
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.13, June 2025

47

General Model for Requirements Prioritization and

Assignment to Increments

Mohammad A. Asmaran
Prince Abdullah bin Ghazi Faculty of Information and Communication Technology,

Al-Balqa Applied University
Al-Salt, 19117, Jordan

ABSTRACT

Software development is a very consuming process as it

consumes the development company resources, budget, and

time. In some cases, there is a restriction on the workload that

the company can perform. Moreover, in some cases software

products are required in less time than estimated production

time. To resolve such issues, software development is divided

into increments that fit with those restrictions. This involves

selecting a subset of requirements with higher priority. In this

research a model is proposed to optimize the selection process

of the requirements to be developed during an increment by

maximizing returns and restricting other factors to the

maximum restriction with dependency concern.

General Terms

Computer Applications, Algorithms, Software Engineering,

Approximation.

Keywords

Agile, Requirements Prioritization, Maximum Independent

Set.

1. INTRODUCTION
Software development process is an intensive process which

consumes software company resources. In many cases,

company resources such as development, power, and budgets

are not enough to complete the entire development operations

which leads the company to divide the project into releases (i.e.

increments). Each increment is considered a step into

completing the whole project. This process helps optimizing

the usage of available resources to deliver the most urgent and

effective requirements first for the customer in the early phases

(increments). [1]

In order to determine software increments and their included

requirement, each requirement should be assigned many values

that represent its evaluation in terms of return, importance, and

consumption. Return value should be maximized as much as

possible with respect to Importance and consumption

constraints. [1]

Assigned values that called weights, are determined from stack

holders and project production resources (i.e. mainly

developers). The weights are accumulated together with

iterative process to reach the final values of the intended

weights. [1]

To generalize the formula of weights calculation, it would be

assumed (n) as the number of stakeholders and project

production resources and (m) is the number of priority metrics.

Each Stakeholder is assigned a specific weight in

correspondence to each requirement, and priority metric. This

would lead to general requirement prioritization formula of the

jth priority of the requirement R to be: [1]

𝑅𝑗 = ∑ ∑ 𝑊𝑠𝑡𝑘(𝑅𝑗,𝑖)

𝑚

𝑖=1

𝑛

𝑘=1

∗ 𝑃𝑠𝑡𝑘(𝑅𝑗 ,𝑖)

Equation (1)

In general, the following metrics represent some general

metrics for any software development project and can vary

across different projects or project phases (increments): [1]

• Importance:

Represents how much the evaluated requirement is important

to the project.

• Penalty:

Represents the cost of delivering the requirement with delay.

• Cost:

Very huge term that represents the needed resources of

different types to develop the requirement. the following is the

main sub-factors of the cost:

▪ Resources:

Includes needed developers, hardware, stationary,

and so on.

▪ Budget:

Simply it represents how much money is needed to

cover all needed resources and other costing factors.

▪ Market:

Volume of market lost to deliver such requirement.

• Profit:

In the direct way it is the value of return – cost.

• Time:

How much time needed to deliver the requirement. In some

cases, it is considered a part of the cost factor.

• Risk:

A very large term that represents different risk factors such as

funding delay, requirement change, resource change, or

underestimation.

• Volatility:

The probability of requirement removal in the future.

• Dependency:

The dependency of a requirement on another requirements to

be developed first.

This research is organized by reviewing related works,

followed by a description of the proposed model. Finally,

formal validation by first order logic is used to validate the

proposed model, which is followed by a proposal of future

enhancement of the model.

2. RELATED WORKS
As discussed in the previous section, prioritizing process

involves determining priority metrics and determine which

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.13, June 2025

48

technique to use for weighting each metric. Finally, determine

which requirement is suitable for the current increment and

gain better return.

These metrics should be evaluated with a numerical value that

reflects such metric. The main problem is that these metrics are

hard to evaluate in term of personal evaluation of each party.

So, many techniques are proposed to do so such as: [1]

2.1 Analytical Hierarchy Process (AHP)
One of the most accurate prioritization techniques, that

compare every requirement with other requirements and assign

it a value that relies between 1 and a maximum number (usually

equals to the number of requirements) such as 5 in the example

values illustrated in Table 1 that are assigned as the same

technique used in the case study provided in [2]. Note that

normalization could be done by dividing each score by the

summation of all scores as calculated in the Table 2 based on

the values provided in the example Table 1. This is a complex

process suitable for small number of requirements or critical

decisions [1, 2, 3, 4].

Table 1. AHP Example values.

 R-1 R-2 R-3 R-4 R-5

R-1 1 3 1/3 5 2

R-2 1/3 1 ½ 2 3

R-3 3 2 1 1/3 1/3

R-4 1/5 1/2 3 1 4

R-5 1/2 1/3 3 ¼ 1

Table 2. Normalized AHP values.

 R-1 R-2 R-3 R-4 R-5

R-1 0.1987 0.4390 0.0426 0.5825 0.1935

R-2 0.0662 0.1463 0.0638 0.2330 0.2903

R-3 0.5960 0.2927 0.1277 0.0388 0.0323

R-4 0.0397 0.0732 0.3830 0.1165 0.3871

R-5 0.0993 0.0488 0.3830 0.0291 0.0968

2.2 Cumulative Voting, the 100-Dollar Test
In this method, stakeholders have a maximum number of units

to be used in priority assignments for all requirements. This

maximum is usually but unlimited to 100 [1, 5].

2.3 Numerical Assignment (Grouping)
In this method three groups are defined, and stakeholders must

distribute requirements to these groups. Note that to avoid

unbalanced assignment of requirements to groups, maximum

limit of each group is specified [1, 6].

2.4 Ranking
In this method stakeholders assign each requirement a unique

rank. note that the top rank is 1 [1].

2.5 Top-Ten Requirements
Each stakeholder has to select top ten or (n) requirements

without any order.

Note that a summary comparison of the prioritization

techniques is shows in Table 3 [1].

Table 3. A Comparison of Prioritization Techniques.

Ranking Complexity Granularity

Highest Top-Ten AHP & 100-Dollar

↓
AHP

Ranking
100-Dollar

Ranking Grouping

Lowest Grouping Top-Ten

2.6 Prioritization Example
In this example, prioritization has been performed and

calculated using the same technique provided in [1], a custom

project has a set of requirements that must be filtered to meet a

project specific cost constraint (In this example, it is assumed

to be 70%). Table 4 represents an example list of priority

techniques used for different project metrics. Tables 5 and 6

represent weights assigned by stakeholders, and the final

priority value. Table 7 shows the selection of requirements

according to cost metric. Table 8 represents better selection of

requirements according to IP/cost metric that meets cost

maximum limit.

Table 4. List of Priority Metrics & Prioritization

Techniques

Metric Technique Participating Parties

Importance 100-Dollar Customer Stakeholders

Penalty AHP Management

Cost 100-Dollar Production Team
(Development & Quality Control)

Table 5. Prioritization Results of Customer Stakeholders

Importance Priority, P(RX) = RPS1 × WS1 + RPS2 ×

WS2 + RPS3 × WS3, where RP is the requirement

priority, and W is the weight of the stakeholder.

Stakeholder S1 S2 S3 Importance

Priority Requirement 0.3 0.5 0.2

R1 0.1 0.13 0.2 0.14

R2 0.15 0.12 0.09 0.12

R3 0.3 0.09 0.07 0.15

R4 0.05 0.09 0.12 0.08

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.13, June 2025

49

R5 0.07 0.03 0.06 0.05

R6 0.03 0.07 0.05 0.05

R7 0.11 0.16 0.18 0.15

R8 0.09 0.04 0.03 0.05

R9 0.06 0.06 0.1 0.07

R10 0.04 0.21 0.1 0.14

Total 1 1 1 1

Table 6. Descending Priority List Based on Importance

and Penalty (IP). IP(RX) = RPI × WI + RPP × WP, where

RP is the requirement priority, and W is the weight of

Importance (I) and Penalty (P).

Priority Factor Importance Penalty
IP

Requirement 0.65 0.35

R1 0.14 0.2 0.16

R2 0.12 0.3 0.18

R3 0.15 0.1 0.13

R4 0.08 0.1 0.09

R5 0.05 0.01 0.04

R6 0.05 0.03 0.04

R7 0.15 0.08 0.13

R8 0.05 0.09 0.06

R9 0.07 0.06 0.07

R10 0.14 0.03 0.10

Total 1 1 1

Table 7. Selected Requirements Based on IP and Cost.

 IP Cost Selected

R2 0.18 0.15 Yes

R1 0.16 0.13 Yes

R3 0.13 0.11 Yes

R7 0.13 0.1 Yes

R10 0.1 0.09 Yes

R4 0.09 0.05 Yes

R9 0.07 0.04 Yes

R8 0.06 0.3 No

R5 0.04 0.02 No

R6 0.04 0.01 No

Total 1 1 0.67

Table 8. Selected Requirements Based on Cost and

IP/Cost Ratio.

 IP Cost IP/Cost Selected

R6 0.04 0.01 4.00 Yes

R5 0.04 0.02 2.00 Yes

R4 0.09 0.05 1.80 Yes

R9 0.07 0.04 1.75 Yes

R7 0.13 0.1 1.30 Yes

R1 0.16 0.13 1.23 Yes

R2 0.18 0.15 1.20 Yes

R3 0.13 0.11 1.18 Yes

R10 0.1 0.09 1.11 Yes

R8 0.06 0.3 0.20 No

Total 1 1 15.77 0.7

Many researches are done to determine the accuracy of

prioritization techniques such as AHP. In [7], AHP and

CBRank techniques are compared and evaluated in term of

three metrics, which are: ease of use, time-consumption and

the accuracy on 23 real projects. In term of accuracy, AHP

provides better outcomes over CBRank, but in the remaining

factors CBRank outperforms AHP.

In [8], Prioritizing techniques are surveyed and evaluated to

checkout their suitability for medium and large projects, which

shows that for medium size projects it provides fine results in

the opposite of large projects, which shows bad results.

In [9], a study of 11 successful software companies is done to

determine practical prioritization techniques used. The study

shows that priority grouping is the most used technique to

minimize the number of requirements. The study shows the

absence of customer from the prioritization process in many

projects and the usage of subjective measures. It shows that

quality requirements are not paid an attention from the decision

makers as the focus should be.

In [10], two case companies are studied to evaluate

prioritization techniques in practice. The study shows that the

entire process was informal and suggests doing it iteratively

with a systematic way that is difficult to achieve as customer

preferences are not known.

In [11], a method for optimally allocating requirements to

increments by assessing and optimizing the degree to which the

ordering conflicts with stakeholder priorities within technical

precedence constraints and uses genetic algorithms to find out

optimal allocation.

In [12], suggests a model of requirement prioritization that

relies on the known prioritization techniques. The model

provides a relation to estimate factors from each other. Note

that the main and first factor is cost estimation.

In [13], practical application of prioritization and business

value delivery processes in eight software organizations has

been investigated. The study revealed an important gap

between the realities of the practitioners and the assumptions

made in agile requirements engineering literature. It found that

three explicit and fundamental assumptions of agile

requirement prioritization approaches, as described in the agile

literature on best practices, do not hold in all agile project

contexts in the study. Those are: (i) the driving role of the client

in the value creation process, (ii) the predominant position of

business value as a main prioritization criterion, and (iii) the

role of the prioritization process for project goal achievement.

3. PROPOSED MODEL
As listed in the literature, there are eight common factors (i.e.

Importance, Penalty, Cost, Profit, Time, Risk, Volatility, and

Dependency) to determine requirement priority. These factors

are mainly subjective according to the project situation. The

main problem is how to choose the best requirements to be

implemented in a specific increment. So, the main question in

this research is how to assign requirements to software

development increment without violating increment constraints

and maximizing return value of that increment. Proposed

model is required to satisfy requirements constraints and keep

track of requirements dependency too. So, the proposed model

is intended to satisfy the followings:

1. Satisfy dependency constraints.

2. Satisfy weighted factors constraints.

3. Maximize total weighted factors.

3.1 Model Steps
1. Determining Priorities.

2. Workload Constraints.

3. Building Requirements Dependency Graph.

4. Map Requirements into undirected graph.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.13, June 2025

50

5. Merge restricted factors weights into one weight.

6. Merge the maximum needed weights into one weight

according to their importance.

7. Apply (Modified Weight or any Approximated

Maximum Independent Set algorithm in case of huge

number of requirements [14, 15]) based Maximum

Independent Set algorithm.

Where Maximum Independent Set Problem is described as the

selection of maximum number of nodes in graph where any of

these nodes are directly connected (or linked) to each other.

This problem is solved by two types of algorithms: (i) exact

algorithms, which finds the exact optimal solution where one

of the most famous algorithms to do that is Modified Wilf

algorithm, (ii) approximate algorithms, which tries to find the

best approximated solution of the problem due to the nature of

NP-Complete problems of consuming a lot of time to find its

exact solution in case of more complicated inputs (i.e. graphs

in case of Maximum Independent Set problem) [14]. Where

mapping of real application such as scheduling problems to

Maximum Independent Set problem is used by researchers such

as in [15]. Which is used to find the maximum students classes

schedule.

3.2 Requirements Priorities
Requirements priorities are the main factor of the process of

creating increments and Requirements assignment to those

increments. For the sake of optimal assignments, each

requirement is assigned two types of weights, first type of

weights is Maximized Weights that are intended to find their

maximum gains such as Profit and Customers needs Priority

(i.e. Importance). In the proposed model, such weights are

project dependent, to illustrate project specific view of

importance as it could differ between different projects. These

weights should be accumulated in a single value according to

Equation (2) that is derived according to Equation (1). In the

following equation it is assumed that there are (n) priority

values for each requirement. Each of those priorities should be

multiplied by corresponding weight of such priority and

accumulated in order to get overall maximized priority.

Maximized Jth Requirement Priority =
 ∑ 𝑊𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑘(𝑅𝑗) ∗ 𝑃𝑘(𝑅𝑗)

𝑛
𝑘=1 Equation (2)

The second type of weights is constraint priorities that could

not be merged into a single value, like the maximized one

mentioned before. These weights represent the constraints of

the increment such as cost, which is limited to assigned budget.

Another example of such constraints is time factor, which is

limited to increment time frame. Another example is Risk

factor that could be a mixed value of many risk constraints, or

more than one factor as they are differing in its nature or

impact. Those mentioned examples usually could not be

merged into one constraint value. These constraints should be

respected in the model and should not be exceeded.

In this model, it is suggested to use workload constraint value

in all the projects which represents production cost of the

requirement. This factor could be computed using many ways

such as CoCoMo model or developer’s estimations. Regardless

of the way of estimation, this estimation should be obtained and

supported within available workload constraints.

3.3 Workload Constraints
As mentioned before, workload constraints should be

embedded automatically in the model. This should be achieved

by doing the following steps:

a. Work type definition (e.g. documentation, development, or

validation, etc.).

b. Assignment of each resource to his/her type(s) of work that

he/she can do (e.g. resource A could do development).

c. Each requirement is assigned (n) values that represent

requirement workloads of the different types of work (e.g.

Requirement 1 needs 10 units of time for documentation, 50

units for development, and 10 for validation).

d. According to available resources and time interval of

increment, workload type constraint could be determined. (e.g.

if there are 5 developers working within 10 business days

according to 8 hours working hours, development workload

constraint would be 10*8*5 = 400 hours assuming that time

unit is an hour).

By doing such classification, workload could be dynamically

assigned according to different types of working resources jobs

and levels. This is used to map practical issue of real

development that assigns some critical tasks to well skilled

development resources (i.e. senior ones).

3.4 Building Requirements Dependency

Graph
As mentioned before, workload constraints should be

embedded automatically in the model. This should be achieved

by doing the following steps:

As mentioned before there are two types of weights to deal with

for optimal requirement assignment to an increment, which are:

(i) maximized weights and (ii) constraint weights. There is

more critical factor to deal with for optimal assignments that

represents the need of implementing requirement to be able to

do another requirement. (e.g. you can’t obtain general ledger

account balance if journal voucher is not implemented). This

dependency is very important for optimal assignment and

should be determined. In this model, it is suggested to build

dependency graph as the following:

1. Define each requirement labeled inputs and labeled outputs

(e.g. a requirement to compute Z=X+Y has two inputs X, and

Y and one output Z).

2. If a requirement modifies an input to produce it as an output

(e.g. x = x*y) the input would be x version (i) and the output

would be x version (i+1).

3. If an output of a requirement is used as an input to another

one, this would be considered as dependency (e.g. if R1

produces X version (1) and R2 inputs X version (1), R2 would

be considered to be dependent on R1).

3.5 Undirected Graph Construction &

Dependency Mapping
As mentioned before, the first step is to map dependencies into

undirected graph. The mapping process is performed according

to the following rules:

Rule 1: If the requirements are restricted to be developed

together, they will be mapped into one requirement node.

Weights of the new node are the summation of all nodes.

Rule 2: If two requirements are sequentially dependent so that

one requirement development is dependent on the development

of the other requirement. They would be mapped into two

requirements nodes. The first one is the original dependent

requirement; the second one is a new merged requirement with

the summation weights of the merged requirements. These

nodes would be connected with a link.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.13, June 2025

51

Rule 3: If the sequence contains more than two nodes, they will

be mapped into the same number of requirement nodes. Each

requirement node weights are the summation of all dependent

nodes. Suppose that R0 → R1 → R2 → R3 → …. RN,

𝑊𝑘(𝑁𝑅𝑖) = ∑ 𝑅𝑗W𝑘

𝑖

𝑗=0
. Note that resulted nodes are fully

connected.

Rule 4: Branched requirements dependencies are divided into

multiple sequential requirements. Each sequential dependency

line is mapped as in case 3. Note that nodes should be fully

connected.

Rule 5: If any independent nodes restricted weights summation

exceeds restriction value, a link is added to connect them

together.

Rule 6: If any node restricted weight exceeds its corresponding

requirement restriction, node will be removed from the resulted

graph.

In Figure 1, an example of requirements dependency graph that

denotes that R2 is dependent on R1. R3 and R4 are dependent

on R2.

Fig 1: Sample Dependency Graph.

According to the conversion rules, figure 2 dependency would

be converted into the undirected graph shown in figure 3. If the

maximum weight is assumed to be 15, the resulted graph would

be as shown in figure 3 which adds a link between R5 and

(R1,2) as there are a total weight of 18 which is greater than 15

(weight constraint weight)..

Fig 2: Mapped Graph.

Fig 3: Mapped Graph with Weights Restriction.

3.6 Merge restricted factors weights into

one weight
Restriction exists on many factors such as cost and risk factors.

These factors should be merged into one weight as they are

needed in the knapsack algorithm to find out maximum value

according to restricted single weight. In the requirement model,

restriction is not limited to single weight. This encourages

merging the weights into single weight. This is done by the

following:

Merged Weight

= ∑ max(𝑓𝑖−1) ∗ 𝑓𝑖

𝑛

𝑖=1

Equation(3)

For example, if risk varies between 0 and 10 and cost weights

varies between 0 and 100, merged weight would be (Cost

Weight) + 100*(Risk Weight) or 10* (Cost Weight) + (Risk

Weight). So, if requirement cost weight is 70 and risk weight is

3, merged weight would be either 370 or 703.

3.7 Increment Requirements Assignment
Once the nodes are linked in a graph. To assign requirements

to an increment, Maximum Independent Set algorithm is

applied on the resulted undirected graph described earlier. This

would find maximum non-conflicting nodes. Maximum

Independent Set algorithm is modified to consider maximum

Weight in its operation. Moreover, knapsack algorithm is

merged inside to find out maximum weight according to

restrictions.

Consider figure 4 as an example requirements graph. The

selected requirement nodes would be R1, R5, and R6 without

restriction consideration. If the restriction is considered to be

21, the selection would be either R1 and R5 or R1 and R6.

Fig 4: Requirements Graph.

So, overall requirements assignment algorithm would be

summarized as in the following algorithm pseudo code while

figure 5 illustrates the overall flowchart of the proposed model

steps, note that detailed pseudo code is appended in appendix

A:

generateBestIncrementAssignments(Vector requirements)

return Vector

buildDependencies(requirements)

mergeConstraints(requirements)

requirements =

generateNodesCombinations(requirements)

requirements = findMaximum(requirements)

 return requirements

end generateBestIncrementAssignments

R1 R2 R3

R4

5 8
4

9 R5 5

R1

R1,2

R1,2,3

R1,2,4

5

13

17
21

R5

5

R1

R1,2

5

13

R5

5

R1

R1,2

R1,2,3

R1,2,4

5

13 17
21 R5

7

R6

10

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.13, June 2025

52

Fig 5: Proposed Model Flowchart.

4. VALIDATION
To validate this new model, the expected results of the intended

model should be specified. Expected results would be the

maximum weighted requirements that satisfy project

constraints, and no requirement is assigned without the

assignment of its pre-requirement if it is dependent on another

requirement.

As explained in model steps, after obtaining requirement

weights and details, directed graph is constructed according to

the inputs and outputs of the requirements. Then, dependent

nodes are merged into one node that represents the summation

of the weights and constraints of the two nodes. Original nodes

are not valid anymore and replaced by new merged ones. So,

after the execution of this step assuming (S) is the resulted set

of new merged requirements:

a. ∀ R1,R2 ϵ S → ¬ (dependent(R1,R2) ∨ dependent(R1,R2))

b. ∀ R1,R2 ϵ S ∧ share_sub_requirements(R1,R2) →

link(R1,R2)

c. ∀ R1,R2 ϵ S ∧ ¬ share_sub_requirements(R1,R2) →¬

link(R1,R2)

d. ∀ R1,R2 ϵ S ∧ ¬ link(R1,R2) → ¬

share_sub_requirements(R1,R2)

Next step is to apply modified Wilf algorithm to find maximum

independent set of the undirected graph. So, after the execution

of this step is a set S’ which represents maximum unconnected

set of the undirected graph:

a. ∀ R1,R2 ϵ S’ → ¬link(R1,R2)

b. final_solution(S’) → ¬ ∃ S’’ ∧ solution(S’’) ∧ size(S’) >=

size(S’’)

Modified Wilf is modified to compare solution on the

accumulated weight of the tested solution rather than size of the

solution. So, second condition of this step would be modified

to:

final_solution(S’) → ¬ ∃ S’’ ∧ solution(S’’) ∧

weights_sum(S’) >= weights_sum(S’’)

Constraints should not be violated. So, tested solution is passed

to dynamic knapsack algorithm to pick maximum value with

respect to constrained value which satisfies the following

conditions:

a. final_solution(S’) → ¬ ∃ S’’ ∧ solution(S’’) ∧

weights_sum(S’) >= weights_sum(S’’)

b. ∀ S’ solution(S’) → constraints_sum(S’)<=

MAX_CONSTRAINTS_SUM

When merging all above conditions, the following condition

would represent the result:

∀ R1,R2 ϵ S’ ∧ final_solution(S’) → ¬ ∃ S’’ ∧ solution(S’’) ∧

weights_sum(S’) >= weights_sum(S’’) ∧

constraints_sum(S’)<= MAX_CONSTRAINTS_SUM ∧

¬link(R1,R2)

While the following conditions hold:

a. ∀ R1,R2 ϵ S ∧ ¬ link(R1,R2) → ¬

share_sub_requirements(R1,R2)

b. ∀ R1,R2 ϵ S → ¬ (dependent(R1,R2) ∨ dependent(R1,R2))

This would leads to the final condition:

∀ R1,R2 ϵ S’ ∧ final_solution(S’) → ¬ ∃ S’’ ∧ solution(S’’) ∧

weights_sum(S’) >= weights_sum(S’’) ∧

constraints_sum(S’)<= MAX_CONSTRAINTS_SUM ∧

¬link(R1,R2) ∧ ¬ share_sub_requirements(R1,R2) ∧ ¬

(dependent(R1,R2) ∨ dependent(R1,R2))

Final condition stated that final solution would be the

maximum weights summation without violating constraints

and no shared requirements are duplicated. Moreover, it states

that there is no existence of dependent requirements in the

graph. Dependency is satisfied and achieved by merging

dependent requirements into one new requirement.

5. CONCLUSIONS
As described in the previous section, it is proved that proposed

model would assign best selection of requirements according to

the rules of respecting restrictions and maximizing benefits

without any violation to dependencies. Proposed model

involves performing a very complex process in term of

processing as it is fully dependent on two complex algorithms

(i.e. Knapsack and Maximum Independent Set algorithms).

High complexity could not be a problem because of the absence

of time restrictions on the expected output time interval while

approximation algorithms can be used rather than exact ones.

Proposed model is suitable to be extended and integrated with

traditional prioritization techniques so that conflicting priorities

would be avoided which will help avoiding development

obstacles due to missing dependencies or time conflicting

requirements.

6. FUTURE WORK
The main challenge that is not implemented in the proposed

model is multi-skill resources. The challenge is that these

resources workloads can be assigned to different types of

workloads which has to be assigned in the optimal way to

maximize total maximized weight of the increment. This

situation could be valid if work types would be classified

according to resource level of experience. For example, if work

types of development are classified to be junior and senior

developers. If a resource A is assigned a senior developer work

type, it should be assigned junior developer work type too

because he is capable to do junior work too. The main challenge

here is how to classify workload in such situation, a percentage

or full assignment to a single type of work. If percentage is

considered, how to obtain optimal work type percentages to

achieve best results.

Start

Build Dependencies

Merge Constraints

Generate Nodes

Combinations

Find Maximum

Independent Set

End

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.13, June 2025

53

7. REFERENCES
[1] Berander Patrik, Andrews Anneliese (2005),

Requirements Prioritization. In Engineering and

Managing Software Requirements (pp. 69-94).

Heidelberg, Berlin: Springer.

[2] Nancy Mead (2013), Requirements Prioritization Case

Study Using AHP, Software Engineering Institute

"Carnegie Mellon

University",https://insights.sei.cmu.edu/library/requireme

nts-prioritization-case-study-using-ahp/.

[3] Taherdoost, Hamed. (2017). Decision Making Using the

Analytic Hierarchy Process (AHP); A Step by Step

Approach. International Journal of Economics and

Management Systems.

[4] Tavana, M., Soltanifar, M. & Santos-Arteaga, F.J.

Analytical hierarchy process: revolution and evolution.

Ann Oper Res 326, 879–907 (2023).

https://doi.org/10.1007/s10479-021-04432-2.

[5] P. Chatzipetrou, L. Angelis, P. Rovegård and C. Wohlin,

"Prioritization of Issues and Requirements by Cumulative

Voting: A Compositional Data Analysis Framework,"

2010 36th EUROMICRO Conference on Software

Engineering and Advanced Applications, Lille, France,

2010, pp. 361-370, doi: 10.1109/SEAA.2010.35.

[6] Aneesa Rida Asghar, Shahid Nazir Bhatti, Atika

Tabassum and S Asim Ali Shah, “The Impact of

Analytical Assessment of Requirements Prioritization

Models: An Empirical Study” International Journal of

Advanced Computer Science and Applications(IJACSA),

8(2), 2017.

http://dx.doi.org/10.14569/IJACSA.2017.080240.

[7] Anna Perini, Filippo Ricca b, Angelo Susi,Tool-supported

requirements prioritization: Comparing the AHP and

CBRank methods, Information and Software Technology,

51 (2009), pp. 1021–1032.

[8] Qiao Ma, 2009,The Effectiveness of Requirements

Prioritization Techniques for a Medium to Large Number

of Requirements: A Systematic Literature Review, M.Sc.

Thesis, Auckland University of Technology: NEW

ZEALAND.

[9] Richard Berntsson Svensson, Tony Gorschek, Björn

Regnell, Richard Torkar, Ali Shahrokni, Robert

Feldt,Aybuke Aurum, Prioritization of Quality

Requirements: State of Practice in Eleven Companies, in

the proceedings of IEEE 19th International Requirements

Engineering Conference, 2011, pp. 69-78.

[10] Laura Lehtola, Marjo Kauppinen, Sari

Kujala,Requirements Prioritization Challenges in

Practice, Product Focused Software Process

Improvement, Volume 3009, 2004, pp 497-508.

[11] D. Greer, G. Ruhe, Software release planning: an

evolutionary and iterative approach, Information and

Software Technology, 46, 2004, pp. 243–253.

[12] Andrea Herrmann, Maya Daneva, Requirements

Prioritization Based on Benefit and Cost Prediction:An

Agenda for Future Research, 16th IEEE International

Requirements Engineering Conference, 2008, pp. 125-

134.

[13] Zornitza Racheva, Maya Daneva, Klaas Sikkel,Roel

Wieringa, Andrea Herrmann, Do We Know Enough about

Requirements Prioritization in Agile Projects: Insights

from a Case Study, in the proceedings of Requirements

Engineering Conference (RE), 2010 18th IEEE

International, 2010, pp. 147 – 156.

[14] Mohammad A. Asmaran, Ahmad A. Sharieh, Basel A.

Mahafzah (2019), "Chemical Reaction Optimization

Algorithm to Find Maximum Independent Set in a Graph",

International Journal of Advanced Computer Science and

Applications (IJACSA), pp. 76-91, Volume 10, Issue 9.

[15] Ahmad A. Sharieh ,Mohammad A. Asmaran ,Basel A.

Mahafzah , (2020) " Generating Class Scheduling without

Conflict based on Maximum Independent Set " ,

International Journal of Advances in Science, Engineering

and Technology(IJASEAT) , pp. 77-83, Volume-8, Issue-

4

8. APPENDIX A
class SystemVariable{

 String name

 int version
}

class RequirementNode{

 String name
 int constraintWeights[]

 int weight

 int constraintWeight
 Vector dependentNodes

 Vector dependeningNodes

 Vector inputs
 Vector outputs

 Vector links

}

buildDependencies(Vector requirements)
 for each requirement in requirements

 for each input in requirement.inputs

 for each mainRequirement in
requirements

 if
mainRequirement.outputs contains input

 mainRequirement.dependeningNodes.add(requirement)

 requirement.dependentNodes.add(mainRequirement)

 end if
 end for

 end for

 end for

end buildDependencies

generateNodesCombinations(Vector requirements) returns Vector

 Vector combinations

 for each requirement in requirements
 Vector childCombinations =

generateNodesCombinations(requirement.dependeningNodes))

 for each childCombination in
childCombinations

 childCombination.name =

requirement.name + "," + childCombination.name
 childCombination.weight =

childCombination.weight + requirement.weight

 for i=0 to
childCombination.constraintWeights.length

 childCombination.constraintWeights[i] =

childCombination.constraintWeights[i] +

requirement.constraintWeights[i]
 end for

 combinations.add(childCombination)
 end for

 childCombinations.add(requirement)

 for i=0 to childCombinations.size()

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.13, June 2025

54

 RequirementNode node =
childCombinations.get(i)

 for j=i to childCombinations.size()

 RequirementNode
otherNode = childCombinations.get(j)

 node.links.add(otherNode)

 otherNode.links.add(node)

 end for
 end for

 combinations.addAll(childCombinations)

 end for
 return combinations

end generateNodesCombinations

mergeConstraints(Vector requirements)
 for each requirement in requirements

 requirement.constraintWeight = 0

 for i=0 to requirement.constraintWeights.length
 factor = 1

 for j = 0 to j<i

 factor =
factor*MAX_CONSTRAINT[i]

 end for

 requirement.constraintWeight =
requirement.constraintWeight + requirement.constraintWeights[i] *

factor

 end for
 end for

end mergeConstraints

knapsack(Vector requirements,int constraint) returns Vector
 int values[requirements.size+1][constraint+1]

 Vector solution

 boolean keep[requirements.size()+1][constraint+1]
 for i=1 to values.length

 RequirementNode node = requirements.get(i-1)

 for w=0 to values[i].length
 if

weightCombinations(node.constraintWeight)<=weightCombinations(

w) and values[i-1][w]<node.weight+values[i-1][w-
node.constraintWeight]

 values[i][w]=node.weight+values[i-1][w-
node.constraintWeight]

 keep[i][w] = true

 else
 values[i][w]=values[i-1][w]

 keep[i][w] = false

 end if
 end for

 end for

 int maxConstraintWeight = constraint

 for i=values.length-1 to 0

 if keep[i][maxConstraintWeight]
 RequirementNode node =

requirements.get(i-1)

 solution.add(node)
 maxConstraintWeight=maxConstraintWeight-

node.constraintWeight

 end if
 end for

 return solution

end knapsack

Vector max

execute(Vector nodes,Vector solution,Node start)

 if isDisconnected(nodes)

 solution.clear()

 solution.addAll(knapsack(nodes,MAX_CONSTRAINT))

 if getWeight(max)< getWeight(solution)
 max.clear()

 max.addAll(solution)

 end if

 return
 end if

 Vector all
 Vector graph1

 Vector graph2

 all.addAll(nodes)

 RequirementNode node = start

 if node=null
 node=selectNode(all)

 end if

 all.remove(node)
 Vector neighbors

 neighbors.addAll(node.links())

 execute(all,graph1,null)

 for i=0 to neighbors.size

 RequirementNode temp = neighbors.get(i)
 all.remove(temp)

 end for

 execute(all,graph2,null)

 if checkConstraints(node,graph2)

 graph2.add(node)
 end if

 if getWeight(graph1)>getWeight(graph2)

 solution.addAll(graph1)

 return
 end if

 solution.clear()

 solution.addAll(graph2)

end execute

selectNode(Vector nodes) returns RequirementNode

 RequirementNode node = nodes.get(0)
 for i=1 to nodes.size

 if

getLinksCount(nodes.get(i),nodes)>getLinksCount(node,nodes)
 node = nodes.get(i)

 return node

end selectNode

getLinksCount(Node node,Vector nodes) returns integer

 int count = node.weight

 for i=0 to node.links.size
 if nodes.contains(node.links.get(i))

 count=count+1

 end if
 end for

 return count

end getLinksCount

isDisconnected(Vector nodes) returns boolean

 for i=0 to nodes.size

 for j=0 to nodes.get(i).links.size
 if

nodes.contains(nodes.get(i).links.get(j)

 return false
 end if

 end for

 end for
 return true

end isDisconnected

getWeight(Vector nodes) returns integer

 int sum = 0
for i=0 to nodes.size

 RequirementNode node = nodes.get(i)

 sum=sum+node.weight
 end for

 return sum

end getWeight

checkConstraints(Node node,Vector nodes) returns boolean

 int consSums[CONSTRAINTS.length]

 for i=0 to CONSTRAINTS.length

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.13, June 2025

55

 consSums[i] = node.constraintWeights[i]
 for j=0 to nodes.size

 RequirementNode temp =

nodes.get(j)
 consSums[i] =consSums[i] +

temp.constraintWeights[i]

 end for
 if consSums[i]>CONSTRAINTS[i]

 return false

 end if
 end for

return true

end checkConstraints

findMaximum(Vector nodes) returns Vector

 Vector maxSolution

 execute(nodes,maxSolution,null)
 return maxSolution

end findMaximum

IJCATM : www.ijcaonline.org

