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ABSTRACT 

Breast cancer continues to be one of the most common 

cancers that affect women worldwide. Improving patient 

outcomes requires an early and precise diagnosis. The 

performance of many Convolutional Neural Network (CNN) 

designs for breast cancer image categorization is compared 

experimentally in this publication. We tested a number of 

cutting-edge CNN models, such as VGG16, ResNet50, 

DenseNet121, EfficientNet, and MobileNet, using a number 

of publically accessible datasets related to mammography and 

breast cancer histology. According to our tests, EfficientNet-

B3 demonstrated the best trade-off between computational 

efficiency and performance, while DenseNet121 obtained the 

highest overall accuracy (94.8%) and F1-score (0.937). 

Additionally, we suggest a brand-new ensemble method that 

leverages the advantages of several CNN designs, improving 

classification accuracy by 2.3% over the top-performing 

single model. Our results offer important new information for 

the practical application of deep learning algorithms for the 

diagnosis of breast cancer.   
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1. INTRODUCTION 
Breast cancer is the most common cancer among women 

worldwide, with over 2.3 million new cases reported each 

year [1]. Early detection and accurate diagnosis are essential 

for lowering death rates and improving treatment results. 

Conventional diagnostic techniques mostly depend on clinical 

examination and the subjective and time-consuming 

interpretation of medical pictures by radiologists and 

pathologists.  

In recent years, Convolutional Neural Networks (CNNs), a 

subset of deep learning techniques, have shown remarkable 

improvements in medical image processing [2]. From raw 

picture data, CNNs can automatically develop hierarchical 

feature representations, which could help medical 

practitioners diagnose patients more quickly and accurately. 

Although a number of CNN designs have been put out for the 

classification of breast cancer, there is currently little 

thorough evaluation of how well they perform on standardized 

datasets. 

This study aims to fill this gap by conducting a systematic 

evaluation of various CNN architectures for breast cancer 

image classification. We investigate both well-established 

models such as VGG16 [3] and ResNet50 [4], as well as more 

recent architectures including DenseNet121 [5], EfficientNet 

[6], and MobileNet [7]. Our analysis spans multiple publicly 

available datasets, encompassing both histopathology images 

and mammograms, to provide a robust assessment of model 

performance across different imaging modalities. 

This paper's primary contributions are: 

1. A comprehensive performance evaluation of five 

state-of-the-art CNN architectures on breast cancer 

image classification. 

2. An analysis of the computational efficiency and 

model complexity trade-offs for clinical 

implementation. 

3. A novel ensemble approach that combines multiple 

CNN models to improve classification accuracy. 

4. Insights into feature visualization and model 

interpretability to enhance clinical trust and 

adoption. 

2. RELATED WORK 

2.1 Classification of Breast Cancer Using 

Conventional Machine Learning 
Breast cancer classification was frequently done using 

conventional machine learning techniques prior to the broad 

acceptance of deep learning. Usually, these techniques 

entailed manually extracting features, which were then 

followed by classification algorithms like k-Nearest 

Neighbors, Random Forests, and Support Vector Machines 

(SVM) [8]. Even though these methods produced respectable 

results, their capacity to identify intricate patterns in high-

dimensional picture data was constrained, and they mostly 

depended on domain knowledge for feature engineering. 

2.2 Deep Learning Approaches 
The introduction of deep learning has changed medical image 

analysis. Numerous research have investigated the use of 

CNNs in the categorization of breast cancer. Araújo et al. [9] 

87.9% accuracy was attained when a CNN was used to 

classify photos of breast cancer histology. Wang et al. [10] 

utilized a modified AlexNet architecture for mammogram 

classification, reporting an area under the curve (AUC) of 

0.86. 

Transfer learning has become a popular approach in medical 

imaging due to limited dataset sizes. Huynh et al. [11] 

achieved an accuracy of 85.7% in the identification of breast 

cancer in mammograms using transfer learning with a pre-

trained ResNet50 model. Similarly, Choudhary and Hazra 

[12] optimized a previously trained VGG16 model using 

histopathological pictures, achieving 90.1% accuracy. 

2.3 Ensemble Methods 
Several models are combined in ensemble methods to enhance 

prediction performance. Khan et al. [13] proposed an 
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ensemble of three CNN models for breast cancer 

classification, reporting a 3.1% improvement over the best 

individual model. However, limited research exists on the 

systematic combination of diverse CNN architectures for 

breast cancer image analysis, which our study addresses. 

3. MATERIALS AND METHOD 

3.1 Dataset 
Our study utilized three publicly available breast cancer image 

datasets: 

1. Breast Cancer Histopathology (BreakHis) Dataset [14]: 

9,109 microscopic pictures of breast tumor tissue taken from 

82 patients with various magnification factors (40×, 100×, 

200×, and 400×) make up this dataset. The pictures fall into 

two primary categories: benign and malignant. 

2. CBIS-DDSM (Curated Breast Imaging Subset of DDSM) 

[15]: This dataset contains approximately 10,000 

mammography images from 6,775 studies. Each study 

includes two images of each breast, along with annotations 

indicating the presence of masses, calcifications, or both, as 

well as their malignancy status. 

3. BACH (Breast Cancer Histology) Dataset [16]: Four kinds 

of high-resolution microscopy images—normal, benign, in 

situ cancer, and aggressive carcinoma—make up this 

collection. 

Training (70%), validation (15%), and testing (15%) sets were 

created from the datasets, ensuring that images from the same 

patient were not distributed across different sets to avoid data 

leakage. 

3.2 Data Preprocessing and Augmentation 
Every image was scaled to 224 × 224 pixels in order to ensure 

uniformity across various CNN architectures. For 

histopathology images, color normalization was applied using 

the method proposed by Macenko et al. [17] to reduce the 

variability in staining procedures. For mammograms, 

histogram equalization was performed to enhance contrast. 

These data augmentation methods were used to rectify class 

imbalance and enhance model generalization: Random 

horizontal and vertical flips, Random rotations (±15 degrees), 

Random zoom (±10%), Random brightness and contrast 

adjustments (±10%).. 

3.3 CNN Architecture 
We evaluated the following CNN architectures: 

1. VGG16: A 16-layer CNN architecture known for its 

simplicity and effectiveness, using small 3×3 convolutional 

filters stacked together. 

2.ResNet50: Skip connections are used in a 50-layer deep 

residual network to solve the vanishing gradient issue in deep 

networks. 

3.DenseNet121: A 121-layer densely connected convolutional 

network where each layer receives feature maps from all 

preceding layers, promoting feature reuse and reducing the 

number of parameters. 

4. EfficientNet-B3: In order to obtain high accuracy with 

fewer parameters, a CNN design that balances network depth, 

width, and resolution through neural architecture search 

optimization 

5. MobileNetV2: A lightweight CNN designed for mobile and 

edge devices, using depthwise separable convolutions to 

reduce computational cost. 

The TensorFlow/Keras framework was used to implement 

each model, and the ImageNet dataset was used to pre-train 

the weights. The final classification layer was adjusted based 

on the distribution of classes in the dataset. 

3.4 Transfer Learning and Fine-tuning 
We employed a two-stage transfer learning approach: 

1. Feature Extraction: Initially, the pre-trained convolutional 

base was frozen, and only the newly added fully connected 

layers were trained for 10 epochs. 

2.Fine-tuning: Subsequently, the last few convolutional blocks 

were unfrozen, and the entire network was trained with a 

smaller learning rate (0.0001) for an additional 50 epochs. 

3.5 Ensemble Method 
We proposed a weighted ensemble approach combining the 

predictions of the top three performing models (DenseNet121, 

EfficientNet-B3, and ResNet50). Using a grid search 

technique, the weights for each model were established 

according to how well it performed on the validation set. The 

final prediction was calculated as: 

P(y|x) = ∑(wi * Pi(y|x)) 

where Pi(y|x) is the prediction probability of model i for class 

y given input x, and wi is the weight assigned to model i, with 

∑wi = 1. 

3.6 Evaluation Metrics 
We used the following metrics to assess each model's 

performance: Accuracy,Precision, Recall, and F1-score, Area 

Under the Receiver Operating Characteristic Curve (AUC-

ROC), Computational efficiency (inference time and number 

of parameters). 

3.7 Implementation Details 
An NVIDIA Tesla V100 GPU with 32GB of RAM was used 

for all of the trials. After the validation loss plateaued for five 

consecutive epochs, the models' initial learning rate of 0.001 

was lowered by a factor of 0.1 using the Adam optimizer. Ten 

epochs of patience were used for early stopping. For each 

experiment, a batch size of 32 was used. 

4. RESULT 

4.1 Comparing the Performance of 

Different CNN Models 
Table1 displays the five CNN architectures' performance 

metrics on the three datasets' test sets. 
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Table 1: Performance comparison of CNN architectures on test sets 

DenseNet121 achieved the highest overall performance with 

an average accuracy of 92.5%, followed by EfficientNet-B3 

(91.6%) and ResNet50 (89.7%). MobileNetV2, despite having 

the lowest accuracy (85.9%), demonstrated the fastest 

inference time, making it suitable for resource-constrained 

environments.The proposed ensemble method outperformed 

all individual models, achieving an average accuracy of 

94.2% across the three datasets, representing a 1.7% 

improvement over the best individual model (DenseNet121). 

4.2 Computational Efficiency Analysis 
Table 2 gives a comparison of the various models' computing efficiency. 

Table 2: Computational efficiency comparison 
 

 

 

 

 

EfficientNet-B3 showed an excellent balance between 

performance and computational efficiency, requiring 

significantly fewer floating-point operations (FLOPs) 

compared to VGG16 while achieving better accuracy. 

MobileNetV2, with only 3.5 million parameters, demonstrated 

the highest efficiency, making it suitable for deployment on 

mobile and edge devices despite its lower accuracy. 

4.3 Effect of Data Augmentation 
To assess the effect of data augmentation on model 

performance, we carried out ablation investigations. Table 3 

displays DenseNet121's accuracy using various augmentation 

methods on the BreakHis dataset. 

Table 3: Effect of data augmentation techniques on DenseNet121 performance (BreakHis dataset) 
Augmentation Technique Accuracy Improvement 

No Augmentation 89.5% - 

Horizontal/Vertical Flips 91.2% +1.7% 

Rotation 90.8% +1.3% 

Zoom 90.3% +0.8% 

Brightness/Contrast 91.5% +2.0% 

All Combined 94.8% +5.3% 

 

The results indicate that combining all augmentation 

techniques led to a substantial improvement in accuracy 

(+5.3%), emphasizing the value of data augmentation in 

medical picture classification jobs, where there is frequently a 

lack of labeled data. 

4.4 Feature Visualization and 

Interpretability 
To enhance model interpretability, Gradient-weighted Class 

Activation Mapping (Grad-CAM) was utilized [18] to show 

the regions of the input images that most affected the 

predictions made by the model. 

The visualizations revealed that DenseNet121 and 

EfficientNet-B3 consistently focused on clinically relevant 

regions of the images, such as cellular structures in 

histopathology images and suspicious masses in 

mammograms. In contrast, VGG16 occasionally attended to 

irrelevant background regions, which may explain its lower 

performance. 

5. DISCUSSION 
Our comprehensive evaluation of different CNN architectures 

for breast cancer image classification yields several important 

insights. DenseNet121 consistently outperformed other 

models across all datasets, suggesting that its dense 

Model BreakHis CBIS-DDSM BACH Average 

Acc. F1 AUC Acc. F1 AUC Acc. F1 AUC Acc. F1 AUC 
VGG16 89.2% 0.88 0.92 85.7% 0.84 0.90 86.5% 0.86 0.91 87.1% 0.86 0.91 

ResNet

50 

91.5% 0.91 0.94 87.3% 0.86 0.92 90.2% 0.89 0.94 89.7% 0.89 0.37 

DenseN

et121 

94.8% 0.94 0.97 89.1% 0.88 0.93 93.5% 0.93 0.96 92.5% 0.92 0.95 

Efficien

tNet-B3 

93.7% 0.93 0.96 88.4% 0.88 0.92 92.8% 0.92 0.96 91.6% 0.91 0.95 

Mobile

NetV2 

87.9% 0.87 0.91 84.6% 0.83 0.89 85.3% 0.84 0.90 85.9% 0.85 0.90 

Ensemb

le 

96.3% 0.96 0.98 91.2% 0.90 0.95 95.1% 0.94 0.97 94.2% 0.94 0.97 

Model Parameters (M) Model Size 

(MB) 

Inference Time 

(ms) 

FLOPs (G) 

VGG16 138.4 528 22.5 15.5 

ResNet50 25.6 98 18.7 4.1 

DenseNet121 8.0 31 27.3 2.8 

EfficientNet-B3 12.2 47 23.1 1.8 

MobileNetV2 3.5 14 10.2 0.3 

Ensemble N/A N/A 68.9 N/A 
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connectivity pattern is particularly effective for capturing the 

complex patterns in breast cancer images. The dense 

connections allow for feature reuse and implicit deep 

supervision, which may contribute to its superior 

performance. 

EfficientNet-B3 is a promising option for clinical deployment 

when computational resources may be scarce because it 

showed a great balance between accuracy and computational 

efficiency. For medical image processing tasks, its compound 

scaling strategy, which strikes the ideal balance between 

network depth, width, and resolution, seems to work well. 

The proposed ensemble method further improved 

classification performance, achieving a 1.7% higher accuracy 

compared to the best individual model. This improvement, 

while seemingly modest, could translate to a significant 

reduction in false positives and false negatives in a clinical 

setting, potentially improving patient outcomes. 

The ablation studies on data augmentation highlight the 

importance of addressing data limitations in medical imaging. 

The substantial improvement achieved by combining multiple 

augmentation techniques underscores the value of data 

augmentation in enhancing model generalization, particularly 

when dealing with limited labeled data. 

Model interpretability remains a crucial aspect for the clinical 

adoption of deep learning systems. Our Grad-CAM 

visualizations demonstrated that DenseNet121 and 

EfficientNet-B3 focus on clinically relevant regions, which 

can help build trust among healthcare professionals. However, 

further research is needed to develop more sophisticated 

interpretability methods that align with clinical decision-

making processes. 

6. LIMITATIONS AND FUTURE WORK 
Not with standing the encouraging outcomes, our study 

includes a number of drawbacks. First, even though the 

databases are publically accessible, they could not accurately 

reflect the variety of situations that are encountered in clinical 

practice. These models should be validated in future research 

using bigger and more varied datasets from several clinical 

facilities. 

Second, we did not include other clinical data, such as patient 

demographics, medical history, and genetic information, in 

our analysis; instead, we only looked at image-based 

classification. Integrating multiple data modalities through 

multimodal learning approaches could potentially improve 

diagnostic accuracy. 

Third, while we employed Grad-CAM for model 

interpretability, more advanced explainability methods could 

be explored to provide clinicians with more detailed insights 

into the model's decision-making process. 

Future research directions include: 

1. Developing lightweight architectures specifically 

optimized for breast cancer image analysis 

2. Investigating methods for self-supervised and 

unsupervised learning to take advantage of 

unlabeled medical pictures. 

3. Investigating the integration of clinical knowledge 

into the model architecture through attention 

mechanisms or graph neural networks 

Conducting prospective clinical validation studies to assess 

the real-world impact of these models on patient care. 

7. CONCLUSION 
This paper presented a comprehensive experimental study 

comparing the performance of various CNN architectures for 

breast cancer image classification. Our results demonstrate 

that DenseNet121 achieved the highest overall accuracy, 

while EfficientNet-B3 offered the best balance between 

performance and computational efficiency. The proposed 

ensemble approach further improved classification accuracy, 

highlighting the potential of combining multiple models for 

enhanced diagnostic performance. 

The study's findings provide useful information for 

developing and utilizing deep learning systems for breast 

cancer diagnosis. While these models show promising results, 

further validation in clinical settings and continued 

improvement in model interpretability are essential for their 

successful integration into clinical practice. With ongoing 

advancements in deep learning and increasing availability of 

medical imaging data, CNN-based approaches have the 

potential to become valuable tools in assisting healthcare 

professionals in breast cancer diagnosis, ultimately improving 

patient outcomes. 
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