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ABSTRACT 

This study presenting the properties of numbers that we get by 

multiplying Fibonacci and Lucas numbers. Namely we define 

recurrence relation 𝒯𝔫+2 = 3𝒯𝔫+1 − 𝒯𝔫,  𝑛 ≥ 0 𝑤𝑖𝑡ℎ 𝒯0 =
0,  𝒯1 = 1 . We investigate some basic properties of product of 

Fibonacci and Lucas numbers such as the Binet formula, 

generating function, generalized identity.  We shall use the 

Binet’s formula and generating function for derivation. Also, 

we present its two cross two matrix representation. 

Keywords 
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1. INTRODUCTION 
The well-known Fibonacci sequence [11], with 𝐹0 = 0, 𝐹1 = 1 

and 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ≥ 2, have many interesting 

interpretations, applications and generalizations. Lucas 

sequence [11], with 𝐿0 = 2, 𝐿1 = 1 and 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 for 

𝑛 ≥ 2. Most of the authors introduced Fibonacci pattern-based 

sequences in many ways which are known as generalized 

Fibonacci sequences ([9]; [8]; [1]), Fibonacci-Like sequences 

([15]; [7]; [19]), k-Fibonacci sequences [3] and k-Fibonacci-

Like sequences ([14]; [18]). 

([16]; [17]) presents a family of tridiagonal matrices given by:  
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Where 𝑀(𝑛) is 𝑛 × 𝑛. It is easy to show by induction that the 

determinants |𝑀(𝑘)| are the Fibonacci numbers 𝐹2𝑘+2. [2], 

extend these results to construct families of tridiagonal matrices 

whose determinants generate any arbitrary linear subsequence 

𝐹𝛼𝑘+𝛽  𝑜𝑟 𝐿𝛼𝑘+𝛽 , 𝑘 = 1, 2, . .. of the Fibonacci or Lucas 

numbers. 

Lu and Jiang [12], present product of Fibonacci and Lucas 

numbers 𝑓𝑛 = (𝐹𝑛 × 𝐿𝑛). Also defined and present some 

determinant and permanent representations of introduce 

product of Fibonacci and Lucas numbers and complex 

factorization formulas for 𝑓𝑛 = (𝐹𝑛 × 𝐿𝑛).  

The recurrence relation for product of Fibonacci and Lucas 

numbers 𝒯𝑛+2 = 3𝒯𝑛+1 − 𝒯𝑛  , 𝑛 ≥ 1 𝑤𝑖𝑡ℎ  𝒯1 = 1, 𝒯2 = 3. 

Wei, Zheng, Jiang and Shon [20] discuss the invertibility of the 

skew circulant and skew left circulant matrices involving the 

product of Fibonacci and Lucas numbers and present the 

determinant and inverse matrices by constructing the 

transformation matrices. The four kinds of norms and bounds 

for the spread of these matrices are given, respectively. More 

specifically, they study the invertibility, determinant, multiple 

norms, lower and upper bounds for the spread of these matrices, 

which are going to have potential to be useful for realistic 

application. This study introduce some properties of product of 

Fibonacci and Lucas numbers. 

2. SEQUENCE OF PRODUCT OF 

FIBONACCI AND LUCAS NUMBERS 
Definition: The product of Fibonacci and Lucas numbers 
{𝒯𝔫}, see [12, 20] are defined by the recurrence relation: For 

𝑛 ≥ 0,   𝓣𝒏+𝟐 = 𝟑𝓣𝒏+𝟏 − 𝓣𝒏  (2.1) 

with the initial conditions 𝓣𝟎 = 𝟎 𝑎𝑛𝑑  𝓣𝟏 = 𝟏 . 

Let 𝜏1 and 𝜏2  be the roots of the following characteristic 

equation,  𝒕𝟐 − 𝟑𝐭 + 𝟏 = 𝟎  (2.2) 

Associated to the recurrence relation (2.1). 

Where 𝝉𝟏 =
𝟑+√𝟓

𝟐
 , 𝝉𝟐 =

𝟑−√𝟓

𝟐
 and 𝝉𝟏𝝉𝟐 = 𝟏. 

The first few numbers are given in the following table: 

Table 1. Product of Fibonacci and Lucas numbers 

0 0      1      2      3      4       5       6       7  … 

𝐹𝑛 0      1      1      2      3       5       8      13 … 

𝐿𝑛 2      1      3      4      7      11     18     29 … 

𝓣𝒏 = (𝑭𝒏 × 𝑳𝒏) 0      1      3      8     21     55    144   377… 

 

3. PROPERTIES OF PRODUCT OF 

FIBONACCI AND LUCAS NUMBERS 

3.1 Binet Formula 
The Binet formula is also very important in Fibonacci and 

Lucas numbers theory. Now we can give the Binet formula for 

the product of Fibonacci and Lucas numbers. 

Theorem 3.1: For  𝒏 ≥ 𝟎, 𝓣𝓷 =
𝛕𝟏

𝒏−𝛕𝟐
𝒏

𝛕𝟏−𝛕𝟐
  (3.1)  

Proof: The theorem can be proved by mathematical induction 

on n. 

Lemma 3.2: For any integer 𝒏 ≥ 𝟎, 

τ1
𝑛+2 + τ1

𝑛 = 3τ1
𝑛+1 and  τ2

𝑛+2 + τ2
𝑛 = 3τ2

𝑛+1 (3.2) 

Proof: Since τ1𝑎𝑛𝑑 τ2 are the roots of the characteristic 

equation (2.2), then 

τ1
2 + 1 = 3τ1 and τ2

2 + 1 = 3τ2   (3.3) 
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now, multiplying both sides of these equations by τ1
𝑛 and τ2

𝑛 

respectively, we obtain the desired result. 

Theorem 3.2: For any integer 𝒏 ≥ 𝟏, 

𝓣(𝓷+𝟏) + 𝓣(𝓷−𝟏) = 𝟑𝓣𝓷    (3.4) 

Proof: By using Eq. (3.1) in the left-hand side (LHS) of Eq. 

(3.4), and considering that τ1
2 + 1 = 3τ1 and τ2

2 + 1 = 3τ2, it 

is obtained 

(𝐿𝐻𝑆) = (
τ1

𝑛+1 − τ2
𝑛+1

τ1 − τ2
) + (

τ1
𝑛−1 − τ2

𝑛−1

τ1 − τ2
) 

=
τ1

𝑛 (τ1 +
1
τ1

) − τ2
𝑛 (τ2 +

1
τ2

)

τ1 − τ2
 

= 3 (
τ1

𝑛 − τ2
𝑛

τ1 − τ2
) 

and, again by Eq. (3.1), this completes the proof. 

Theorem 3.4: For any integer 𝒏 ≥ 𝟏, 

𝓣𝒏
𝟐 + 𝓣𝒏+𝟏

𝟐 =
𝟑(τ1

2𝑛+2+τ2
2𝑛+2)−𝟒

𝟓
   (3.5) 

Proof: By using Binet’s formula (3.1), 

𝓣𝒏
𝟐 + 𝓣𝒏+𝟏

𝟐 = (
τ1

𝑛−τ2
𝑛

τ1−τ2
)

2

+ (
τ1

𝑛+1−τ2
𝑛+1

τ1−τ2
)

2

  

=
(τ1

2𝑛 + τ1
2𝑛+2 + τ2

2𝑛 + τ2
2𝑛+2 − 4)

(τ1 − τ2)2  

=
{τ1

2𝑛(τ1
2 + 1) + τ2

2𝑛(τ2
2 + 1) − 4}

(τ1 − τ2)2  

=
𝟑(τ1

2𝑛+2 + τ2
2𝑛+2) − 𝟒

𝟓
 

This completes the proof. 

Theorem 3.5: (Catalan’s identity)    

𝓣𝓷
𝟐 − 𝓣𝓷+𝓻𝓣𝓷−𝓻

= 𝓣𝒓
𝟐   (3.6) 

Proof: By using Binet’s formula (3.1), 

𝓣𝓷
𝟐 − 𝓣𝓷+𝓻𝓣𝓷−𝓻

 

=
1

(τ1 − τ2)2 {(τ1τ2)𝑛 (
τ1

τ2
)

𝑟

+ (τ1τ2)𝑛 (
τ2

τ1
)

𝑟

− 2(τ1τ2)𝑛} 

=
(τ1τ2)𝑛

(τ1 − τ2)2 {(
τ1

τ2
)

𝑟

+ (
τ2

τ1
)

𝑟

− 2} 

=
(τ1τ2)𝑛

(τ1 − τ2)2
{

τ1
2𝑟 + τ2

2𝑟 − 2(τ1τ2)𝑟

(τ1τ2)𝑟
} 

= (τ1τ2)𝑛−𝑟 (
τ1

𝑟 − τ2
𝑟

τ1 − τ2
)

2

 

= 𝓣𝒓
𝟐 

This completes the proof. 

Theorem 3.6: (Cassini’s identity or Simpson’s identity)  

𝓣𝓷
𝟐 − 𝓣𝓷+𝟏𝓣𝓷−𝟏

= 𝟏   (3.7) 

Proof: Taking r=1 in identity (3.6) and (3.7) the proof is 

completed. 

Theorem 3.7: (d’ocagnes’s Identity) For 𝒎 > 𝒏,     

𝓣𝒎𝓣𝓷+𝟏 − 𝓣𝓶+𝟏𝓣𝓷 = 𝓣𝓶−𝓷  (3.8) 

Proof: By using Eq. (3.1) in left hand side (LHS) of Eq. (3.8), 

and considering that τ1τ2 = 1, it is obtained 

(𝐿𝐻𝑆) = (
τ1

𝑚 − τ2
𝑚

τ1 − τ2
) (

τ1
𝑛+1 − τ2

𝑛+1

τ1 − τ2
)

− (
τ1

𝑚+1 − τ2
𝑚+1

τ1 − τ2
) (

τ1
𝑛 − τ2

𝑛

τ1 − τ2
) 

=
τ1

𝑚τ2
𝑛(τ1 − τ2) + τ2

𝑚τ1
𝑛(τ1 − τ2)

(τ1 − τ2)2  

=
τ1

𝑚τ2
𝑛 − τ2

𝑚τ1
𝑛

(τ1 − τ2)
 

=
τ1

𝑚−𝑛 − τ2
𝑚−𝑛

(τ1 − τ2)
 

and, again by Eq. (3.1), the result is obtained. 

Theorem 3.8: (Limit of the quotient of two consecutive terms) 

For 𝒏 ≥ 𝟐, 𝐥𝐢𝐦
𝒏→∞

(
 𝓣𝒏

 𝓣𝒏−𝟏
) =  𝝉𝟏   (3.9) 

Proof: By Binet’s formula (3.1), we have 

lim
𝑛→∞

(
 𝒯𝑛

 𝒯𝑛−1
) = lim

𝑛→∞
(

 τ1
𝑛 − τ2

𝑛

 τ1
𝑛−1 − τ2

𝑛−1) 

= lim
𝑛→∞

1 − (
τ2
τ1

)
𝑛

1
τ1

− (
τ2
τ1

)
𝑛 1

τ2

 

and considering that lim
𝑛→∞

(
τ2

τ1
)

𝑛
= 0,  𝑠𝑖𝑛𝑐𝑒 |τ2| < τ1, Eq. (3.9) 

is obtained. 

Theorem 3.9: For every integer n,  𝓣−𝒏 = −𝓣𝒏 (3.10) 

Proof: By Binet’s formula (3.1), we have 

𝒯−𝑛 =
τ1

−𝑛 − τ2
−𝑛

τ1 − τ2
 

=

(
1
τ1

𝑛 −
1
τ2

𝑛)

τ1 − τ2
 

=
τ2

𝑛 − τ1
𝑛

τ1 − τ2
 

= −
τ1

𝑛 − τ2
𝑛

τ1 − τ2
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and, again by Eq. (3.1), the result is obtained. 

Theorem 3.10: ∑ 𝓣𝒊
𝒏−𝟏
𝒊=𝟎 = 𝓣𝒏 − 𝓣𝒏−𝟏 − 𝟏 (3.11) 

Proof: The proof is clear by Binet’s formula. 

Theorem 3.11: For 𝒏 ≥ 𝟏,  𝒕𝒏 = 𝒕𝓣𝒏 − 𝓣𝒏−𝟏 (3.12) 

Proof: From the characteristic equation (2.2), we have 

𝑡2 = 3𝑡 − 1 = 𝑡 𝒯2 − 𝒯1   (3.13) 

By induction on n, we get 

 𝑡𝑛+1 = 𝑡𝑛𝑡 = (𝑡𝒯𝑛 − 𝒯𝑛−1)𝑡  

 = 𝑡2𝒯𝑛 − 𝑡 𝒯𝑛−1  

= (3𝑡 − 1) 𝒯𝑛 − 𝑡𝒯𝑛−1  

= (3𝒯𝑛 − 𝒯𝑛−1)𝑡 − 𝒯𝑛    

 = 𝒯𝑛+1𝑡 − 𝒯𝑛   

Therefore, we have,  𝑡𝑛 = 𝑡𝒯𝑛 − 𝒯𝑛−1 

Theorem 3.12: (Generalized identity) For 𝒏 > 𝒎 ≥ 𝒌 ≥ 𝟏, 

 𝓣𝒎𝓣𝒏 − 𝓣𝒎−𝒌𝓣𝒏−𝒌 = 𝓣𝒌𝓣𝒏−𝒎+𝒌  (3.14) 

Proof: By Binet’s formula (3.1), we have 

𝒯𝑚𝒯𝑛 − 𝒯𝑚−𝑘𝒯𝑛−𝑘 = (
τ1

𝑚 − τ2
𝑚

τ1 − τ2
) (

τ1
𝑛 − τ2

𝑛

τ1 − τ2
)

− (
τ1

𝑚−𝑘 − τ2
𝑚−𝑘

τ1 − τ2
) (

τ1
𝑛−𝑘 − τ2

𝑛−𝑘

τ1 − τ2
) 

=
τ1

𝑚τ2
𝑛(τ1

−𝑘τ2
𝑘 − 1) + τ1

𝑛τ2
𝑚(τ1

𝑘τ2
−𝑘 − 1)

(τ1 − τ2)2  

=
(τ1

𝑘 − τ2
𝑘)

(τ1 − τ2)2
(

τ1
𝑛−𝑚

τ1
𝑘

−
τ2

𝑛−𝑚

τ2
𝑘

) 

=
(𝜏1

𝑘 − 𝜏2
𝑘)

(𝜏1 − 𝜏2)
(

τ1
𝑛−𝑚+𝑘 − τ2

𝑛−𝑚+𝑘

𝜏1 − 𝜏2
) 

= 𝒯𝑘𝒯𝑛−𝑚+𝑘 

This completes the proof. 

Corollary 3.12.1: (Catlan’s identity). If m=n in the generalized 

identity (3.14), we obtain, 

𝓣𝒏
𝟐 − 𝓣𝒏−𝒌𝓣𝒏+𝒌 = 𝓣𝒌

𝟐   (3.15) 

Corollary 3.12.2: (Cassini’s identity). If m=n and k=1in the 

generalized identity (3.14), we obtain, 

𝓣𝒏
𝟐 − 𝓣𝒏−𝟏𝓣𝒏+𝟏 = 𝟏   (3.16) 

Corollary 3.12.3: (d’Ocagne’s identity). If 𝑛 = 𝑚, 𝑚 = 𝑛 + 1 

and 𝑘 = 1 in the generalized identity (3.14), we obtain, 

𝓣𝒎𝓣𝒏+𝟏 − 𝓣𝒏𝓣𝒎+𝟏 = 𝓣𝒎−𝒏  (3.17) 

Theorem 3.13: 𝓣𝒎+𝒏𝓣𝒎+𝒕 − 𝓣𝒎𝓣𝒎+𝒏+𝒕 = 𝓣𝒏𝓣𝒕  (3.18)  

Proof: By Binet’s formula (3.1), the proof is clear. 

3.2 Generating Function 
In this section, we present generating function for product of 

Fibonacci and Lucas numbers. 

Theorem 3.14: Let  𝑮𝓣=𝑭×𝑳 be the generating functions of the 

product of Fibonacci and Lucas numbers, then 

 𝑮𝓣=𝑭×𝑳 =
𝒕

𝟏−𝟑𝒕+𝒕𝟐
   (3.19) 

 

Proof: 𝐺𝒯=𝐹×𝐿 = ∑ 𝒯𝑛𝑡𝑛∞
𝑛=0  

= 𝒯0 + 𝒯1𝑡 + 𝒯2𝑡2 + ∑ 𝒯𝑛𝑡𝑛∞
𝑛=3   

= 𝑡 + 3𝑡2 + ∑ (3𝒯𝑛−1 − 𝒯𝑛−2)𝑡𝑛∞
𝑛=3   

= 𝑡 + 3𝑡2 + ∑ 3𝒯𝑛−1𝑡𝑛∞
𝑛=3 − ∑ 3𝒯𝑛−2𝑡𝑛∞

𝑛=3   

= 𝑡 + 3𝑡2 + 𝑡 ∑ 3𝒯𝑛−1𝑡𝑛−1∞
𝑛=3 − 𝑡2 ∑ 3𝒯𝑛−2𝑡𝑛−2∞

𝑛=3   

= 𝑡 + 3𝑡2 + 3𝑡 ∑ 𝒯𝑛𝑡𝑛∞
𝑛=2 − 𝑡2 ∑ 𝒯𝑛𝑡𝑛∞

𝑛=1   

= 𝑡 + 3𝑡2 + 3𝑡[∑ 𝒯𝑛𝑡𝑛 − 𝑡∞
𝑛=1 ] − 𝑡2 ∑ 𝒯𝑛𝑡𝑛∞

𝑛=1   

= 𝑡 + 3𝑡2 + 3𝑡[𝐺𝒯=𝐹×𝐿 − 𝑡] − 𝑡2𝐺𝒯=𝐹×𝐿  

Thus, 𝐺𝒯=𝐹×𝐿 =
𝑡

1−3𝑡+𝑡2
 

This completes the proof.  

 

Theorem 3.15: For 𝓹, 𝓺 ∈ 𝐙, we get  

∑ 𝓣𝒏𝒕−𝒏𝓹+ 𝓺
𝒏=𝟎  =

𝒕

𝒕𝓹+𝓺(𝒕𝟐−𝟑𝒕+𝟏)
(𝒕𝓹+ 𝓺+𝟏 − 𝒕𝓣𝓹+𝓺+𝟏 + 𝓣𝓹+𝓺)   (3.20) 

Proof: By the Binet’s formula,  

∑ 𝒯𝑛𝑡−𝑛𝓅+ 𝓆
𝑛=0 = ∑ (

τ1
𝑛−τ2

𝑛

τ1−τ2
) 𝑡−𝑛𝓅+ 𝓆

𝑛=0   

=
1

τ1−τ2

∑ {(
τ1

𝑡
)

𝑛
− (

τ2

𝑡
)

𝑛
}

𝓅+ 𝓆
𝑛=0    

=
1

τ1−τ2
{

1−(
τ1
𝑡

)
𝓅+ 𝓆+1

1−
τ1
𝑡

−
1−(

τ2
𝑡

)
𝓅+ 𝓆+1

1−
τ2
𝑡

}  

=
1

(τ1 − τ2) 𝑡𝓅+ 𝓆 (
𝑡𝓅+ 𝓆+1 − τ1

𝓅+ 𝓆+1

𝑡 − τ1

−
𝑡𝓅+ 𝓆+1 − τ2

𝓅+ 𝓆+1

𝑡 − τ2
) 

=
1

(τ1 − τ2)𝓅+ 𝓆
{

𝑡𝓅+ 𝓆+1(τ1 − τ2) − 𝑡(τ1
𝓅+ 𝓆+1 − τ2

𝓅+ 𝓆+1) + (τ1
𝓅+ 𝓆 − τ2

𝓅+ 𝓆)

(𝑡 − τ1)(𝑡 − τ2)
} 

=
𝑡

𝑡𝓅+𝓆(𝑡2 − 3𝑡 + 1)
(𝑡𝓅+ 𝓆+1 − 𝑡𝒯𝓅+𝓆+1 + 𝒯𝓅+𝓆) 

This completes the proof.   

 

Corollary 3.15.1: For (𝓹 +  𝓺) → ∞, we get 

 ∑ 𝓣𝓹+ 𝓺𝒕−(𝓹+ 𝓺)∞
𝓹+ 𝓺=𝟎 =

𝒕

(𝒕𝟐−𝟑𝒕+𝟏)
  (3.21) 

 

Theorem 3.16: (Explicit formula) For 𝒏 ≥ 𝟏, 

 𝓣𝒏 = ∑ (
𝒏 − 𝒊 − 𝟏

𝒊
) 𝟑𝒏−𝟐𝒊−𝟏(−𝟏)𝒊

⌊
𝒏−𝟏

𝟐
⌋

𝒊=𝟎  (3.22) 

Proof: The proof is clear from the generating function (3.19).  

3.3 Matrix Representation of Product of 

Fibonacci and Lucas Numbers 
In this section, we present two cross two matrices for 

product of Fibonacci and Lucas numbers are given by 

𝑴 = [
𝟑 𝟏

−𝟏 𝟎
] . 

Theorem 3.17: For 𝒏 ∈ ℤ,  we have 

 [
𝓣𝒏+𝟏

−𝓣𝒏
] = 𝑴 [

𝓣𝒏

−𝓣𝒏−𝟏
]   (3.23) 

Proof: To prove the result, we will use induction on n.  

(3.23) is true for n = 1.  

Suppose (3.23) is true for n, we get 
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 [
𝒯𝑛+2

−𝒯𝑛+1
] = [

3𝒯𝑛+1 − 𝒯𝑛

−𝒯𝑛+1
] 

= [
3 1

−1 0
] [

𝒯𝑛+1

−𝒯𝑛
] 

= [
3 1

−1 0
] [

3 1
−1 0

] [
𝒯𝑛

−𝒯𝑛−1
] 

= [
3 1

−1 0
] [

3𝒯𝑛 − 𝒯𝑛−1

−𝒯𝑛
] 

= [
3 1

−1 0
] [

𝒯𝑛+1

−𝒯𝑛
] 

= 𝑀 [
𝒯𝑛+1

−𝒯𝑛
]  

This completes the proof.  

Theorem 3.18: For 𝒏 ∈ ℤ,  we have  

[
𝓣𝒏+𝟏

−𝓣𝒏
] = 𝑴𝒏 [

𝓣𝟏

−𝓣𝟎
]   (3.24) 

4. CONCLUSION 
This study presents the properties of product of Fibonacci and 

Lucas numbers with the help of their Binet’s formula and 

generating function. The concept can be executed for 

generalized second order sequences as well as polynomials. 

Also, present its two cross two matrices and find exciting 

properties such as the nth power of the matrix. Sequence of 

product of Fibonacci and Lucas numbers can also be called the 

sequence of alternate Fibonacci numbers. The details of which 

are in following table 2: 

Table 2. Sequence of alternate Fibonacci numbers 

n 0      1      2      3      4       5       6       7        8       … 

𝑭𝒏 0      1      1      2      3       5       8      13      21      … 

𝓣𝒏 0             1             3                8                  21    … 
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