
International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.1, May 2025 

An Analytical Comparison of Software Project 

Estimation Techniques 

Malav Mehta 
Department of Computer 

Engineering 
Mukesh Patel School of 

Technology Management 
and Engineering, 

Mumbai, India 

Vedaant Melkari 
Department of Computer 

Engineering 
Mukesh Patel School of 

Technology Management 
and Engineering, 

Mumbai, India 

Avani S. Bhuva 

Department of Computer 
Engineering 

Mukesh Patel School of 
Technology Management 

and Engineering, 
Mumbai, India 

Harsh Motiramani 
Department of Computer 

Engineering 
Mukesh Patel School of 

Technology Management 
and Engineering 
Mumbai, India 

ABSTRACT 

Accurate project estimation marks the basis of successful 

software development. It provides a gap for proper resource 

management, and then it installs correct project scheduling and 

budgeting methods. This review paper highlights six widely 

used estimation models for software projects. In detail, three 

methods of effort estimation catered to various types of teams 

and types of projects respecting traditional or Agile setup were 

highlighted. The review mentioned the estimation models; such 

as COCOMO, Source Lines of Code, Wideband Delphi, Expert-

Based Estimation, Planning Poker, and Function Point Analysis. 

It covers the methods, strengths, and weaknesses of each 

estimation technique discussed below as compared against four 

estimation techniques based on selection criteria including 

accuracy, suitability to the size of a project, adaptability, and 

adequacy. This review will help managers of projects, 

developers, and stakeholders in deciding on which most suitable 

strategy is tailored for their requirements through such 

evaluation of these four methods. Lastly, this paper contributes 

to the global understanding of how estimation techniques can be 

strategically chosen to minimize risks and enhance predictability 

in software engineering projects. 

Keywords 

COCOMO, Expert-Based Estimation, Function Point Analysis, 

SLOC, Wideband Delphi, Planning Poker 

1. INTRODUCTION 

Software estimation techniques play a critical role in the 

planning and execution of software development projects. They 

provide a systematic approach to forecasting key project 

parameters such as effort, cost, time, and resources, enabling 

teams to make informed decisions and deliver projects 

successfully. Accurate estimation is crucial for managing 

stakeholder expectations, mitigating risks, and ensuring that 

projects stay on track within defined constraints. Over the years, 

a variety of estimation methods have emerged, each tailored to 

address specific project needs, complexities, and scales. From 

algorithmic models like COCOMO to experience-based 

approaches such as Expert Judgment, and collaborative 

techniques like Planning Poker, these methods vary in their 

accuracy, scalability, required inputs, and suitability for different 

project types. While some techniques emphasize quantitative 

precision, others focus on flexibility and adaptability, reflecting 

the diverse nature of software development environments. 

In this review, we explore the most widely used software 

estimation methods, highlighting their unique characteristics, 

advantages, limitations, and industry use cases. By 

understanding these techniques, project managers and teams can 

choose the most appropriate approach to enhance project 

predictability and achieve better outcomes in today's dynamic 

and competitive software development landscape. 

Accurate project estimation becomes critical in software 

engineering in regard to managing resources, a timeline, and 

overall delivery of the project. Every budgeting aspect to how 

stakeholders are satisfied or otherwise depends on it. Taking into 

account the messy as well as often unpredictable aspects of 

software development, it is no wonder that different techniques 

have been developed just to overcome these challenges-and each 

technique has its different ways and applications. 

This paper is a review and comparison of six leading software 

estimation methods: COCOMO, Expert-Based Estimation, 

Function Point Analysis, Source Lines of Code (SLOC), 

Wideband Delphi, and Planning Poker. Every estimation method 

has a set of strengths that match certain project needs, team 

structures, and development environments from traditional 

waterfall approaches to agile methodologies. These explorations 

aim to provide broad understanding about the pros and cons of 

ideal applications of each technique. The aim of the paper is to 

guide the software practitioners to decide on an appropriate 

estimation practice for their specific project requirement, which 

concerns attributes such as precision, user-friendliness, ease of 

adaptation, and efficiency. The minute comparison done should 

raise the most appropriate practices for the various kinds of 

scenarios of software development projects for better decision-

making and quality project results. 

2. PROBLEM STATEMENT 
Estimating project effort, time, and cost in software development 

presents significant challenges due to the complex and dynamic 

nature of project requirements. Furthermore, the application of 

different methodologies across various projects complicates the 

estimation process. Inaccurate estimations can result in budget 

overruns, missed deadlines, and dissatisfied stakeholders, 

ultimately jeopardizing the project's success. Various estimation 

methods, including COCOMO, Expert-Based Estimation, 

Function Point Analysis, SLOC, Wideband Delphi, and Planning 

Poker, exhibit distinct strengths, weaknesses, and applicability. 

The absence of a universally applicable approach makes it 

difficult for project managers and development teams to select 

the most suitable method for their specific project types. The 

lack of general guidelines regarding the most effective 

estimation techniques across diverse project environments 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.1, May 2025 

2 

exacerbates this issue. To address this gap, this paper provides a 

comprehensive comparative review of the prominent methods 

utilized in software estimation, evaluating their suitability and 

effectiveness in relation to different types of software projects. 

3. ESTIMATION METHODS 
The following outlines the different effort estimation methods 

and their respective details, as derived from the reviewed papers. 

3.1 COCOMO (Constructive Cost Model) 
The methodology presented in the paper, known as the 

COCOMO (Constructive Cost Model) suite, seeks to deliver a 

thorough estimation for the development of software systems as 

well as software-intensive systems of systems (SoS). Created by 

Barry Boehm, the Constructive Cost Model is an algorithmic 

framework that is extensively utilized to assess the cost, effort, 

and time necessary for software development, taking into 

account the project's scale and complexity. By modeling the 

software project through a series of mathematical relationships, 

it links various project characteristics to the required 

development effort, thereby providing a systematic and 

adaptable approach to estimation. 

Process: 

Variants of COCOMO: The model comprises three variants that 

are suited to different needs of projects: 

1. Simple: It does a pre-approximation from the scale 

alone. 

2. Intermediate: Attributes of the projects beyond 

software scale, database size and software reliability. 

These would be used in approximations. 

3. Detailed: It relies on the phase to phase nature of the 

projects in approximating fine-graded elements of the 

software modules. 

Input Factors:   

1. Scale Factors: Scale dependent as it adjusts on the 

scales based on parameters like experience of the 

teams or constraints of technology set on. 

2. Effort Multipliers: Adjustment of efforts. Aspects of a 

product relate to its dependability; its complexity and 

speed that it is achieved. 

Adjustability: 

The capability of COCOMO for the scaling of various types of 

projects and the support of the different requirements of project 

scale make this model apt for a project of any size, small-scale 

systems to large products of software. All the input parameters 

must be precise enough to ensure good estimation accuracy. 

3.2 Expert-based software estimation: 
The paper (Much more than a prediction: Expert-based software 

effort estimation as a behavioral act) discusses some techniques 

of software estimation, mostly focusing on the technical 

prediction approach and the behavioral approach. In contrast to 

algorithmic models like COCOMO, expert-based estimation 

leverages the knowledge and experience of seasoned 

professionals. This qualitative approach allows experts to draw 

on historical data and contextual insights to approximate the 

effort required for a project. 

Process: 
1. To Gather Expert Input: There is derivation of 

estimates which comes from consulting experts or 

those using historical data along with their 

professional insights to have a measure of effort 

needed. 

2. Synthesizing Estimates: An agreement-based approach 

can be used by taking the averages or sums of various 

experts' estimates to get a consensus number. 

Advantages:  
This method takes into account specific project characteristics 

that the metric-based models might miss. 

Limitations: 
This estimation is subjective as it is based on experts' views, and 

the accuracy will depend on the appropriateness and richness of 

experience of the expert. Poor results may occur when adequate 

experts are not available. 

3.3 Function Point Estimation: 
The paper Function Point Estimation Methods A Comparative 

Overview provides a comprehensive overview of various 

methods for estimating the size of software applications using 

Function Points (FP). Function Point Analysis (FPA) offers a 

quantitative method to measure the size of a software project by 

analyzing its functional requirements. It is particularly effective 

for data-intensive applications, providing insights into both the 

inputs and outputs of a system. 

Process: 

1. Identify the functions: Analyze functional requirement by 

identifying external inputs, outputs, user interaction files, 

and external interfaces. 

2. Determining Function Points: The functions are assigned 

complexity weights; the total function points work out to 

approximate the size of the project. 

Usage: 

Function Point Estimation especially applies to data-intensive 

applications and is less applicable when the systems are more 

computation based. It provides a mathematical or systematic 

way of size measuring in projects where the handling of data is 

predominant in the system. 

3.4 Source Lines of Code (SLOC) 
As cited in the paper *Effort Estimation in Agile Software 

Development using Story Points*, Source Lines of Code 

(SLOC) refers to another widely used measure of the size of a 

project, according to the number of lines of code in a system. It 

is a foundational measure in estimating effort and cost for many 

software projects. 

Formulation: 

SLOC is calculated counting either the physical lines of code or 

logical statements. 

Effort Estimation:  

SLOC can be brought into relation with productivity measures 

using historical data to get an effort estimate. 

Drawbacks: 

SLOC depends on the project and also varies due to the code 

style and the programming language that is used. It is apt for 

simple projects but less suitable for those projects requiring 

more than the volume of code. 

3.5 Wideband Delphi: 
Wideband Delphi is an estimation technique, on the basis of the 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.1, May 2025 

3 

Delphi method that uses series of repeated rounds of estimating 

by various experts with the iterative refinement using discussion 

and consensus building among them. 

Process: 

1. Individual Estimation: Each person makes his 

individual estimate in the first round. 

2. Group Discussion: All the individual estimates are 

taken by the group and after that further discussion is 

conducted with each other to clarify differences. 

3. Refining Estimates: Participants update their estimates 

in the light of collective insight; this cycle repeats 

again and again until a general consensus is reached. 

Benefits: 
Wideband Delphi reduces individual biases by offering various 

views, allowing for iterative refinements to achieve more 

reliable estimates through consensus built by experts. 

3.6 Planning Poker 
Planning Poker is an estimation technique based on agreement; 

however, it is specific to be used in Agile. It is the estimating 

together of teams using simple, card-based collaboration 

technique where team members privately pick individually from 

a deck of cards values to best represent the estimated effort. 

Process: 

1. Choose: Each team member privates selects a card 

representing the relative effort best. 

2. Discuss: Only the biggest and smallest estimates are 

those whose members discuss why. 

3. Re-Estimation: After discussion, team members refine 

their choices until they come to a consensus-based 

estimate 

Benefits:  

Planning Poker encourages fair participation and eliminates 

hierarchical bias. This technique's collaborative nature fits well 

with Agile methodologies, where iterative team input improves 

the accuracy of the estimations. 

4. RELATED WORK 
Software effort estimation is a critical area in software 

engineering, with various methodologies proposed to improve 

accuracy and effectiveness. Matsubara, Steinmacher, Gadelha, 

and Conte (2023), in their paper "Much More Than a Prediction: 

Expert-Based Software Effort Estimation as a Behavioural Act," 

focus on expert-based software effort estimation, emphasizing 

the behavioural aspects of estimation and addressing biases in 

the process. Their work integrates qualitative methods, such as 

thematic analysis, and discusses collaborative estimation 

techniques like Planning Poker and the Wideband Delphi 

method. The study highlights the role of customer expectations 

and expert judgment in influencing software development 

efforts. 

Coelho and Basu (2012), in their research paper "Effort 

Estimation in Agile Software Development Using Story Points," 

explore effort estimation in the context of Agile methodologies, 

focusing on the use of story points. Their research addresses the 

challenges and limitations of estimating the size and effort 

required for software development in Agile environments. The 

study emphasizes the importance of precise and reliable 

estimation techniques to ensure the success of Agile projects. 

Meli and Santillo (1999), in their paper "Function Point 

Estimation Methods: A Comparative Overview," provide a 

comparative overview of function point estimation methods. 

Their research evaluates various approaches for estimating the 

size of software applications, stressing the importance of 

selecting estimation techniques that align with the specific 

context and objectives of a project. The study offers a detailed 

classification of methods based on their characteristics and 

applications. 

Boehm and Valerdi (2005), in their work titled "COCOMO 

Suite Methodology and Evolution," investigate the evolution of 

the COCOMO suite, a widely recognized model for software 

effort estimation. Their research discusses the methodologies, 

scope, and refinements of the COCOMO suite to improve 

decision-making in software-intensive system development. The 

study also addresses overlapping activities, missing tasks, and 

collaborations with industry affiliates to enhance the accuracy of 

the model. Gandomani, Faraji, and Radnejad (2019), in their 

paper "Planning Poker in Cost Estimation in Agile Methods," 

analyze Planning Poker, an Agile estimation method that 

involves collaboration between developers and business 

representatives. This technique uses specialized cards to evaluate 

user stories based on complexity and risk, fostering consensus 

within teams. However, the study notes a potential limitation in 

the method’s reliance on team members' memory and 

experience. Munialo and Muketha (2016), in their paper "A 

Review of Agile Software Estimation Methods," provide a 

comprehensive review of both traditional and Agile effort 

estimation methods. Their work examines various techniques, 

including Planning Poker, Wideband Delphi, and COCOMO, as 

well as traditional methods like top-down, bottom-up, and 

analogy-based estimation. The study acknowledges challenges 

such as scope, complexity, and uncertainty in software project 

management, offering valuable insights to improve estimation 

practices. 

These studies collectively underscore the variety and 

progression of software estimation techniques, establishing a 

basis for enhancing project planning and management across 

various software development methodologies. The table below 

summarizes the research conducted from sources [1] to [6]. 

 

Table:1 Detailed comparison analysis of different estimation  approaches

Estimation 

Method 
Approach 

Best 

Suited 

For 

Required 

Inputs 
Accuracy 

Scalabilit

y 
Advantages Limitations 

Industry Use 

Cases 

COCOMO 

Algorithmic 

model using 

regression-based 

equations; 

different models 

Medium 

to large-

scale 

projects 

Project size, 

scale factors, 

effort 

multipliers, 

historical 

Moderate to 

High; depends 

on accurate 

calibration 

High 

Provides 

structured, 

quantitative 

estimates; 

flexible for 

Dependent on 

the accuracy of 

scale factors 

and multipliers; 

requires 

Government 

and defense 

projects, large 

enterprise 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.1, May 2025 

4 

(Basic, 

Intermediate, 

Detailed) for 

increasing 

complexity 

project data adjusting based 

on project 

scale factors 

domain 

knowledge for 

accurate tuning 

software 

Expert-

Judgment 

Experience-

based estimation 
Small Expert 

Varies; can be 

subjective 
Low 

Flexible, 

subjective 

Subjective; 

requires 

experienced 

experts 

Consultancy 

Function 

Point 

Estimation 

Quantifies 

software size 

based on 

functional 

requirements 

like inputs, 

outputs, and 

interactions 

Data-

intensive 

projects 

with clear 

functional 

requireme

nts 

Defined 

functional 

requirements, 

complexity 

weight 

factors (like 

user 

interactions) 

Moderate; 

accurate if 

functional 

requirements 

are clear and 

detailed 

Moderate 

Useful for 

data-centric 

applications, 

irrespective of 

programming 

language; good 

for modular 

development 

Time-

consuming if 

functional 

requirements 

are complex or 

unclear; less 

suited for 

algorithm-

heavy projects 

ERP systems, 

data processing 

applications, 

banking 

systems 

Source Lines 

of Code 

(SLOC) 

Counts lines of 

code 

(physical/logical

) to estimate 

effort; often 

combined with 

historical 

productivity 

rates 

Code-

centric 

projects 

where 

size can 

be 

correlated 

with 

effort 

Code 

structure, 

codebase 

history, 

productivity 

metrics from 

past projects 

Low to 

Moderate, 

straightforward 

but limited by 

coding style 

variations 

Low 

Simple, direct 

measurement 

of code 

volume; often 

used in 

maintenance 

projects with 

existing 

codebases 

Ignores 

complexity and 

design; highly 

variable across 

languages and 

coding styles 

Legacy system 

upgrades, 

maintenance 

projects 

Wideband 

Delphi 

Iterative, 

consensus-

driven process 

among experts to 

refine and 

converge on 

estimates 

Complex 

projects 

needing 

diverse 

input 

Expert 

judgment, 

initial 

individual 

estimates, 

consensus-

building 

process 

High; reduces 

individual bias, 

results tend to 

stabilize across 

iterations 

Moderate 

Promotes 

balanced 

estimates by 

reducing 

biases; 

accommodates 

input from 

multiple 

experts 

Time-intensive, 

requires 

availability of 

knowledgeable 

experts, who 

may have 

scheduling 

conflicts 

Aerospace, 

research-driven 

projects, cross-

functional 

teams 

Planning 

Poker 

Agile-based, 

collaborative 

estimation using 

relative sizing 

via team-based 

discussions 

Agile 

projects, 

iterative 

developm

ent with 

team 

consensus 

User stories, 

team 

knowledge, 

relative sizing 

based on 

Fibonacci 

sequence 

Moderate, often 

sufficient for 

iterative sprints, 

though less 

precise for large 

projects 

Low 

Encourages 

active team 

involvement, 

reduces 

hierarchy bias, 

fast for Agile 

sprints 

Limited to 

relative 

estimates, 

precision 

decreases for 

larger or highly 

complex tasks 

Software 

startups, 

product 

development, 

Scrum projects 

 

The above table provides a detailed comparison of various 

software project estimation approaches, highlighting their 

unique features, best-suited applications, required inputs, 

accuracy, scalability, advantages, limitations, and industry use 

cases. COCOMO, an algorithmic model, is ideal for medium to 

large-scale projects and offers structured, quantitative estimates, 

though its accuracy depends heavily on precise calibration of 

scale factors. Expert Judgment, suited for small projects, relies 

on experienced professionals, offering flexibility but 

subjectivity. Function Point Estimation quantifies software size 

based on functional requirements, making it effective for data-

intensive projects, though it may struggle with complex or 

unclear requirements. Source Lines of Code (SLOC) is a 

straightforward approach for code-centric projects but is limited 

by variations in coding styles and ignores complexity. Wideband 

Delphi employs an iterative, consensus-driven process for 

complex projects, reducing bias but requiring significant time 

and expert availability. Lastly, Planning Poker, widely used in 

Agile projects, fosters team collaboration and quick estimates 

for iterative development but lacks precision for larger or highly 

complex tasks. Each method serves specific industry needs, from 

government and defense to Agile startups, making their selection 

context-dependent. 

Presented here are several charts that illustrate specific details 

concerning the publications referenced in this paper. These 

charts depict the distribution of various estimation methods 

utilized across the papers, the methodologies addressed within 

them, and the timelines associated with these publications. 6.1 

Estimation methods vs. Number of papers 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.1, May 2025 

5 

 

Figure.1 No of publications for the software estimation techniques [1]-[6] 

The graph shows the distribution of research papers focusing on 

various software estimation methods. The methods include 

Expert-based estimation, Planning Poker, Wideband Delphi, 

Story Points, Function Point, and COCOMO. Expert-based 

estimation, Planning Poker, and COCOMO have the highest 

number of papers, each with approximately 2 papers focusing on 

them, indicating significant interest and study in these areas. 

Wideband Delphi and Story Points have moderate attention, 

with slightly fewer papers devoted to them. Function Point has 

the least number of papers, suggesting relatively lower focus in 

comparison to the other methods. This distribution highlights 

that while some methods like COCOMO and Planning Poker are 

widely studied, others like Function Point may require more 

exploration to understand their applicability and effectiveness in 

software estimation. 

The below pie chart illustrates the proportion of various software 

estimation methodologies covered across research papers. The 

methodologies include COCOMO, Wideband Delphi, Planning 

Poker, Function Point, and Story Points. COCOMO, Wideband 

Delphi, and Planning Poker each account for 25% of the 

methodologies covered, indicating equal and significant 

representation in the research papers. Function Point and Story 

Points each make up 12.5%, reflecting comparatively less 

attention in the reviewed literature. This distribution suggests 

that methodologies like COCOMO, Wideband Delphi, and 

Planning Poker are more prominently studied, while Function 

Point and Story Points are less frequently explored in the context 

of software estimation research. 

 
Figure.2 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.1, May 2025 

6 

 
Figure.2 

 

Some overall theory  

5. CONCLUSION 
Accurate project estimation is increasingly vital for the success 

of contemporary software development initiatives. As software 

systems grow in complexity and the demand for timely and cost-

effective delivery escalates, the necessity for dependable 

estimation techniques has reached unprecedented levels. This 

paper examines six of the most prevalent estimation methods: 

COCOMO, Wideband Delphi, Planning Poker, Function Point, 

Story Points, and Expert-based estimation. Each method 

possesses distinct advantages and disadvantages, rendering them 

more appropriate for particular project types and requirements. 

For instance, algorithmic models such as COCOMO provide 

structured, quantitative estimates, whereas experience-based 

methods like Expert Judgment offer flexibility and adaptability, 

particularly for smaller projects. Collaborative approaches, 

including Wideband Delphi and Planning Poker, are especially 

effective in fostering team consensus and minimizing bias. 

Although no single estimation method is universally applicable 

to all project scenarios, a thoughtful selection tailored to the 

specific project context, complexity, and team dynamics can 

greatly improve predictability, mitigate risks, and facilitate 

better resource management. The integration of traditional 

methodologies with emerging trends, such as AI-driven 

estimation tools and hybrid models, suggests that the future of 

project estimation will be increasingly efficient and precise. 

These innovations are expected to empower software teams to 

make well-informed decisions, adapt to changing project 

conditions, and achieve high-quality results that align with 

stakeholder expectations. Ultimately, proficient project 

estimation is crucial for successful software development, 

ensuring that projects are completed on schedule, within budget, 

and with optimal resource allocation. 

6. FUTURE WORK 

1. Integration of AI and ML 
The integration of Artificial Intelligence (AI) and Machine 

Learning (ML) into software estimation practices represents a 

transformative step forward. AI/ML models have the ability to 

analyze historical project data, learn from past trends, and 

predict effort, cost, and resource requirements with greater 

precision. By leveraging techniques like natural language 

processing, deep learning, and predictive analytics, these models 

can automatically adjust to project-specific parameters, making 

the estimation process more adaptive. For example, AI systems 

can analyze patterns in user stories, code complexity, and 

development team performance to produce real-time and highly 

accurate effort estimations. Additionally, AI-based tools can 

provide early warnings of potential deviations or risks, enabling 

proactive intervention and better project management. 

2. Hybrid Estimation Techniques 
Hybrid estimation techniques combine the strengths of multiple 

methodologies to deliver a more comprehensive and accurate 

approach to project estimation. For instance, algorithmic 

methods like COCOMO can be paired with experience-based 

approaches such as Expert Judgment to provide both quantitative 

and qualitative insights. Similarly, collaborative techniques like 

Planning Poker can be integrated with data-driven models like 

Function Point Analysis to enhance accuracy in Agile 

environments. Hybrid approaches allow flexibility and 

adaptability, catering to the unique needs of projects that vary in 

scale, complexity, and domain. By combining methodologies, 

organizations can leverage the best of each approach to address 

the limitations of any single technique, resulting in more reliable 

and well-rounded estimates. 

3. Real-Time Metrics 
The use of real-time metrics in software estimation is a modern 

innovation that enables dynamic and continuous updates to 

project estimates throughout the development lifecycle. By 

incorporating live data such as team velocity, code churn, defect 

rates, and sprint progress, real-time estimation tools can adapt to 

evolving project conditions. This approach ensures that 

estimates remain accurate and relevant, even as requirements or 

timelines shift. Real-time metrics foster transparency and 

accountability within teams, as they provide immediate insights 

into the project's status and potential challenges. This dynamic 

updating process not only improves decision-making but also 

allows for more efficient resource reallocation and risk 

mitigation as projects progress. 

4. Industry-Specific Frameworks 
Designing customized estimation frameworks tailored to specific 

industries can address unique challenges and requirements that 

traditional methods might overlook. For example, in the 

healthcare sector, estimation techniques need to consider 

stringent regulatory requirements, data privacy concerns, and 

complex system integrations. In contrast, financial technology 

projects may require a focus on high-frequency data processing, 

compliance standards, and security protocols. Industry-specific 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.1, May 2025 

7 

frameworks can incorporate these nuances, enabling more 

accurate and relevant estimations. By aligning estimation 

methods with industry-specific needs, organizations can ensure 

greater predictability, improved resource management, and 

adherence to sector-specific standards. 

5. Scalable Agile Tools 
In Agile methodologies, tools like Planning Poker have proven 

effective for team collaboration and relative sizing of user 

stories. However, there is a growing need to scale these tools to 

accommodate larger, more complex Agile projects. 

Enhancements to such tools can include incorporating advanced 

visualization, real-time voting across distributed teams, and AI-

driven recommendations for story point assignments. Scalable 

Agile tools can also support broader applications, such as 

aligning multiple Scrum teams in a Scaled Agile Framework 

(SAFe) or integrating cross-functional inputs in enterprise-level 

Agile projects. By improving and expanding the capabilities of 

Agile estimation tools, teams can maintain the flexibility and 

adaptability of Agile practices while addressing the challenges 

of scaling in larger organizations. 

This elaboration highlights how these advancements can 

revolutionize estimation practices, making them more accurate, 

efficient, and adaptable to modern development challenges. 

7. REFERENCES 
[1] Matsubara, Patrícia GF, et al. "Much more than a 

prediction: Expert-based software effort estimation as a 

behavioral act." Empirical Software Engineering 28.4 

(2023): 98.Johnson, R., &amp; Lee, M. (2023). Prediction-

Based Cost Estimation Technique in Agile Development. 

International Journal of Agile Systems, 12(2), 85-102. 

doi:10.1108/IJAS.2023.0123. 

[2] Coelho, Evita, and Anirban Basu. "Effort estimation in 

agile software development using story 

points." International Journal of Applied Information 

Systems (IJAIS) 3.7 (2012).Wilson, G., &amp; Patel, S. 

(2023). Advancing Cost Estimation in IT Software Projects. 

Journal of IT Project Management, 18(4), 212-229. 

doi:10.1145/ITPM.2023.9876. 

[3] Meli, Roberto, and Luca Santillo. "Function point 

estimation methods: A comparative overview." FESMA. 

Vol. 99. Citeseer, 1999. 

[4] Boehm, Barry, et al. "COCOMO suite methodology and 

evolution." CrossTalk 18.4 (2005): 20-25. 

[5] Gandomani, Taghi Javdani, Hamidreza Faraji, and Mahsa 

Radnejad. "Planning Poker in cost estimation in Agile 

methods: Averaging vs. Consensus." 2019 5th Conference 

on Knowledge Based Engineering and Innovation (KBEI). 

IEEE, 2019. 

[6] Munialo, Samson Wanjala, and Geoffrey Muchiri Muketha. 

"A review ofagile software effort estimation methods." 

(2016). 

 

IJCATM : www.ijcaonline.org 


