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ABSTRACT
Most of the current ML-based IDSs models priotize detection ac-
curacy over detection latency, which is critical for real-time detec-
tion and mitigation of cyber-attacks. The study evaluated the im-
pact of Principal Component Analysis (PCA) on optimizing ma-
chine learning-based IDS using the UNR-IDD dataset. We com-
prehensively analyzed the performance of Support Vector Ma-
chine (SVM), Naı̈ve Bayes (NB), and Random Forest (RF) be-
fore and after PCA transformation. Experimental results show that
PCA significantly reduced the detection latency for SVM and
NB without compromising their performance. Specifically, NB +
PCA and SVM + PCA achieved a whopping 99.52% and 49.9%
reduction in detection latency respectively, making them viable
low-latency solutions. However, the PCA transformation did not
significantly impact the detection latency of the random forest
model. The results demonstrate that NB + PCA is the most effi-
cient and lightweight model for real-time network intrusion detec-
tion. These findings demonstrate that PCA is an effective prepro-
cessing step to optimize ML-based IDS for real-time applications.

General Terms
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Keywords
Intrusion detection, principal component analysis, latency, data and
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1. INTRODUCTION
The rapid advancement of digital technologies has led to exponen-
tial expansion of cyberspace [30]. While this digital transformation
offers many benefits, it has also introduced significant cybersecu-
rity challenges and vulnerabilities [26, 30, 45]. Cyber-criminals
continuously exploit vulnerabilities through sophisticated attack
vectors such as distributed denial of service [3], Man-in-the-
middle attack [4, 49], phishing [10], malware [5], and password
attacks[33, 45], social engineering [18] and zero-day exploit [19].

A network intrusion refers to an unauthorized access of a computer
system, either by external attackers or malicious insiders. With the
rapid growth of cybercrime and its potentially devastating impacts,
robust security measures are crucial for preventing financial losses
and organizational damage [30, 50]. Over time, researchers have
developed antivirus software, firewalls, and intrusion detection
systems (IDS) to safeguard networks. Among these tools, intrusion
detection system has provided cutting-edge security by continu-
ously scanning and monitoring incoming traffic to detect malicious
activities, triggering alerts, and prompting system administrators
to take immediate action[2, 30, 46].

Machine learning-based IDS have gained prominence due to
their ability to process vast amounts of network traffic data and
detect previously unseen attack patterns. Despite their success,
detection latency remains a significant challenge. Many existing
IDS models prioritize achieving high classification accuracy
over the computational costs associated with real-time detec-
tion. However, focusing solely on accuracy is detrimental in
security-critical environments, where real-time identification
and response are essential to mitigating cyberattacks [41, 28].
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The high dimensionality of network traffic data exacerbates
this challenge, as machine learning-based IDS must process
vast amount of features [35]. Handling such high-dimensional
data increases processing time, leading to significant detection
latency. Therefore, optimizing IDS for both accuracy and computa-
tional efficiency is crucial to enhancing network security resilience.

Principal Component Analysis (PCA) has been proposed for
enhancing the performance of IDS. However, its effectiveness on
optimizing IDS is still underexplored, especially when it comes
to balancing detection accuracy and latency [27, 48, 51]. In this
study, we explore the effects of the Principal Component Analysis
on ML-based IDSs using the UNR-IDD dataset as a benchmark.
We will evaluate the performance of Naı̈ve Bayes (NB), Support
Vector Machine (SVM), and Random Forest (RF) before and after
PCA application to assess whether dimensionality reduction can
reduce detection latency without degrading performance. The
research provides insights into the trade-offs between detection
latency and performance in IDS, offering practical guidance for
optimizing machine learning-based network intrussion detection
solutions in resource-constrained environments.

The remainder of the paper is organized as follows: the related work
section discusses previous works in intrusion detection and the role
of PCA in IDS. The methodology chapter explains the experimen-
tal setup such as dataset pre-processing, feature feature engineer-
ing, feature and model selection, and model training. Results and
discussion section presents the findings, and assesses the impact of
PCA in improving IDS performance.The conclusion highlights the
main contributions and proposes future research.

2. RELATED WORK
Research on intrusion detection dates back as far as 1972 when
James Anderson had written a report for the U.S. Air Force,
urging the need of intrusion detection systems [6]. At first, manual
inspection of logs by system administrators was the main method
of identifying potential cyber threats. But as technology advanced,
human expertise alone was unable to match up with the increasing
complexity of security needs. This inspired the use of automated
intrusion detection systems(IDS). Denning and Neumann later
created the first real-time IDS based upon expert-written rules in
1985[7, 14].

Since then, many anomaly-based and signature-based IDSs have
been proposed in the public domain to enhance computer secu-
rity. Although signature-based technique is fantastic at detecting
known types of attacks, it is unable to detect a zero-day exploit. On
the other hand, aan anomaly-based IDS determines which behavior
within a network is normal, based on a predefined baseline. The
anomaly-based IDS continues to monitor network activity, com-
pares it to the baseline, and flag any significant deviation from the
baseline as an attack. However, this technique tends to have higher
false positives[1, 15, 26].
.
With the advancement in technology, traditional signature and
anomaly-based methods are not able to detect cyber-threats
due to the evolving nature of the attack vectors. Bhattacharya
et al. proposed a Novel PCA-Firefly Based XGBoost machine
learning model to enhance the efficiency of Intrusion Detection
Systems (IDS). The proposed hybrid approach combines PCA for
dimensionality reduction and the Firefly optimization algorithm
for feature selection. After the application of the PCA and the

firefly optimization algorithms, the authors trained K-Nearest
Neighbor (KNN), Naı̈ve Bayes (NB), Random Forest, Support
Vector Machine (SVM), and XGBoost on the optimized dataset.
Thorough comparative analysis showed that the PCA-Firefly-
XGBoost model outperformed the traditional machine learning
models, achieving an accuracy (99.9%) [9, 43].

Sayeed et al. investigated the security risks of the rapid expansion
of IoT devices. Recognizing the limitations of traditional security
methods, they proposed machine learning-based IDS tailored for
IoT environments. Using PCA for dimensionality reduction, they
optimized the UNSW-NB15 dataset to streamline computational
loads and trained XGBoost, CatBoost, KNN, SVM, QDA, and
Naive Bayes on the optimized dataset. The experimental results
indicated that the XGBoost and CatBoost models achieved near-
perfect accuracy (99.99%) and impressive F1 score and Matthew’s
Correlation Coefficient [24].

Kumari et al 2024 suggested a highly accurate IDS based on Spider
Monkey Optimization algorithm. The spider monkey optimization
(SMO) algorithm simulatess the foraging behavior of spider mon-
keys to obtain better exploration and exploitation of the solution
space for optimizing the neural network parameters. The authors
reported that SMO + ANN model achieved 100% accuracy on the
LuFlow dataset and 99% on the NSL-KDD dataset, showcasing
the potential of SMO-ANN algorithms in enhancing detection
systemsfor intricate cyber threats[41, 26]

Because of the fast growing number of IoT devices in industries
such as healthcare, smart cities and industrial applications, Roy and
Cheung (2018) proposed a deep learning IDS using Bi-Directional
LSTM to tackle the severe security vulnerabilities and defend
IoT networks from cyber-attacks. The results indicates that the
proposed BiLSTM-based IDS achieved an accuracy over 95% in
detecting attacks[36].

Das and his team introduced the UNR-IDD dataset in 2022 to im-
prove the accuracy and reliability of ML-based Network Intrusion
Detection Systems. Previous benchmark datasets such as the NSL-
KDD, UNSW-NB15 and CIC-IDS-2018 tend to have poor repre-
sentation for rare attack types, restricting their generalizability over
various kinds of network topologies. To solve these problems, the
authors incorporated network port statistics and port statistics into
the UNR-IDD, granting more fine-grained analysis of network traf-
fic. The attack vector of the UNR-IDD dataset includes TCP-SYN
flood, Port Scan, Flow Table Overflow, Blackhole and Diversion.
The authors applied different machine learning algorithms on the
dataset. The results indicated that the Random Forest and Bagging
Classifier performed the best, achieving an F-Measure of 94% [13]
.
Parveen et al. explored the application of deep learning to address
the shortcomings of tradtional IDS techniques. Upon preprocess-
ing the UNR- IDD dataset, they trained Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), Artificial
Neural Networks (ANNs), and a hybrid CNN-RNN model to
capture both spatial and temporal features. The authors reported
that the hybrid CNN-RNN model performed the best among all
models with 96.2% accuracy and a false positive rate of 1.5% [34].

Surjeet et al. proposed the Optimized LightGBM Model for
protecting cyber-physical systems (CPS) against zero-day vul-
nerabilities. The authors trained the LightGBM model on the
UNR-IDD, a benchmark dataset with a variety of attack vectors.
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After preprocessing and hyperparameter tuning through Bayesian
optimization, the optimized LightGBM model outperformed other
algorithms, achieving an accuracy of 99.17%. [12]

Samriya et al. explored the optimization of network intrusion de-
tection in cloud computing environments to address low accuracy
and higher false alarm rate associated with detecting complex
cyber-attack like DDoS and ransomware. They proposed a hybrid
model, comprising of Support Vector Machine (SVM) and Extreme
Gradient Boosting (XGBoost), that was further improved with
Crow Search Algorithm (CSA). On the NSL-KDD and UNR-IDD
datasets, the CSA-SVM model outperformed others, achieving
99.58% accuracy on NSL-KDD and 99.79% on UNR-IDD [38].

Despite the tremendous success achieved in building ML-based
IDSs using the UNR-IDD dataset, comprehensive review of the
existing literature reveals a significant gap: existing ML-based
IDS implementations have been prioritizing detection performance
over detection latency. Given the real-time nature of cyber-attacks,
it is important to optimize ML-based IDS for low-latency detection
to ensure swift reactions to cyberattacks. This study addresses the
limitation with the following contributions.

1. Analyzes the impact of PCA on detection latency, a critical yet
underexplored aspect in machine learning-based IDS research.

2. Evaluates the trade-off between latency and accuracy to
demonstrate that PCA improves computational efficiency without
compromising performance.

3. Proposes a lightweight, efficient and low-latency machine
learning-based IDS systems capable of real-time threat detection
in modern network environments.

3. METHOD
3.1 Description and Collection of the UNR-IDD

Dataset
The University of Nevada-Reno Intrusion Detection Dataset, UNR-
IDD dataset (https://www.tapadhirdas.com/unr-idd-dataset) can be
used for both binary and multi-class classification tasks. The attack
vector includes TCP-SYN Flood, Port Scan, Flow Table Overflow,
Blackhole, and Traffic Diversion. In binary classification, the ob-
jective is to differentiate between normal and attack traffic, without
specifying the type of attack. In this study, we used the binary clas-
sification dataset. It contains 37,411 samples and 33 features. The
dataset is highly imbalanced, with 33,638 samples of attack traffic
and 3,773 samples of normal traffic[13]

3.2 Synthetic Minority Oversampling Technique
The dataset was highly imbalanced, so we leveraged the Syn-
thetic Minority Oversampling Technique (SMOTE) to create dis-
tinct but representative samples from the minority class to balance
the dataset [21].

3.3 Principal Component Analysis
Principal Component Analysis (PCA) is a statistical and feature
extraction technique that uses an orthogonal transformation to con-
vert a set of correlated variables into a new set of uncorrelated
features. It maps instances from an N-dimensional space into a k-
dimensional subspace where K is less than N. PCA extracts the

most important components from the data by creating linear combi-
nations of the original features that capture the maximum variance.
[42]. The PCA process involves the following steps:

3.3.1 Standardization of the raw data. Standardization is the pro-
cess of scaling the input data so that each feature has mean of zero
and a unit variance. The formula is:

zi =
xi − µi

σi

(1)

σi is the standard deviation of the feature xi,
µi is the mean of feature xi

3.3.2 Calculation of the Cov matrix to identify correlations be-
tween variables. The covariance matrix, C is symmetrical; its size
is d x d where d is the number of features. It is calculated as;

C =
1

n− 1
ZTZ (2)

where Z is the standardized data matrix (with n samples and d fea-
tures), ZT is the transpose of Z. The elements of the covariance
matrix C are the covariances between pairs of features.

Cov(xi, xj) =
1

n− 1

n∑
k=1

(zki − µzi)(zkj − µzj) (3)

3.3.3 Determine the eigenvectors and eigenvalues of the covari-
ance matrix to identify the principal components. We calculate the
eigenvalues and eigenvectors of the covariance matrix to define the
directions of the principal components and the amount of variance
captured by each component respectively.

Cv = λv (4)

C is the covariance matrix,
λ is the eigen value,
v is the eigenvector corresponding to eigenvalue λ

3.3.4 Sort the eigenvalues and select the first k principal compo-
nents. Once we have the eigenvalues and eigenvectors, we sort the
eigenvalues in descending order and select the top k eigenvectors
to form a new subspace.

3.3.5 Project the original dataset onto the new feature space,
based on the top k eigenvectors. The final step is to multiply the
original standardized data matrix, Z by the top k eigenvectors to
project the original dataset onto the new k-dimensional subspace
Vk [37].

Znew = ZVk (5)

3.4 Machine Learning Models
3.4.1 Naive Bayes. Naive Bayes is a probabilistic machine learn-
ing algorithm for classification tasks. Naive Bayes is computa-
tionally efficient, making it ideal for large and high dimentional
datasets. The algorithm is based on the Bayes’ theorem which cal-
culates the posterior probability of an event, based on prior knowl-
edge of conditions related to the event.

P (C|X) =
P (X|C) . P (C)

P (X)
(6)

where P (C|X) is the posterior probability, P (X|C) is the likeli-
hood, P(C) is the prior probability of event C and P(X) is the evi-
dence. Given a set of features X = (x1, x2, x3, ......xn), P (X|C)
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Fig. 1: Flow diagram of the study

is the product of the individual feature probabilities based on the
assumption of independence of features.

P (C|X) =
P (x1|C) . P (x2|C) . ....P (xn|C) . P (C)

P (X)
(7)

The algorithm calculates the posterior probability for each class and
selects the class with the highest probability.

C = argmax

[
P (C) .

n∏
i=1

. P (XI |C)

]
(8)

The Naive Bayes algorithm is computationally efficient and per-
forms well on small and noisy datasets [11, 31, 32].

3.4.2 Support Vector Machine (SVM). Support Vector Machine
(SVM) is a supervised learning algorithm for classification and re-
gression tasks. SVMs are not limited to linear classification; they
also excel at handling non-linear data through the kernel trick. The
goal is to find a hyperplane that maximizes the margin, ensuring
the best possible separation between the classes [17, 29, 39]. The
equation of the optimal hyperplane is defined as;

wxT + b = 0 (9)

where b is the bias, x is the input feature vector, and w is the
weight vector.

wxT
i + b ≥ 1 if yi = 1 (10)

wxT
i + b ≤ 1 if yi = −1 (11)

The SVM algorithm is trained to find the optimal values of w and
b that maximize the margin.

1

||w||2
(12)

[22].

3.4.3 Random Forest (RF). Random forest is an ensemble ap-
proach which leverages two levels of randomization to build multi-
ple decision trees for classification and regression tasks. The first
layer of randomness is bootstrap aggregation, where the dataset
is sampled with replacement. The second layer of randomization
occurs at the decision nodes to reduce inter-tree correlation. For
classification tasks, the final decision is reached through a majority
voting.

C = mode(c1, c2....., cn) (13)

The predictions of the trees, yi are averaged for regression tasks.

Y =
1

T

T∑
i=1

yi (14)

[8]

3.5 Model Training and Evaluation
The dataset was divided into 80% training, 10%validation, and 10%
testing subsets. Predictive latency refers to the amount of time be-
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tween an inference request and prediction for a machine learning
model. The training time and predictive latency of the three trained
machine learning models before and after applying Principal Com-
ponent Analysis (PCA), were measured using Python’s time mod-
ule. This process involved setting start and end times, then calculat-
ing the elapsed time (CPU time) by subtracting the start time from
the end time. This CPU time accurately reflects predictive latency
because it excludes any waiting period for I/O operations [16, 40].

4. RESULTS AND DISCUSSION
4.1 Experimental Environment
The models were trained on Google Colab, a powerful cloud-based
platform for heavy computational tasks [47]. We leveraged the
GPU within this environment (NVIDIA-SMI 535.104.05 TP4) to
maximize processing power. The virtual machine featured up 7 pro-
cessors with 4 core each (Intel(R) Xeon(R) CPU @ 2.00GHz), and
up to 53.47 GB of RAM. We used Python 3.10.12 as the runtime,
NumPy 1.26.2 and Pandas 2.2.2 for numerical computations. We
used Seaborn 0.13.1 and Matplotlib 3.8.4 for the data visualization
and Sklearn 1.4.2. for training the machine learning algorithms.

4.2 Effect of PCA on the Performance, Training Time
and Detection Latency of the Models

We assessed the performance of the models using precision,
accuracy, recall, F1-score, ROC-AUC score, false negative rate,
and error rate. The confusion matrices of the three models, both
before and after applying PCA, are presented in Fig. 2. A confu-
sion matrix visually represents the performance of a supervised
learning algorithm by comparing the predicted and actual labels of
the test set [15, 44, 52]. We derived the true positives, TP (attack
traffic predicted as attack traffic), true negatives, TN (normal traffic
predicted as normal traffic), false positives, FP (normal traffic
predicted as attack traffic), and false negatives, FN (attack traffic
predicted as normal traffic) from the confusion matrices [23]. We
computed the performance metrics for each model using the TP,
TN, FP, and FN values and the results presented in table 1.

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Recall =
TP

TP + FN
(16)

Precision =
TP

TP + FP
(17)

F1 score =
2 ∗ Precision ∗ Recall

Precision+Recall
(18)

Error =
FP + FN

TP + TN + FP + FN
(19)

False negative rate =
FN

FN + TP
(20)

False positive rate =
FP

FP + TN
(21)

[20].

Our experimental results show that the PCA significantly reduced
the training time of all the three models. The training time
per sample (TTPS) significantly decreased for all the models.
For instance, the TTPS of the Support Vector Machine model
decreased significantly from 0.0343 to 0.0177 milliseconds, while
the Naı̈ve Bayes model showed a steeper decline (from 0.0041 to
0.00029) milliseconds. However, the PCA increased the TTPS of
the Random Forest (RF) model sligtly from 0.0488 to 0.0549 mil-
liseconds. Overall, the application of PCA significantly reduced the
TTPS of the SVM and NB models by 48.4 and 92.93% respectively.

Moreover, the experimental results show that PCA significantly
reduced the detection latency (time between inference request and
prediction) for both the Naı̈ve Bayes and Support Vector Machine
models. For instance, the detection latency per test example
for the Naı̈ve Bayes model decreased significantly from 0.0021
milliseconds to 0.00001 milliseconds, and for the SVM model,
it decreased from 0.0501 to 0.0251 milliseconds. This represents
a whopping 99.52% and 49.90% reduction for Naı̈ve Bayes and
SVM respectively. However, the detection latency per example
increased marginally for the Random Forest model .

The substantial reduction in both the training time and detection
latency for the Naı̈ve Bayes and SVM models suggests that the
PCA denoised the dataset to retain only the most relevant informa-
tion within the first three principal components. By reducing the
number of dimensions, the computational cost of the matrix oper-
ations performed by these models reduced, further contributing to
the reduction in both training and predictive times. For instance,
Stojcic and team reported that PCA denoised datasets. Similarly,
Bhattacharya and his team reported a significant improvement
in performance when using a hybrid PCA-firefly algorithm [42, 43].

In contrast, the PCA transformation had minimal impact on the
training time and detection latency of the Random Forest model.
This could be attributed to inherent complexity of the model, as
both training time and predictive latency are largely influenced by
the algorithmic complexity[42].

Table 1 outlines the classification metrics for the three models both
before and after PCA. Our analysis shows that, before the PCA
transformation, the Naı̈ve Bayes (NB) and Support Vector Ma-
chine (SVM) models achieved accuracies of 97.46% and 99.97%
respectively. The Random Forest (RF) model outperformed the
Support Vector Machine (SVM) and Naive Bayes (NB) models,
achieving an accuracy of 100%.

Next, we applied PCA to reduce the dimensionality of the dataset
from 33 features to only 3 principal components. Following the
PCA transformation, the NB and SVM models achieved accuracy
of 99.43% and 99.89% respectively. The PCA transformation
significantly improved the performance of the Naive Bayes model,
increasing the accuracy by 2.0% compared to the pre-PCA results.
The Random Forest model consistently outperformed the Naı̈ve
Bayes (NB) and Support Vector Machine (SVM) models across
all the performance metrics. This suggests that the PCA transfor-
mation denoised the UNR-IDD by eliminating multicollinearity
and irrelevant features. The smaller feature space exposed the
underlying patterns for better learning by the Naı̈ve Bayes algo-
rithm. Our findings concur with existing literature; for example,
Vasan and Surendiran also reported significant improvement in the
performance of intrusion detection systems after applying PCA to
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(a) NB (b) NB + PCA

(c) SVM (d) SVM + PCA

(e) RF (f) RF + PCA

Fig. 2: Confusion matrices of SVM, NB and RF before and after PCA transformation
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(a) NB (b) SVM

(c) RF (d) All models

Fig. 3: Training time and detection latency of SVM, NB and RF before and after PCA transformation

Table 1. : Predictive Performances of the Models before and after PCA

M tric SVM RF NB SVM + PCA RF + PCA NB + PCA
Accuracy 0.9997 1.0000 0.9746 0.9989 1.0000 0.9945
Precision 1.000 1.0000 1.0000 1.0000 1.0000 1.0000
Recall 0.9997 1.0000 0.9716 0.9988 1.0000 0.9939
AUC-Score 0.9999 1.0000 0.9859 0.9994 1.0000 0.9970
F1-Score 0.9999 1.0000 0.9857 0.9994 1.0000 0.9969
Error 0.0003 0.0000 0.0254 0.0011 0.0000 0.0055
False Negative Rate 0.0003 0.0000 0.0284 0.0012 0.0000 0.0061
False Positive Rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

denoise the KDD Cup 2016 dataset [25].

5. CONCLUSION
In this study, we investigated the impact of PCA on the perfor-
mance, training time, and detection latency of Support Vector
Machine (SVM), Naı̈ve Bayes (NB), and Random Forest (RF)
using the UNR-IDD dataset. Our experimental results showed
PCA transformation resulted in a significant reduction in both the
training times and detection latencies for the SVM and NB models,
without compromiusing their performance. The findings indicate
that PCA is an effective preprocessing technique for optimizing

ML-based IDSs.

While all the three models demonstrated strong performance across
the selected metrics, PCA had a particularly significant impact on
the NB model, reducing its detection latency by 99.52%, compared
to 49.9% and 0% for SVM model and RF models respectively. The
combination of NB and PCA stands out as the optimal choice for
our proposed robust, low-latency machine learning-based intrusion
detection system in network security. We recommend exploring the
and investigating other dimensionality reduction to develop more
efficient machine learning-based intrusion detection solutions.
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Future research should explore hybrid dimensionality reduction
techniques, the use of multi-class network intrusion datasets to de-
tect the specific attack vector and real-time deployment architec-
tures. Furthermore, future studies should focus on evaluating opti-
mized ML-based IDSs across diverse and evolving network envi-
ronments.
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[16] Miguel González-Rodrı́guez, Lorena Otero-Cerdeira, Encar-
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Gökçe Karacayılmaz, Birkan Alhan, and Ercan Nurcan
Yılmaz. Password Attack Analysis Over Honeypot Using Ma-
chine Learning Password Attack Analysis. Turkish Journal of
Mathematics and Computer Science, 13(2):388–402, 2021.

[46] R. Vinayakumar, Mamoun Alazab, K. P. Soman, Prabaharan
Poornachandran, Ameer Al-Nemrat, and Sitalakshmi Venka-
traman. Deep Learning Approach for Intelligent Intrusion De-
tection System. IEEE Access, 7:41525–41550, 2019.

[47] Xiaojuan Wang, Yun Zhong, Lei Jin, and Yabo Xiao. Scale
Adaptive Graph Convolutional Network for Skeleton-Based
Action Recognition. Tianjin Daxue Xuebao (Ziran Kexue yu
Gongcheng Jishu Ban)/Journal of Tianjin University Science
and Technology, 55(3):306–312, 2022.

[48] Zhen Yang, Xiaodong Liu, Tong Li, Di Wu, Jinjiang Wang,
Yunwei Zhao, and Han Han. A systematic literature review
of methods and datasets for anomaly-based network intrusion
detection. Computers and Security, 116, 2022.

[49] Huanhuan Yuan, Yuanqing Xia, Yuan Yuan, and Hongjiu
Yang. Resilient strategy design for cyber-physical system un-
der active eavesdropping attack. Journal of the Franklin Insti-
tute, 358(10):5281–5304, 2021.

[50] Huanhuan Yuan, Yuanqing Xia, Yuan Yuan, and Hongjiu
Yang. Resilient strategy design for cyber-physical system un-
der active eavesdropping attack. Journal of the Franklin Insti-
tute, 358(10):5281–5304, 2021.

[51] Diyar Qader Zeebaree, Habibollah Haron, Adnan Mohsin Ab-
dulazeez, and Dilovan Asaad Zebari. Trainable Model Based
on New Uniform LBP Feature to Identify the Risk of the
Breast Cancer. 2019 International Conference on Advanced
Science and Engineering, ICOASE 2019, pages 106–111,
2019.

[52] Changming Zhu and Daqi Gao. Influence of data prepro-
cessing. Journal of Computing Science and Engineering,
10(2):51–57, 2016.

9


	Introduction
	RELATED WORK
	METHOD
	Description and Collection of the UNR-IDD Dataset
	Synthetic Minority Oversampling Technique
	Principal Component Analysis
	Standardization of the raw data
	Calculation of the Cov matrix to identify correlations between variables
	Determine the eigenvectors and eigenvalues of the covariance matrix to identify the principal components
	Sort the eigenvalues and select the first k principal components
	Project the original dataset onto the new feature space, based on the top k eigenvectors

	Machine Learning Models
	Naive Bayes
	Support Vector Machine (SVM)
	Random Forest (RF)

	Model Training and Evaluation

	Results and Discussion
	Experimental Environment
	Effect of PCA on the Performance, Training Time and Detection Latency of the Models

	CONCLUSION
	References

