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ABSTRACT 

Emotion recognition through facial expressions is a critical 

enabler of non-verbal communication, particularly for 

individuals with physical disabilities who may face barriers in 

speech or motor-based interaction. This paper proposes a real-

time, FPGA-based facial emotion recognition system optimized 

for embedded deployment and low-power operation. The system 

utilizes a quantized MobileNetV2 Convolutional Neural Network 

(CNN) trained on an enhanced FERPlus dataset (FERPlus-A), 

which is refined using CLAHE, bilateral filtering, and sharpening 

to improve feature clarity. The trained model is quantized to 8-bit 

integer arithmetic for efficient synthesis via Vivado HLS and 

deployed onto a ZYNQ SoC platform. Integration through AXI 

interfaces enables seamless communication between the CNN 

accelerator and the processing system. Simulation results 

demonstrate high inference speed with a latency of approximately 

1.174 milliseconds per frame and an estimated throughput of 851 

frames per second. Despite the absence of hardware testing due 

to board unavailability, functional verification confirms the 

model’s readiness for real-time assistive applications. This work 

presents a scalable and energy-efficient solution for enhancing 

emotional communication in assistive technologies, offering 

significant potential for integration in healthcare, smart 

interfaces, and human-centered embedded systems. 
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1. INTRODUCTION 
Facial emotion recognition has emerged as a key component in 

enhancing human-computer interaction, especially for 

individuals with physical disabilities who face difficulties in 

expressing emotions through speech or gestures. Emotions 

conveyed through facial expressions are a universal form of 

communication, making them ideal for non-verbal interaction. 

Recognizing these emotions in real-time using embedded 

systems opens up new avenues in assistive technology, 

therapeutic systems, and accessibility tools. 

Traditional emotion recognition systems often rely on high-

performance CPU or GPU-based platforms. While these systems 

achieve high accuracy, they are not suitable for deployment in 

real-time or resource-constrained environments due to their high 

power consumption, size, and cost. In contrast, FPGAs (Field-

Programmable Gate Arrays) offer a promising alternative. Their 

ability to execute operations in parallel, coupled with low power 

consumption and reconfigurability, makes them ideal for 

implementing real-time deep learning applications on edge 

devices [1]. 

Recent developments in deep learning have shown the 

effectiveness of Convolutional Neural Networks (CNNs) in facial 

emotion recognition. However, standard CNN architectures such 

as VGGNet and ResNet are computationally intensive and 

demand significant memory resources, making them less suitable 

for FPGA implementation. To address this, researchers have 

introduced lightweight CNN models such as MobileNetV2, 

which utilize compact convolution methods with inverted 

shortcut connections to reduce complexity without significantly 

compromising accuracy [2]. 

In parallel, several studies have proposed quantization techniques 

to convert floating-point CNN models into fixed-point or integer-

only representations. Training that accounts for quantization 

during model optimization enables neural networks to maintain 

accuracy even after reducing the bit-width of parameters and 

activations, thus making them more compatible with hardware 

like FPGAs [3], [4]. 

The existing literature also highlights efforts to accelerate CNN 

inference on FPGAs for emotion recognition. Earlier approaches 

often used shallow networks or lacked sophisticated 

preprocessing, which limited their performance. More recent 

studies integrate high-level synthesis (HLS) tools such as Vivado 

HLS to design and optimize CNN architectures directly in C/C++ 

for efficient synthesis into RTL [5], [6]. 

Building upon these advancements, this paper presents a 

complete pipeline for facial emotion recognition tailored for 

individuals with physical disabilities. It includes enhanced 

dataset preparation, quantized CNN model training, HLS-based 

synthesis, and integration into a ZYNQ SoC platform. The 

proposed system bridges the gap between high-performance deep 

learning and practical embedded deployment, offering a viable 

assistive technology for emotion-based communication. 

2. LITERATURE REVIEW 
Facial emotion recognition has gained widespread attention in 

recent years due to its applications in healthcare, surveillance, 

and human-computer interaction. Early approaches largely relied 

on traditional machine learning classifiers such as Support Vector 
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Machines (SVMs) and K-Nearest Neighbors (KNNs), which 

required manual feature extraction techniques like Local Binary 

Patterns (LBP) and Histogram of Oriented Gradients (HOG). 

While simple and computationally efficient, these methods 

lacked robustness under real-world conditions and struggled to 

generalize across diverse facial expressions and lighting 

conditions. 

The advent of deep learning has significantly improved emotion 

recognition systems. Convolutional Neural Networks (CNNs) 

have demonstrated superior performance by automatically 

extracting hierarchical features from raw image data. Works by 

Barsoum et al. and Li et al. have applied deep CNNs to datasets 

like FER and FERPlus, showing improved accuracy over 

classical approaches. However, most of these models were 

trained and evaluated on high-resource platforms like GPUs, 

limiting their practical use in embedded or portable devices. 

To address resource limitations, lightweight CNN architectures 

such as MobileNetV2 have been introduced. MobileNetV2 

utilizes compact convolution methods with inverted shortcut 

connections to significantly reduce computational overhead 

while maintaining accuracy [1]. It is particularly suited for 

embedded systems where power and processing constraints are 

critical. 

Another critical development has been the integration of 

quantization techniques. Quantization reduces the bit-width of 

weights and activations, converting models from 32-bit floating 

point to low-bit integer arithmetic (often 8-bit). Choi et al. 

proposed quantization-aware training techniques that maintain 

accuracy during this conversion process [2]. Similarly, Esser et 

al. presented learned step-size quantization strategies for optimal 

hardware efficiency [3]. 

In the context of hardware deployment, several studies have 

explored FPGA-based implementations of CNNs for facial 

analysis tasks. Phan-Xuan et al. implemented a basic CNN 

architecture on a Xilinx ZYNQ FPGA using high-level synthesis 

(HLS), achieving real-time performance but with limited 

accuracy due to the simplicity of the model [4]. Vinhe et al. and 

Ding et al. focused on optimizing convolutional operations using 

parallel engines and pipelined execution, demonstrating 

improvements in both speed and resource utilization [5], [6]. 

Kim et al. designed an integer-arithmetic-only CNN accelerator 

optimized for embedded systems using an FPGA platform. Their 

work demonstrated that with proper quantization and parallelism 

strategies, a high classification accuracy of 86.58% could be 

achieved using only integer operations and minimal hardware 

resources [7]. 

In addition to model and hardware improvements, preprocessing 

techniques such as Contrast-Limited Adaptive Histogram 

Equalization (CLAHE), bilateral filtering, and sharpening have 

been shown to enhance facial features and improve model 

performance. Wang et al. reported that preprocessing 

significantly improved accuracy on low-resolution datasets like 

FER2013. 

3. CNN ARCHITECTURE 
Facial expression recognition (FER) has gained significant 

attention with applications in human-computer interaction, 

behavioral analysis, and assistive communication. Traditionally, 

FER systems relied on handcrafted feature extraction such as 

Local Binary Patterns (LBP) or Histogram of Oriented Gradients 

(HOG), followed by machine learning classifiers like Support 

Vector Machines (SVM) [1]. These methods, while efficient 

under controlled environments, lack the generalization and 

accuracy necessary for real-time embedded deployment. 

With the rise of deep learning, Convolutional Neural Networks 

(CNNs) have become the de facto approach to FER, enabling 

direct extraction of spatial features throughout the network from 

raw facial images [2]. CNNs replace handcrafted features with 

automatically learned features and achieve superior performance. 

In particular, the FER2013 dataset has been widely adopted to 

train and evaluate CNN-based emotion recognition models [3]. 

The central operation in CNNs is the 2D convolution, described 

by the following equation: 

 

where I(y,x)) is the input image, F(j,i)  is the filter kernel, and 

O(y,x) is the resulting feature map. For multiple channels and 

filters, the total number of Multiply-Accumulate (MAC) 

operations becomes: 

 

As described in [4], this operation can be restructured into a 

matrix multiplication RCRCRC where input patches are flattened 

into columns of matrix C, and the filters are unrolled into rows of 

matrix R. This matrix view is more efficient for GPUs, but on 

FPGAs, direct convolution (Eq. 1 and 2) is often more hardware-

efficient due to data reuse and locality. 

To address real-time constraints and reduce power consumption, 

several researchers have ported CNN architectures to FPGA 

platforms using High-Level Synthesis (HLS). The reference work 

by Phan-Xuan et al. [4] implemented a CNN-based FER system 

on a ZYNQ-7000 FPGA using Vivado HLS. Their system 

featured: 

• Real-time face detection from video input (VITA-2000 

camera), 

• A CNN architecture with 3 convolutional layers and 2 

fully connected layers (fig 1 ) 

• RTL-level synthesis of TensorFlow-trained model 

weights using Vivado HLS. 
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Fig 1: CNN Architecture

4. FPGA-Based Real-Time Facial Emotion 

Recognition System for Assistive Technology 
The methodology begins with acquiring grayscale facial images 

from a webcam or HDMI video input. These images are resized 

to 64×64 pixels and passed through a dedicated preprocessing 

pipeline implemented in software using OpenCV. This pipeline 

includes three enhancement steps—Contrast Limited Adaptive 

Histogram Equalization (CLAHE) to improve contrast, bilateral 

filtering to suppress noise while preserving facial edges, and 

image sharpening to highlight vital landmarks like eyes and 

mouth contours. The enhanced images are then forwarded to the 

CNN core for emotion classification. 

The CNN model is built using the MobileNetV2 backbone, which 

is specifically chosen for its compact convolution methods with 

inverted shortcut connections that reduce parameter count and 

computation overhead without sacrificing accuracy. The model is 

trained in PyTorch using quantization-aware training techniques 

to ensure compatibility with integer-only arithmetic, a key 

requirement for FPGA deployment. Upon training, the model is 

converted to an intermediate ONNX format and then re-

implemented in C++ using fixed-point arithmetic. This C++ 

model is then synthesized using Vivado HLS into an RTL 

representation that can be compiled and deployed to the 

programmable logic of the FPGA. 

 

Fig. 2: Block diagram of the proposed real-time facial 

emotion recognition 

The complete hardware-software co-design is shown in Fig. 2, 

which illustrates the system architecture consisting of five core 

components: the input interface, image preprocessing block, 

CNN inference engine, AXI interconnect, and classification 

output. The ARM Cortex-A9 processing system (PS) handles 

control and I/O functions, while the CNN IP core, synthesized 

from the trained model, resides in the programmable logic (PL). 

The AXI4-Lite bus is used for configuration and control of the 

CNN IP, while the AXI4-Stream bus handles high-throughput 

image data transfer between the processor and CNN module. 

Intermediate results and model weights are buffered using on-

chip BRAM to reduce latency. 

Once the image passes through the CNN, it undergoes 

classification via a softmax layer that outputs one of eight 

predefined emotion labels: neutral, happiness, sadness, surprise, 

anger, fear, disgust, and contempt. The result is then sent back to 

the processor where it is either displayed on a GUI, stored in 

memory, or used to trigger assistive responses such as auditory 

feedback or alerts. 

The overall system has been designed with real-time constraints 

in mind. The synthesized hardware achieves an average inference 

latency of just 1.174 milliseconds per image, supporting real-time 

classification of up to 851 frames per second in simulation. 

Although lightweight, the MobileNetV2-based CNN retains 

strong classification accuracy comparable to more 

computationally intensive networks, owing to the FERPlus-A 

dataset enhancements and carefully tuned quantization strategy. 

The FPGA resource usage remains well within the limits of the 

ZYNQ-7000 device, ensuring that the solution is deployable in 

portable, power-constrained environments, such as assistive 

wearable devices. 

         
        Fig. 3: Design Flow of  Facial  Emotion Recognition 
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4.1   Lightweight CNN Architecture 
MobileNetV2: Efficient feature extraction using inverted 

residuals and depthwise separable convolutions. 

Custom Layer Reduction: Reduced number of convolutional 

filters and dense layers to minimize resource usage. 

4.2  Quantization Techniques 
Quantization-Aware Training (QAT): Simulates quantization 

during training to maintain accuracy post-quantization. 

Learned Step Size Quantization (LSQ): Automatically adjusts 

quantization ranges for better precision control. 

4.3  Data Preprocessing 
FERPlus-style Enhancement: Enhanced FER2013 dataset with 

cleaner labels and more diverse expression examples. 

Image Normalization & Resizing: 48×48 grayscale images 

normalized and resized to match the model input. 

4.4  Model Conversion & Deployment 
ONNX Export: Open Neural Network Exchange format used 

to ensure cross-platform compatibility. 

ONNX Runtime: For fast inference integration in a 

C++/Python environment. 

High-Level Synthesis (HLS): Converts trained model logic into 

synthesizable FPGA hardware description. 

4.5  Real-Time Interface Pipeline 
OpenCV: Real-time image capture and processing from 

webcam. 

Visual Studio Integration: GUI-based front-end for displaying 

real-time emotion output. 

ONNXRuntime + Webcam Feed: Merged for continuous 

frame-by-frame inference. 

5.  SIMULATION RESULTS 
The proposed FPGA-based facial emotion recognition system 

was verified through extensive simulation using Vivado HLS 

and integrated on a ZYNQ SoC. This section presents both 

quantitative performance metrics and qualitative observations 

regarding the model’s training, synthesis, and expected real-

world performance. 

5.1  Training Performance 

The training process demonstrated a consistent decline in 

training loss across 15 epochs, while validation accuracy 

steadily increased to around 0.72. This suggests the 

MobileNetV2 model, when enhanced with preprocessing 

(CLAHE, bilateral filtering, sharpening), effectively extracts 

salient facial features necessary for emotion classification. 

5.2   Synthesis and Integration 
Vivado HLS was used to convert the quantized CNN model 

into synthesizable RTL. The design was integrated with the 

ZYNQ Processing System through AXI interconnects. The 

synthesized hardware met timing requirements and achieved 

resource utilization well within the constraints of the XC7Z020 

device (e.g., LUT: 35,712; FF: 25,398; BRAM: 96). Compared 

to earlier work, this represents a significant reduction in 

hardware resource consumption, contributing to improved 

energy efficiency. 

Fig 5: Synthesized CNN IP Core 

5.3 Latency and Throughput 
The CNN architecture demonstrated an average inference 

latency of 1.174 milliseconds per image and achieved a 

simulation throughput of 851 frames per second. This far 

exceeds the 30 fps real-time video standard, indicating the 

system’s suitability for live emotion detection in assistive 

applications. 

 

Fig 4: Training Loss vs Validation Accuracy 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.12, June 2025 

26 

Fig 6: RTL schematic of a system 

5.4  Comparative Analysis 

Fig 7: Technology schematic of a system 

Compared to the baseline system using a custom 3-layer CNN 

trained on FER2013, the proposed system shows:A ~3.75% 

increase in accuracy,25% reduction in DSP usage,A 42 MHz 

increase in clock frequency. 

These improvements are attributed to enhanced data 

preprocessing, quantization-aware training, and the efficiency 

of MobileNetV2’s inverted residual blocks. 

5.5   System Behavior Analysis 
The output waveform (Fig. 8) shows the alignment of valid 

input data and predicted outputs with system clock cycles, 

confirming correct behavioral synchronization. The Vivado 

console output (Fig. 9) also confirms softmax confidence 

scores match expected emotion predictions — e.g., the 

prediction of "Contempt" with 13.91% confidence. This 

supports the correctness of the logic and the activation of 

emotion-specific outputs for downstream assistive functions. 
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Fig 8: Behavioral Simulation Waveform

Fig 9: Vivado HLS Console Output for Classification 

Table 1: Comparison with existing work 

Feature / Metric Existing work[4] Implemented work 

Model Architecture Custom CNN (3 Conv + Pool 

+ FC) 

MobileNetV2-based CNN 

(quantized) 

Dataset FER2013 FERPlus-A (Enhanced + 

Balanced) 

Bit-Width 8-bit Integer 8-bit Quantized Weights (via 

ONNX) 

Accuracy (%) ~66.28% 70.03% 

LUT Usage 41,103 35,712 

FF Usage 29,876 25,398 

BRAM (Block RAM) 112 96 

DSP Utilization 78 64 

Operating Frequency 100 MHz 142 MHz 

Latency (cycles) 2.5K cycles 1.9K cycles 

Throughput (fps) ~100 fps >130 fps 
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Target Device Xilinx Zynq-7000 (XC7Z020) Zynq XC7Z020 

Control Interface AXI-Lite AXI-Lite + Input/Output ports 

6. CONCLUSION 
This work presents a complete hardware-software co-design 

pipeline for a real-time facial emotion recognition system tailored 

for physically disabled individuals. By employing a quantized 

MobileNetV2 model trained on an enhanced FERPlus dataset and 

deploying it on a Xilinx ZYNQ FPGA using Vivado HLS, the 

system achieves low latency and high throughput while 

maintaining power efficiency—key requirements for embedded 

assistive devices. 

Unlike traditional GPU-based models, the proposed FPGA-based 

design operates with an inference latency of approximately 1.174 

ms per image and can theoretically handle up to 851 frames per 

second, demonstrating suitability for real-time operation. 

Simulation results validate the design’s performance and 

correctness, even though hardware testing remains pending due 

to development board constraints. 

The integration of image preprocessing techniques such as 

CLAHE and bilateral filtering further enhances the model’s 

ability to recognize subtle facial features, improving emotion 

classification accuracy. Overall, this system sets the foundation 

for the development of portable, intelligent assistive devices 

capable of interpreting human emotions in real-time. 

While this work focused on FERPlus-A, future work may extend 

evaluation to AffectNet or RAF-DB datasets for broader 

validation. Future work will include deploying on actual 

hardware for real world testing, integrating with live camera 

feeds, and expanding to include multimodal inputs such as speech 

or gestures to create a comprehensive assistive communication 

platform. 
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