertakes a rigorous, first-principles 

evaluation of a YOLOv5–Faster R-CNN cascade on the 

publicly released Sohas Weapon Detection dataset, which 

contains 928 RGB images annotated with bounding boxes for 

knives and billetes (bank notes: this can be seen as non-knife). 

In contrast to prior studies, no domain-specific training was 

applied; both YOLOv5 s and Faster R-CNN were executed 

with their default COCO weights. The significance of this 

choice is threefold. 

1. Policy relevance. By reflecting the performance, a 

security agency can observe immediately after model 

installation, and the results provide a realistic 

baseline against which the cost–benefit of further 

fine-tuning can be assessed. 

2. Resource realism. All experiments were conducted 

on a single GPU accessed through Google 

Colaboratory (known as Google Colab), a computing 

environment in which small- and medium-sized 

security firms in Nigeria can replicate at negligible 

cost. Inference latency, GPU memory consumption, 

and energy footprint were documented, thereby 

filling a critical knowledge gap in the literature. 

3. Research reproducibility. The complete notebook, 

pre - and post-processing scripts, inference logs, and 

evaluation metrics were released under an open-

source license. Therefore, subsequent studies can 

measure incremental gains from data augmentation, 

domain adaptation, or architectural modifications 

under identical conditions. 

Beyond methodological transparency, this study also has direct 

operational implications. A detector that flags a raised knife 

with even 50 % precision can still be valuable when integrated 

into a broader decision support pipeline: alerts can cue 

operators to inspect the feed, cross-validate it with street level 

audio, and dispatch patrol units if corroborated. The key is to 

understand the baseline error modes missed detections of small 

knives, false alarms on metallic reflections, or bounding box 

drift so that human–machine teaming strategies can be 

designed accordingly. In the long term, incremental 

improvements driven by fine-tuning, transfer learning, or 

transformer-based detectors can be evaluated against the 

baseline established herein. 

The remainder of this paper is organized as follows. Section 2 

provides an overview of the literature review. Section 3 details 

the dataset, pipeline architecture, and the evaluation protocol. 

Section 4 presents the quantitative results and a qualitative error 
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analysis. Section 5 concludes the study with recommendations 

for policymakers and system integrators. 

2. LITERATURE REVIEW 
The automated recognition of hand carried weapons in videos 

has matured rapidly since the advent of deep-learning 

detectors; however, the field remains fragmented across 

datasets, model families, and evaluation protocols. This section 

synthesizes the main trajectories in the literature, emphasizing 

methods, datasets, deployment constraints, and positions the 

present study within these trajectories. 

2.1 Evolution of Deep Learning Detectors 

for Weapons 
Early weapon detection systems relied on background 

subtraction followed by handcrafted descriptors, such as 

Histogram of Oriented Gradients (HOG) and Haar-like 

features. Although adequate for static CCTV scenes, these 

pipelines fail on dynamic backgrounds and diverse viewpoints. 

The watershed moment arrived with the two-stage Faster R-

CNN framework, whose Region Proposal Network (RPN) 

enabled near real-time inference without sliding windows [11]. 

Subsequent releases of Mask R-CNN, Cascade R-CNN, and 

Libra R-CNN further boosted localization accuracy, especially 

for small or occluded objects. 

One-stage architectures soon challenged this two-stage 

monopoly. YOLO transforms detection by framing it as a 

single regression problem, reaching 45 Frames Per Second 

(fps) on consumer GPUs. YOLOv3 introduced Darknet-53 and 

feature pyramid networks, whereas YOLOv5 added mosaic 

augmentation, adaptive anchors, and auto-learning bounding 

box gains. Comparative evaluations of weapon imagery show 

that YOLOv5 outperforms Single Shot Detector (SSD) and 

RetinaNet in both mAP and speed on Handgun Detection 

(HGD) and Knife 9k benchmarks [12]. 

However, knives and compact firearms occupy <2% of the 

frame in wide-angle surveillance cameras, a regime in which 

one-stage models struggle. To compensate for this, researchers 

have experimented with hybrid cascades: YOLO (or SSD) 

generates coarse proposals that a high-resolution detector then 

refines. Castillo et al. achieved 97.5% precision on ImageNet-

derived knife images using a YOLOv4 and Faster R-CNN 

cascade, with a reported speed of 19 fps on laptop-grade 

MX250 hardware [13]. Pérez-Hernández et al. reduced 

handgun false positives by 40% via a two-level YOLO-based 

verification stage [14]. 

2.2 Datasets and Domain Bias 
Table 1. Publicly available weapon datasets fall into three 

categories. 

Tier Example

s 

Typical 

size 

Imaging 

modality 

Sour

ce 

Laboratory Olmos, 

SCW 

1800 

1,000–

3,000 

images 

High-

resolution 

RGB, 

controlled 

background 

[15] 

Synthetic/C

omposite 

Gun 10k, 

Knife 9k 

9,000–

15,000 

Rendered 

or 

Photoshop-

composited 

weapons 

[16] 

Field Sohas, 

WEP 

CNN, 

IMFDB 

500–

10,000 

CCTV, 

YouTube, 

body cams 

[17, 

18 

,19] 

The Sohas Weapon Detection corpus used in this study belongs 

to the third tier, providing Red, Green and Blue (RGB) images 

with authentic clutter and lighting variation factors that are 

seldom captured by synthetic datasets. A recent systematic 

review of 58 papers stressed that cross-dataset generalization is 

weak: models fine-tuned on laboratory collections lose up to 60 

percentage points mAP when tested on field footage. The 

review recommends publishing zero-shot baselines to quantify 

the domain shift which this gap work addresses. 

2.3 Concealed and Multimodal Weapon 

Detection 
Detecting concealed weapons increases the challenge, often 

requiring millimetre-wave or thermal modalities. For example, 

Gómez García et al. proposed a two-stage thermal pipeline that 

reached 0.91 mAP for hidden handguns [20], while Chen et al. 

fused millimetre-wave and RGB streams in a YOLO-based 

network to counter low-resolution noise [21]. Although 

promising, such multimodal systems demand specialized 

sensors that are rarely deployed in Nigerian municipalities; 

RGB-only approaches like ours remain the most deployable 

option in the short term. 

2.4 Real-Time Constraints and Edge 

Deployment 
Few studies have disclosed inference latency on commodity 

cloud GPUs. Most benchmarks conducted on RTX 3090 or 

A100 card infrastructures exceed the budgetary limits of state 

or local security agencies in Nigeria. One notable exception is 

Apene et al., who demonstrated the YOLOv5 architecture for 

real-time crime event detection [22]. Their evaluation, based on 

the mean average precision (mAP) metric and F1 score, yielded 

promising resultsapproximately 0.81 and 0.80 respectively, 

along with a throughput of 94 frames per second (FPS). The 

absence of detailed timing data in most existing studies 

complicates cost-benefit analyses for real-world deployment. 

To address this gap, latency was benchmarked on a single Tesla 

T4 GPU, representing the lowest-cost cloud GPU currently 

available. The resulting throughput of 5 FPS establishes the 

first open latency benchmark relevant to resource-constrained 

deployment scenarios in Nigeria. 

2.5 Mitigating False Alarms and Domain 

Shift 
High recall is essential for threat detection, yet excessive false 

positives burden operators. Strategies to improve precision 

include the following: 

I. Two-level verification: A coarse detector followed 

by semantic segmentation to suppress background 

triggers [23]. 

II. Pose-aware filtering: Jointly modelling human limb 

positions to discount holstered or table-top weapons 

[24]. 

III. Meta-learning and few-shot fine-tuning: Training 

with as few as 30 annotated frames through 

prototypical networks, improving small class AP by 

20 pp. 

Nonetheless, these refinements assume access to labelled local 

footage, an expensive requirement for many Nigerian 

jurisdictions. As a first step, our zero-shot evaluation quantifies 
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the baseline false-positive burden before any of these precision-

boosting techniques are applied. 

2.6 Research Gaps 
Based on the above survey, two gaps emerged: 

I. Scarcity of zero-shot baselines. While fine-tuned 

weapon detectors report mAP values exceeding 0.60, 

there are almost no reports on how unadapted models 

fare in new domainsan essential metric for rapid 

deployment scenarios. 

II. Undocumented runtime for low-cost hardware. 

Operational feasibility depends on both accuracy and 

speed; however, inference times on GPUs affordable 

to Nigerian agencies (e.g., Tesla T4, GTX 1650) are 

seldom published. 

The present work fills these gaps by (i) publishing the first zero-

shot performance figures of a YOLOv5–Faster R-CNN hybrid 

on the Sohas field dataset and (ii) measuring the end-to-end 

latency on a single Tesla T4 instance. 

2.7 Positioning of the Current Study 
A standard hybrid detector was deployed in a resource-

constrained environment and evaluated without fine-tuning, 

resulting in a reproducible benchmark suitable for future 

Nigeria-focused research. Open-source code and logs have 

been made available to enable scholars to (re)train on local 

footage and quantify incremental improvements. This 

 

Fig1. Proposed System

approach aims to accelerate the translation of academic 

advances into practical tools for kidnapping mitigation. 

3. MATERIALS AND METHODS 
The study benchmarks a lightweight two-stage hybrid detector 

on a Sohas Weapon Detection image set. Region proposals are 

first generated with YOLOv5s and then refined with Faster R-

CNN; the resulting boxes are evaluated against the ground truth 

using the mean Average Precision (mAP). Figure 1 shows a 

descriptive diagram of the proposed system. All code was 

executed in a single Google Colab notebook (Python 3.10), 

ensuring every step from data ingestion to metric computation 

is fully reproducible. 

3.1 Dataset 
The public Sohas Weapon Detection corpus was utilized, 

comprising 928 RGB photographs of varying resolutions that 

depict handheld weapons in unconstrained scenes. Bounding 

box annotations for the knife and billete classes were provided 

in the Pascal VOC XML format. All images and annotations 

were retained without additional cleaning or augmentation, as 

the objective of the study was to benchmark the hybrid detector 

on the raw dataset. Table 2 presents sample images from the 

Sohas Weapon dataset. 

Table 2. Sample of the Sohas Weapon Dataset. 

Billete 

   
Knife 
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3.2 Hybrid Detection Pipeline 

3.2.1 Stage 1: Region Proposal (YOLOv5s) 
Fast, single-shot proposals were generated using the Ultralytics 

implementation of YOLOv5s [25]. The network was loaded 

with its default COCO-trained weights and executed with a 

confidence threshold of 0.50 and a non-maximum suppression 

(NMS) Intersection Over Union (IoU) threshold of 0.45. Only 

detections labelled as knife or billete were forwarded to the 

refinement stage, ensuring class consistency throughout the 

pipeline. 

3.2.2 Stage 2: Box Refinement (Faster R-CNN) 
Refinement was performed using a Faster R-CNN with a 

ResNet-50 FPN backbone pretrained on Common Objects in 

Context (COCO) [26,27]. The model processed each YOLO 

proposal as an external Region of Interest (RoI) and scored the 

bounding box/label pair. Boxes with confidence <0.50 were 

discarded as stated in section 3.2.1, and class-wise NMS was 

applied with IoU = 0.30 to produce the final detections. 

3.3 Ground Truth Parsing 
Extensible Markup Language (XML) annotations were parsed 

into [(x1, y1, x2, y2, label)] tuples per image, yielding 1 000 

ground truth boxes. Each label is mapped to the numerical 

indices used internally by the detector (knife → 1, billete → 2). 

3.4 Evaluation Protocol 
Performance was quantified by the mean Average Precision 

(mAP) computed with the average_precision_score function 

from scikit learn, following the COCO evaluation recipe. A 

detection was considered correct if its IoU with a ground-truth 

box exceeded a fixed threshold (primary report at IoU = 0.50, 

sensitivity analysis at IoU = 0.30). Precision–recall curves were 

integrated using the trapezoidal rule to obtain the per-image AP 

before averaging across the dataset. 

A detection d is a true positive if its intersection over union with 

a ground-truth box g exceeds a fixed threshold τ, as shown in 

Equations (1) and (2): 

𝐼𝑜𝑈(𝑑, 𝑔) =  
|𝑑∩𝑔|

|𝑑∪𝑔|
  (1) and 

𝐼𝑜𝑈(𝑑, 𝑔) ≥ τ  (2) 

From the ranked list of detections, precision and recall at cut-

off index k are computed using Equations (3) and (4): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘) =  
𝑇𝑃(𝑘)

𝑇𝑃(𝑘)+𝐹𝑃(𝑘)
  (3),  

𝑅𝑒𝑐𝑎𝑙𝑙(𝑘) =
𝑇𝑃(𝑘)

𝑇𝑃𝑚𝑎𝑥
  (4), 

where k is the cut-off index. Average Precision (see equation 

(5)) for one image is the Riemann sum 

𝐴𝑃 =  ∑ (𝑅𝑒𝑐𝑎𝑙𝑙𝑛+1 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑛)𝑀𝑎𝑥𝑚≥𝑛𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚
𝑁−1
𝑛=1 (5) 

and mAP is the mean of the AP over the entire dataset. The 

results are reported at two thresholds: τ = 0.50 (primary), and τ 

= 0.30 (sensitivity analysis). 

3.5 Implementation Details 
The experiments were conducted on the free GPU tier of 

Google Colab. (Tesla T4, 16 GB VRAM). The random seeds 

were fixed at 42. The notebook, dependency list, and serialized 

detections are provided as supplementary material to facilitate 

replication. 

4. RESULTS AND DISCUSSION 

4.1 Quantitative Performance 
Table 3 aggregates the principal detection metrics obtained on 

the Sohas Weapon Detection test partition when the hybrid 

YOLOv5 s → Faster R-CNN pipeline is evaluated at two 

Intersection over Union (IoU) thresholds. The further shows 

the detection performance of the proposed pipeline on 928 

images (1 000 annotated weapon instances). 

Table 3. Performance Evaluation Result 

IoU τ Precision Recall mAP 

0.50 0.0054 0.067  0.0019 

0.30 0.0412 0.289  0.0168 

 

Two salient observations were made. 

1. Box localisation error dominates. 

Lowering τ from 0.50 to 0.30 yields an eightfold increase in 

mAP (0.0019 → 0.0168) and a fourfold increase in Recall. The 

detector thus tends to place boxes near the target but rarely 

overlaps at least 50 % of the ground truth area, which is an error 

profile typical of models that have not been fine-tuned on the 

target domain [27]. 

2. High coverage, extremely low precision. 

YOLOv5 s produced ≥ 1 proposal for every image, and the 

refinement stage preserved detections in 924 of 928 frames 

(99.6 % coverage). However, the best class balanced precision 

at τ = 0.50 is 0.54 %, implying that ≈ 99 of every 100 reported 

boxes are false positives. 

These findings confirm that the off the shelf COCO weights are 

insufficient for weapon imagery, especially for the 

underrepresentedbillete class. 

 

Fig 2: Comparison of Precision, Recall and mAP at Two 

IoU Thresholds 

Fig 2 presents a grouped bar chart in which detection 

performance metrics are displayed for IoU thresholds of 0.50 

and 0.30. The horizontal axis identifies the two threshold values 

and the vertical axis quantifies the metric values on a common 

scale from 0 to 0.30. For each threshold the chart shows three 

adjacent bars corresponding to Precision, Recall and mean 

Average Precision (mAP). At an IoU threshold of 0.50 

Precision is extremely low (0.0054), Recall attains 0.067 and 

mAP is 0.0019. When the threshold is reduced to 0.30 all three 

metrics rise substantially: Precision increases to 0.0412, Recall 
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climbs to 0.289 and mAP reaches 0.0168. This chart clearly 

illustrates that relaxing the overlap requirement yields 

consistent improvements across all metrics, with Recall 

showing the greatest absolute gain and Precision remaining low 

in absolute terms, indicating a persistent high false‐positive 

rate. 

 

 

Fig 3: Trend of Performance Metrics Across IoU 

Thresholds 

Fig3 illustrates the same detection metrics as functions of the 

IoU threshold, plotted here as a line chart. The horizontal axis 

orders the thresholds from 0.30 on the left to 0.50 on the right. 

The vertical axis again measures metric values between 0 and 

0.30. Three curves trace the behaviour of Precision, Recall and 

mAP as the threshold increases. Recall begins at 0.289 for τ = 

0.30 and declines steeply to 0.067 at τ = 0.50, indicating that 

most correctly localized detections fall in the overlap range 

between 30 percent and 50 percent. Precision decreases from 

0.0412 to 0.0054 over the same interval, while mAP drops from 

0.0168 to 0.0019. The downward slopes of these curves 

highlight the sensitivity of all three metrics to stricter 

localization criteria and underscore the trade‐off between 

capturing more true positives at lower thresholds and enforcing 

tighter box alignment at higher thresholds. 

4.2 Qualitative Analysis 

4.2.1 True Positives 
Knives positioned near the centre of the frame against 

uncluttered backgrounds are detected with high accuracy. 

Typical examples include a chef’s knife placed on a wooden 

cutting board under uniform overhead lighting. In these cases, 

the predicted bounding box overlaps the ground truth by 

approximately 0.60 (IoU ≈ 0.60) and the classification 

confidence exceeds 0.85. The smooth, elongated blade shape 

and sharp contrast between the metal surface and surrounding 

scene produce strong feature activations in both the YOLOv5s 

and the Faster R-CNN stages. 

4.2.2 Border Truncation 
Overestimation of object extent occurs when the model extends 

box edges beyond the true knife boundary. For instance, a 

tactical folding knife partially hidden behind a belt or clothing 

crease may generate a box that includes extra background area. 

Although the class label remains correct, the enlarged region 

reduces IoU scores below the 0.50 threshold. This effect is most 

pronounced when object contours are irregular or when one end 

of the knife is out of frame. The region proposal network 

appears to favour rectangular shapes that cover all salient 

features, even if that means encroaching on adjacent pixels. 

4.2.3 Small Object Miss 
Very small weapons such as keychain knives or slim pocket 

blades often fail to produce any detection proposals. These 

objects typically occupy under 1 % of the total image area. 

When a proposal is generated, it carries a low confidence score, 

usually below 0.20, and is discarded by the 0.50 minimum 

confidence threshold. The underlying cause is the fixed set of 

anchor box scales and the spatial resolution of the early feature 

maps in YOLOv5s, which are not fine-tuned for objects with 

very few pixels. As a result, the network struggles to 

distinguish small knives from granular background textures. 

4.2.4 Confusion with Metallic Artefacts 
Numerous everyday metal items trigger false positive knife 

detections. Common examples include spoons lying on 

reflective countertops, belt buckles caught in bright sunlight 

and camera tripod legs resting on polished floors. The model’s 

reliance on the generic “knife” features learned from COCO 

causes it to associate any elongated shiny object with a blade. 

Without negative training examples of these non-weapon metal 

objects, the classifier cannot learn the subtle distinctions in 

handle shape or blade taper that separate a true knife from 

similar artefacts. 

4.3 Timing and Resource Footprint 
Running on a Google Colab Tesla T4 (16 GB VRAM), the full 

pipeline processed the test set in 173 s0.19 s image⁻¹ (YOLO ≈ 

0.04 s, Faster R CNN ≈ 0.15 s). This throughput exceeds real 

time requirements (5 fps) for CCTV deployment, but precision 

must improve before field application. 

4.4 Comparison with Related Work 
Prior research that fine-tunes deep detectors on domain-

specific weapon imagery consistently reports significantly 

stronger results than the zero-shot baseline presented in this 

study. For instance, implementations adapting YOLOv4 to 

knife-focused datasets containing approximately a dozen blade 

classes have achieved mean Average Precision (mAP) scores 

around 0.70 at an IoU threshold of 0.50 [28]. Similarly, studies 

training Faster R-CNN end-to-end on the 1,800-image 

SCW1800 concealed weapon corpus report mAP values 

slightly above 0.60 using the same evaluation metric [12]. 

These performance levelsattained through targeted retraining 

and aggressive augmentationunderscore the substantial 

performance gap to be addressed when generic COCO weights 

are applied to Nigeria’s diverse CCTV footage. The zero-shot 

mAP of 0.002 reported here thus serves as a conservative 

baseline prior to any domain-specific adaptation. 

4.5 Error Attribution and Future 

Directions 
Table 4. Error Attribution and Future Directions 

Error source Evidence Mitigation strategies 

Domain 

mismatch 

(COCO → 

weapons) 

low precision, 

high metallic 

false positives 

fine-tune on target set; 

class-balanced focal 

loss [29] 

Small object 

scale 

frequent misses 

for pocket 

knives 

multi-scale training; 

larger FPN feature 

maps; context 

modules 

Class 

imbalance 

(billete< 10%) 

near-zero AP 

for billete 

synthetic 

oversampling; one-

shot learning with 

prototypical heads 
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Box regression 

bias 

systematic 

border 

overshoot 

IoU-aware loss 

(GIoU, DIoU); 

anchor-free heads 

 

5. CONCLUSION 
This study establishes a practical foundation for automated 

surveillance aimed at addressing Nigeria's kidnapping crisis. 

An unmodified YOLOv5s → Faster R-CNN cascade was 

implemented on the Sohas Weapon Detection dataset and 

executed using a single, cost-effective Tesla T4 GPU. Results 

demonstrate that a hybrid detector can achieve real-time 

throughput, approximately 5 frames per secondeven on 

standard hardware. However, zero-shot performance, with a 

mean Average Precision (mAP) of 0.0019 at IoU 0.50 and 

0.0168 at IoU 0.30, reveals that localization errors and cross-

domain bias limit the effectiveness of off-the-shelf weights for 

reliable detection of knives and billettes. Accordingly, the 

publicly released notebook, logs, and model weights provide a 

reproducible benchmark to assess both the feasibility and 

current limitations of generic models in the Nigerian 

surveillance context. 

6. RECOMMENDATIONS 
Recommendations for national development include: 

I. Launch a Federated Weapon Image Repository: The 

Ministry of Interior, police commands, and private 

security firms should pool CCTV footage of 

kidnapping related incidents into a centralbut access 

controlled repository. A small budget for annotation 

contracts will generate the in-domain training data 

needed to raise model precision from the current ∼2 

% to the 30 – 50 % range documented in fine-tuned 

studies. This initiative will help reduced the biasness 

due to the secondary data used for training. 

II. Create an AI for Public Safety Grant Scheme: The 

Federal Government, via TETFund or the National 

Information Technology Development Agency 

(NITDA), can offer competitive grants to university–

industry consortia that improve weapon detection 

accuracy, latency, or edge deployment. Linking 

funding to open-source deliverables will accelerate 

nationwide diffusion. 

III. Enact a Clear Regulatory and Oversight Framework: 

Updating the Nigeria Data Protection Act with 

explicit clauses on AI driven video surveillance 

covering data retention, civilian privacy, and audit 

logs will legitimise deployment while safeguarding 

civil liberties. An independent oversight committee 

should periodically review false alarm statistics and 

bias metrics. 

The next phase will focus on packaging the hybrid YOLOv5–

Faster RCNN detector into a lightweight mobile and edge 

camera application that can run locally, automatically flag a 

suspected kidnapping the moment a weapon is detected, and 

transmit the precise GPS coordinates via an encrypted, low 

latency channel to the nearest police or security command 

centre, thereby transforming the current proof of concept into a 

deployable early warning tool. 
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