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ABSTRACT 

This paper investigates the use of deep reinforcement learning 

(DRL) to optimize the energy efficiency of a solar-powered 

microgrid under real-time energy flow and weather forecasting. 

The research generates a fully synthetic dataset simulating a 

solar microgrid’s hourly photovoltaic (PV) generation, battery 

state, load demand, and weather-based solar irradiance 

forecasts. Four RL algorithms are applied and compared: Deep 

Q-Network (DQN), Proximal Policy Optimization (PPO), 

Advantage Actor-Critic (A2C), and Deep Deterministic Policy 

Gradient (DDPG). Each agent learns to control battery 

charging/discharging actions to balance supply and demand, 

incorporating solar forecasts to handle uncertainty. 

Methodology details include dataset generation, environment 

formulation, and RL training procedures. This paper presents 

performance metrics (e.g., reward curves, energy utilization) 

and graphical analyses. In the study’s empirical results, PPO 

and DDPG achieve the highest efficiency under clear 

conditions, while A2C adapts best to sudden changes; DQN 

performs robustly but converges more slowly. All DRL agents 

significantly outperform a rule-based baseline. The study 

demonstrates that DRL can adaptively manage real-time 

microgrid operations under weather variability, improving 

renewable utilization and resilience. This work provides a 

comprehensive evaluation of modern RL methods for smart-

energy systems.  
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1. INTRODUCTION 
The integration of solar photovoltaic (PV) generation into 

microgrids introduces significant variability and uncertainty 

due to changing weather conditions. Energy management 

systems (EMS) for such microgrids must dynamically schedule 

battery storage and supply resources to meet load demand while 

maximizing renewable usage [1] . 

Traditional model-based controls struggle with the stochastic 

nature of solar power and complex microgrid constraints. In 

contrast, reinforcement learning (RL) has emerged as a 

powerful model-free approach to sequential decision problems 

[2]. 

RL agents learn control policies via interaction with the 

environment, making them well-suited to adaptive microgrid 

control under uncertainty. 

Recent studies have applied DRL to grid and microgrid energy 

management. For example, Shojaeighadikolaei et al. developed 

a weather-aware DRL for a prosumer microgrid, showing that 

DQN-based agents adapt to renewable forecast errors and 

mitigate solar curtailment using storage [2]. 

Phan et al. demonstrated a DQN EMS for an isolated hybrid 

microgrid (solar/wind/fuel cell/diesel), achieving high 

efficiency and lower fuel use than conventional dispatch [4]. 

Upadhyay et al. combined PPO with load forecasting in an 

industrial microgrid, reporting ~20% cost savings over 

heuristic optimization [5]. 

These works underscore DRL’s ability to manage 

heterogeneous resources and economic objectives. 

Additionally, multi-agent RL methods have been explored for 

distributed control in microgrids. 

Despite progress, comprehensive comparisons of multiple RL 

algorithms under realistic weather-driven scenarios are scarce. 

This study fills that gap by using synthetic real-time energy and 

weather forecast data to train and evaluate four DRL algorithms 

(DQN, PPO, A2C, DDPG). The authors detail the dataset and 

environment design, training procedure, and evaluation 

metrics. The paper’s contributions include: (i) a novel synthetic 

microgrid dataset combining PV generation, demand profiles, 

and weather forecasts; (ii) implementation of 4 RL algorithms 

in a unified EMS framework; (iii) empirical comparison of 

algorithmic performance (learning curves, energy efficiency, 

resilience to forecast errors) with analysis of strengths and 

limitations; and (iv) visualization (charts, flow diagrams) and 

full code to ensure reproducibility. Section II reviews relevant 

literature. Section III describes the synthetic data and RL 

methods. Section IV presents results and discussion. Section V 

concludes the findings, and Section VI suggests future work 

directions. 

2. LITERATURE REVIEW 
The use of RL in energy systems has expanded rapidly in recent 

years. Michailidis et al. reviewed RL for building energy 

management, noting that RL methods (Q-learning, DQN, PPO, 

etc.) have effectively optimized HVAC, storage, and hybrid 

systems under uncertainty [1]. 

They emphasize that RL can adapt to stochastic renewables 

without explicit models. Similarly, comprehensive reviews 

have highlighted RL’s role in smart grid and microgrid 

optimization, stressing multi-agent and hierarchical 

frameworks to address complex constraints [12]. 
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Xu et al. discuss two-layer RL architectures, where upper-level 

agents coordinate global objectives and lower-level agents 

control local devices [3]. 

These surveys identify challenges like large state spaces, 

stability, and interpretability in RL-based EMS. Specific case 

studies demonstrate RL’s promise for microgrid control. 

Shojaeighadikolaei et al. (2022) implemented a deep Q-

network EMS in a solar/ESS/baseload microgrid. Using real 

weather forecasts, their DQN agent learned battery charging 

strategies that coped with PV variability, leading to reduced 

curtailment and robust operation [2]. 

Phan et al. (2022) applied DQN to a hybrid solar–wind–

hydrogen–diesel microgrid (Appl. Sci. The DQN-based EMS 

achieved reliable energy supply under changing loads, with 

fewer diesel starts than rule-based control [4]. Upadhyay et al. 

(2024) used PPO combined with supervised load forecasting in 

an industrial microgrid (Energies) [5]. Their PPO agent 

optimized peak shaving and price arbitrage under day-ahead 

tariffs, yielding 20% cost reductions versus static optimization 

Multi-agent RL approaches have also been explored. Wang et 

al. proposed an MA2C (multi-agent A2C) with attention for 

voltage control in an isolated microgrid [9]. Their cooperative 

A2C restored voltage deviations effectively. Guo et al. 

formulated multi-microgrid dispatch as a Markov game, using 

a prioritized multi-agent DDPG with centralized training 

(PMADDPG) [6]. This method accelerated convergence and 

achieved near-optimal decisions for each microgrid using only 

local observations 

Das et al. (IEEE PESGM 2021) presented a cooperative Q-

learning scheme for weather-related microgrid scheduling, 

where multiple local agents learned different scenarios and a 

global agent aggregated policies [10]. Their aggregated agents 

efficiently scheduled generation during normal and extreme 

events. Several studies compare multiple DRL algorithms. 

Jones et al. examined A2C vs PPO for a solar-plus-storage 

microgrid under grid outages [6]. They found PPO more cost-

efficient when grid-connected, while A2C trained on outage 

scenarios maximized demand coverage when islanded 

Liu et al. proposed a DDPG agent for real-time economic 

dispatch; in simulations their DDPG outperformed DQN, SAC, 

PPO, and MPC benchmarks, reducing daily costs by ~30% [7]. 

This highlights that continuous-action methods can effectively 

leverage batteries for cost savings in uncertain environments. 

In summary, the literature suggests RL—especially deep RL—

can handle the stochastic dynamics of renewable-rich 

microgrids and adapt to varying conditions 

However, most works focus on individual cases or single 

algorithms; comprehensive comparisons under unified settings 

are needed. In this study, the authors build on these insights by 

comparing DQN, PPO, A2C, and DDPG within the same 

simulated microgrid environment. This study adopts 

techniques like prioritized replay and parallel workers as 

needed, and analyze trade-offs (e.g. sample efficiency, 

stability) as noted. 

3. METHODOLOGY 

3.1 Synthetic Dataset Generation 
This study constructs a synthetic dataset representing a solar 

microgrid over 24-hour daily cycles. The dataset includes 

hourly solar generation, load demand, and weather 

forecasts (predicting future PV output). The simulation is 

parameterized to reflect realistic patterns. Solar irradiance is 

modeled as a smooth diurnal curve (peak at midday) with 

random fluctuations to simulate clouds. Load demand follows 

typical residential/industrial profiles: low in early morning, two 

peaks (morning and evening), see Figure 1. Weather forecasts 

are generated by adding controlled noise to actual solar output 

to mimic forecast errors (e.g., a sunny day forecast may 

overestimate or underestimate actual PV). 

Table I summarizes statistics of the synthetic data. The mean 

PV output is ~3.47 kW (std 3.93), with max ~10.4 kW; mean 

demand is ~6.05 kW (std 0.96), with max ~7.85 kW. The 

analysis split data into multiple days/scenarios for training 

episodes, varying the sunlight and load patterns to ensure 

robustness. 

FEATURE MEAN STD 

DEV 

MIN MAX 

SOLAR ACTUAL 

(KW) 

3.472 3.929 0.000 10.386 

SOLAR 

FORECAST 

(KW) 

3.617 3.856 0.000 11.611 

LOAD DEMAND 

(KW) 

6.048 0.955 4.519 7.853 

Table I. Statistical summary of synthetic microgrid data (mean, 

std, min, max). 

These data provide the state space for the RL environment. At 

each timestep t, the state vector includes the actual solar 

generation Sₜ, forecasted generation Fₜ (for the next hour), 

battery state-of-charge (SOC), and load demand Lₜ. The 

forecast helps the agent anticipate future availability of solar 

energy. 

 

Figure 1 Solar Generation, Forecast, and Load Demand over 
24 Hours 

3.2 Microgrid Environment and Reward 
This paper defines a simplified microgrid environment 

(MicrogridEnv) with discrete timesteps (hours) in [0,23]. The 

microgrid comprises: 
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Figure 2 Proposed System Framework 

• PV source: Provides power P_solar = Sₜ. Excess 

beyond load can charge the battery. 

• Battery: Stores energy with capacity C (normalized 

to 100). States SOC ∈ [0,100]. Charging/discharging 

is controlled by actions. 

• Load: Must be met each hour; unmet demand incurs 

penalty. 

• Grid: A backup source; drawing power from grid 

incurs cost. 

Actions: At each hour, the agent chooses one of three discrete 

actions: 0 = Idle (use PV for load, no battery action), 1 = 

Charge Battery (use excess PV to increase SOC), 2 = 

Discharge Battery (use battery to meet load). (The Analysis 

also prevent charging above 100% and discharging below 0%). 

Dynamics: 

• If P_solar ≥ Lₜ, load is fully met; surplus charges 

battery if action=1 (subject to SOC limit), otherwise 

surplus is wasted (or sold at negligible reward). 

• If P_solar < Lₜ, a deficit D = Lₜ - P_solar must be met 

by either battery or grid. If action=2 and SOC>0, 

battery discharges up to D (limited by SOC); any 

remaining deficit is drawn from grid. If action≠2, the 

deficit is met entirely from grid. 

• The next SOC is updated: SOCₜ₊₁ = SOCₜ + (charging 

kW) - (discharging kW). This Work discretize SOC 

increments to match actions (e.g., ±20% per step). 

Reward: The goal is to maximize energy efficiency and 

minimize grid imports. A representative reward structure is: 

• +1 for each kW of load met (to encourage supply). 

• -2 for each kW drawn from the grid (to discourage 

grid usage). 

• -0.5 for each kW of wasted PV (to discourage unused 

generation). 

• -0.1 per timestep to encourage faster convergence. 

This synthetic reward captures load satisfaction and 

self-consumption objectives. The agent’s long-term 

return corresponds to overall microgrid efficiency. 

3.3 Reinforcement Learning Algorithms 
This paper implements four DRL agents: DQN, PPO, A2C, 

and DDPG. These algorithms are selected for their popularity 

in continuous-control domains. The Analysis adapts each 

algorithm to our environment: 

• DQN (Deep Q-Network): A value-based method. 

The Research use a neural network that takes the state 

vector and outputs Q-values for each action. 

Experience replay and ε-greedy exploration are 

employed [13]. 
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• PPO (Proximal Policy Optimization): A policy-

gradient method. An actor network outputs an action 

probability distribution, and a critic network 

estimates state-value. PPO’s clipped objective 

ensures stable updates [14]. 

• A2C (Advantage Actor-Critic): Similar to PPO but 

with synchronous updates. Uses an advantage 

estimate (reward minus value) to reduce variance 

[15]. 

• DDPG (Deep Deterministic Policy Gradient): A 

policy-gradient method for continuous actions. This 

paper uses DDPG to illustrate an alternative (e.g. if 

battery action were continuous). Here it discretizes 

actions but still include DDPG as a baseline 

continuous-method example [16]. 

All agents are trained for N episodes (days) of 24 timesteps 

each, using Adam optimizers and standard hyperparameters 

(learning rate 0.0003, discount 0.99). For reproducibility, code 

and training details are provided. Training pseudocode: 

Similar loops are implemented for PPO, A2C, and DDPG, 

using their respective libraries or custom code. 

Hyperparameters are tuned so each agent converges (see 

Appendix for full code). This study also trains a baseline rule-

based controller that always charges if PV > demand, 

discharges if SOC available and PV < demand, with no 

learning, for comparison. 

 

Figure 3 Battery State of Charge (SOC) Simulation 

The overall methodology is illustrated in Figure 2 (Mermaid 

flowchart). First, the authors generate and preprocess synthetic 

solar/load data. Next, they define the microgrid MDP 

environment incorporating weather forecasts. Then each RL 

agent (DQN, PPO, A2C, DDPG) is trained independently. 

After training, they evaluate performance on test scenarios and 

plot results. 

4. RESULTS AND DISCUSSION 

4.1 Training Performance 
All RL agents successfully learned to meet demand and utilize 

solar power. Figure 2 shows the training reward (cumulative 

per episode) over 50 episodes for each algorithm. Initially, 

rewards are low; as learning progresses, agents improve. PPO 

and DDPG show faster convergence to higher rewards, 

reflecting efficient policies, while DQN improves more 

gradually. A2C learns moderately well but plateaus slightly 

lower. These trends match the literature: PPO often yields high 

sample efficiency and stability [6]. The code for generating 

these curves: 

 

Figure 4 Training reward curves for each RL agent 

(synthetic data). PPO and DDPG converge faster to higher 

rewards, indicating more efficient learning 

4.2 Policy Behavior 
Analyzing specific trajectories, the research observes how 

agents manage the battery. For example, on a clear day scenario 

(high PV), PPO and DDPG proactively charge the battery 

during excess generation and discharge for late-evening 

demand, achieving >90% self-consumption. DQN learns a 

similar strategy but occasionally wastes surplus (idle when it 

could charge). A2C tends to behave more conservatively 

(waiting for large deficits before discharging). On a cloudy-day 

scenario, all agents rely more on the battery and grid; PPO and 

A2C adapt better by sometimes pre-charging on earlier solar 

peaks. 

Table II compares average metrics over test days: percentage 

of demand met by PV+battery (“self-sufficiency”), average 

grid usage (kWh), and battery throughput (kWh). The rule-

based baseline reached ~70% self-sufficiency. DQN and PPO 

achieved ~85–90%, A2C ~80%, DDPG ~88%. PPO minimized 

grid draws best (10% of demand), while A2C allowed slightly 

more (15%) but maintained demand coverage even in islanded 

test (no grid). 

AGENT SELF-

SUFFICIEN

CY (%) 

GRID 

USE 

(KWH/DA

Y) 

BATTERY 

THROUGHP

UT 

(KWH/DAY) 

BASELI

NE 

70 3.0 2.5 

DQN 84 1.8 3.2 

PPO 89 1.2 3.6 

A2C 82 2.0 2.9 

DDPG 88 1.4 3.4 

Table II. Performance comparison: self-sufficiency = 

(PV+battery used / total demand), lower grid energy use 

indicates better renewable utilization. RL agents substantially 

outperform the baseline rule-based strategy. 

4.3 Impact of Weather Forecasts 
Incorporating weather forecasts into the state markedly 

improved performance. Agents with forecast information 

anticipated low-PV hours and preserved battery charge, 

compared to ablated agents with no forecast. This aligns with 

findings by Shojaeighadikolaei et al., who reported that 

weather-aware RL was robust to forecast errors. In the study’s 

experiments, omitting forecasts led to ~5% drop in self-

sufficiency on cloudy tests, and erratic charging behavior. 
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Thus, forecasts serve as valuable context for decision-making, 

as confirmed in prior work [2]. 

4.4 Discussion and Sources of Uncertainty 
The results show that DRL can dynamically optimize microgrid 

efficiency under uncertainty. PPO and DDPG, which leverage 

continuous updates and entropy maximization, tended to find 

higher-reward policies faster. A2C’s stability advantage helped 

it perform reliably, though somewhat more conservatively [5], 

[7]. DQN, while simpler, achieved competitive performance by 

the end, echoing its success in building energy RL. These 

outcomes mirror related studies PPO for industrial microgrid, 

(DDPG for cost minimization). 

 

Figure 4 Energy Efficiency Comparison 

Key limitations include the simplified action space (only 3 

discrete actions) and idealized forecasts. Real microgrids have 

more control knobs, and forecasts can be multi-horizon and 

uncertain. Nevertheless, the synthetic scenario highlights 

fundamental behaviors. Future implementations could extend 

to continuous action RL and more granular state models. 

4.5 Performance Under Stress and 

Uncertainty 
To add strength to the analysis, the authors ran more tests using 

the same dataset, one at a high workload and another that 

removed forecasts. They evaluate how the RL agents do when 

there is a high demand and they do not know the solar forecast. 

A. High-Load Scenario 

Every step of the experiment, the original load demand profile 

was made 20% higher to imitate peak use in residential or 

industrial settings. Under these conditions, it gets tough for 

energy agents to adjust their supply and demand as high energy 

use creates a shortage. 

 

Figure 5 High Load Scenario: Self-Sufficiency by Agent 

The findings demonstrate that 83% of the times, PPO and 82% 

of the times, DDPG maintained enough food for themselves. 

Even though A2C and DQN were less efficient than the rule-

based algorithm, they achieved 78% and 76% respectively, 

which was much better (shown in figure 5). All the models used 

the grid more as the load went up, yet PPO needed just 1.6 kWh 

per day from the grid. It suggests that PPO and DDPG are able 

to adjust to having more power needs by choosing to charge or 

discharge their batteries at appropriate moments. 

B. Scenario for Forecasting Reduction 

To see the importance of solar forecast data, a new test was 

done where solar forecast information was not given to the RL 

agents. After making the changes, the agents went through 

more training without getting the predictive hints. 

 

Figure 6 Forecast Ablation: Self-Sufficiency Impact 

All the agents showed signs of performance drop. PPO was able 

to meet its needs from the environment less than before, now at 

84%; DDPG went in the same direction, going down to 83%. 

Like LSTD, the performance of DQN and A2C decreased at the 

same time (shown in figure 6). So, forecasts allow solar agents 

to make plans for better solar energy supply and battery usage 

at peak hours, which in turn helps them turn to the grid less. 

5. CONCLUSION 
This paper has demonstrated that deep reinforcement learning 

can significantly improve the efficiency of solar-powered 

microgrids by learning to schedule storage and consumption 

based on real-time flows and weather forecasts. Using a 

realistic synthetic dataset and simulations, the analysis 

implemented and compared four RL algorithms (DQN, PPO, 

A2C, DDPG). All RL agents outperformed a baseline rule-

based controller, increasing renewable self-consumption by 

15–20% and reducing grid imports. Among the algorithms, 

PPO and DDPG achieved the highest overall efficiency and 

fastest learning, while A2C offered robust demand coverage 

under grid uncertainties. The results confirm that policy-

gradient methods (PPO, A2C, DDPG) can effectively adapt to 

the stochastic solar microgrid context [15], [17]. 

The study provides a thorough evaluation framework: the 

research describes the synthetic microgrid environment, 

present code for dataset generation and agent training, and offer 

analyses of performance metrics and control strategies. The 

findings align with prior work on RL-based energy 

management, and extend them by direct algorithmic 

comparison [6], [7]. This suggests that next-generation EMS 

can leverage DRL to autonomously balance supply and demand 

in renewable-rich grids, potentially integrating more factors 

(dynamic pricing, demand response). 
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Future Work: The authors plan to incorporate more realistic 

multi-step weather forecasts and extend to multi-agent settings 

(e.g. interconnected microgrids). Enhancing the reward 

function to capture economic costs (e.g. tariffs) and including 

stochastic generator outages would also be valuable. Multi-

objective RL (balancing cost, emissions, and resilience) is 

another promising direction.  
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