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ABSTRACT

This study presenting the properties of numbers that we get by
multiplying Fibonacci and Lucas numbers. Namely we define
recurrence  relation T, =37, — T, n=0withT, =
0, 7; = 1. We investigate some basic properties of product of
Fibonacci and Lucas numbers such as the Binet formula,
generating function, generalized identity. We shall use the
Binet’s formula and generating function for derivation. Also,
we present its two cross two matrix representation.
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1. INTRODUCTION
The well-known Fibonacci sequence [11], with F, = 0,F; =1
and E, =F,_+ F,_, for n>2, have many interesting
interpretations, applications and generalizations. Lucas
sequence [11], with Ly = 2,L; =1land L, = L,_4 + L,,_, for
n = 2. Most of the authors introduced Fibonacci pattern-based
sequences in many ways which are known as generalized
Fibonacci sequences ([9]; [8]; [1]), Fibonacci-Like sequences
([15]; [71; [19]), k-Fibonacci sequences [3] and k-Fibonacci-
Like sequences ([14]; [18]).
([16]; [17]) presents a family of tridiagonal matrices given by:
31
13 1
M (n) = 1 3

.1

1 3
Where M(n) is n X n. It is easy to show by induction that the
determinants |M (k)| are the Fibonacci numbers F,;,,. [2],
extend these results to construct families of tridiagonal matrices
whose determinants generate any arbitrary linear subsequence
Faks+p OT Laxsp, k =1,2,... of the Fibonacci or Lucas
numbers.

Lu and Jiang [12], present product of Fibonacci and Lucas
numbers f, = (F, X L,). Also defined and present some
determinant and permanent representations of introduce
product of Fibonacci and Lucas numbers and complex
factorization formulas for f, = (F, X L,).

The recurrence relation for product of Fibonacci and Lucas
numbers T2 =341 — T ,m = 1with 7, = 1,7, = 3.
Wei, Zheng, Jiang and Shon [20] discuss the invertibility of the
skew circulant and skew left circulant matrices involving the
product of Fibonacci and Lucas numbers and present the
determinant and inverse matrices by constructing the
transformation matrices. The four kinds of norms and bounds

Minal Gwala
Department of Mathematics,
PMCoE, Govt. Rajiv Gandhi,

P.G. College, Mandsaur, India

Ronak Goyal
Software development engi. 2,
11736174% pl ne
Redmond WA USA

for the spread of these matrices are given, respectively. More
specifically, they study the invertibility, determinant, multiple
norms, lower and upper bounds for the spread of these matrices,
which are going to have potential to be useful for realistic
application. This study introduce some properties of product of
Fibonacci and Lucas numbers.

2. SEQUENCE OF PRODUCT OF
FIBONACCI AND LUCAS NUMBERS

Definition: The product of Fibonacci and Lucas numbers
{7}, see [12, 20] are defined by the recurrence relation: For
n=0, Tpiz =3Tni1— Tn (2.1)

with the initial conditions Ty = 0and 7, =1.

Let 7, and 7, be the roots of the following characteristic
equation, t2-3t+1=0 (2.2

Associated to the recurrence relation (2.1).

3+V5 3-V5
Where 74 = - 2= and 7, = 1.

The first few numbers are given in the following table:

Table 1. Product of Fibonacci and Lucas numbers

0 0O 1 2 3 4 5 6 7..
E, o 1 1 2 3 5§ 8§ 13...
L, 2 1 3 4 7 11 18 29...
T,=(F,xL,) 0 1 3 8 21 55 144 377...

3. PROPERTIES OF PRODUCT OF
FIBONACCI AND LUCAS NUMBERS

3.1 Binet Formula

The Binet formula is also very important in Fibonacci and
Lucas numbers theory. Now we can give the Binet formula for
the product of Fibonacci and Lucas numbers.

Theorem3.1:Formn>10,7, = A (3.2)

T1—T2

Proof: The theorem can be proved by mathematical induction
onn.

Lemma 3.2: For any integer n > 0,
T2 4 o =3ttt and 2 + 1 =3t (3.2)

Proof: Since t;and T, are the roots of the characteristic
equation (2.2), then

©?+1=3randt?+1=31, (3.3)
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now, multiplying both sides of these equations by t} and t%
respectively, we obtain the desired result.

Theorem 3.2: For any integern > 1,
Tty * Tin-1) =3T (3.4)
Proof: By using Eq. (3.1) in the left-hand side (LHS) of Eq.

(3.4), and considering that T2 + 1 = 31, and t3 + 1 = 31y, it
is obtained

n+1

Tt — it ot — it
+
T — 712 T — 712

Ll (‘tl + %) - 15 (rz +%)

T — T2

n n
T — 12
:3 —
T — T2

and, again by Eqg. (3.1), this completes the proof.

(LHS) = <

Theorem 3.4: For any integern > 1,

3(T2n+2+,t2n+2) —4

T24+72,, = . (3.5)

Proof: By using Binet’s formula (3.1),

TZ + 772 +1 = (T?_T?)Z + (TFI_T?H)
n

T1—T2 T~ Tz

2

(12" 4 T2M+2 4 20 4 202 _ g)

(t1 —12)?

@@+ D+ D -4

(t1 — 12)?

B 3(T2nH2 4 13nH2) _ g
5

This completes the proof.

Theorem 3.5: (Catalan’s identity)

T2~ T vy, , = T? (3.6)
Proof: By using Binet’s formula (3.1),

T’%L - T/n+/rTn_,.
- L lmw (B2) + @ (2) - 2emy]
= (1, — 1,)? T1T2 o T1T2 T T1T2

2 + (—) -

(T1T2)n { = 2(uy1)" }
—13)2 (T1T2)r
- r< )
= 72
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This completes the proof.

Theorem 3.6: (Cassini’s identity or Simpson’s identity)
T~ Thiar, =1 (3.7

Proof: Taking r=1 in identity (3.6) and (3.7) the proof is
completed.

Theorem 3.7: (d’ocagnes’s Identity) For m > n,
TmT w1 = Tmi1Tn =T m-n (3.8)

Proof: By using Eq. (3.1) in left hand side (LHS) of Eq. (3.8),
and considering that T, t, = 1, it is obtained

n+1 n+1
=t [t -1}
(LHS) =
T, — Ty T4 — Ty
m+1 m+1 n n
Y s )
T1—T2 T —T2
m..n m n
(T — ) + 1Ty — 1)
- 2
(t1 — 12)

e B

(t1 —12)
_ L o
(t1 —12)

and, again by Eq. (3.1), the result is obtained.

Theorem 3.8: (Limit of the quotient of two consecutive terms)
Forn > 2, llm( Tn )= T4 (3.9

n-1

Proof: By Binet’s formula (3.1), we have

n
and considering that lim C—Z) =0, since |t,| < T4, Eq. (3.9)
n—oo \Tq
is obtained.

Theorem 3.9: For every integern, _,, = —=T,, (3.10)
Proof: By Binet’s formula (3.1), we have

-t
T p=—
T — T2

(1 1)
o i ¥
_\t1 T
T~ T2
st
T~ T2

0o

T — T2
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and, again by Eq. (3.1), the result is obtained.

Theorem 3.10: Y2l T, =T, — Tp_1 — 1 (3.11)
Proof: The proofis clear by Binet’s formula.
Theorem3.11:Forn>1, t"=tT, - T,_1 (3.12)
Proof: From the characteristic equation (2.2), we have
t?2=3t-1=tT—7; (3.13)
By induction on n, we get

t"t =t = (tT;, — Tpo1)t

=20, —t Ty

=@Bt-1DT —thh-1

=BT —Th-1)t =T

=Tt =T

Therefore, we have, t" =tT,, — 7,,_4

Theorem 3.12: (Generalized identity) Forn >m > k > 1,
TmTn = Tm-tT -k = TeTn-m+k (3.14)

Proof: By Binet’s formula (3.1), we have

_ T{"T?(T["r’z‘ — 1) + T (thk - 1)

(t1 — 12)?

R

(t1 —12)2 k T,k

(Tl _T2)< n -m+k _ n m+k>

(11 — 72) 71— T2
= N Tn-m+k
This completes the proof.

Corollary 3.12.1: (Catlan’s identity). If m=n in the generalized
identity (3.14), we obtain,

T2 = TniT ek = Tk (3.15)

Corollary 3.12.2: (Cassini’s identity). If m=n and k=1in the
generalized identity (3.14), we obtain,

Trzl —Th-1Tn1 =1 (3.16)
Corollary 3.12.3: (d’Ocagne’s identity). fn=m,m=n+1
and k=1 in the generalized identity (3.14), we obtain,
TmTne1 = ToTmi1 = Tm-n (3.17)

Theorem 3.13: T isnTmet — TmT man+t = TaT: (3.18)
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Proof: By Binet’s formula (3.1), the proof is clear.

3.2 Generating Function
In this section, we present generating function for product of
Fibonacci and Lucas numbers.

Theorem 3.14: Let Gy—py;, be the generating functions of the
product of Fibonacci and Lucas numbers, then

t
Gr=rxL = {55 (3.19)

Proof: Gr_px; = Yoo Tnt™

=T+ Tt + Ht2 + X0 Tth

=t+3t* + X 3(3Ty — T )t"

=t+3t* + X3 3T 1t — X3 3T, ot"
=t+3t2+t Ny 3Tyt — t2 ) 3Tt
=t+3t2+ 3t N, Tt — t2 X5 Tpt™
=t+3t2+ 3[R Tt — t] — t2 X0 Tt™
=t + 3t% + 3t[Gy- FxL t] — t2Gropxy,

Thus, Gr-px; = —1 YT,

This completes the proof.

Theorem 3.15: For p, g € Z, we get
YA = m(ﬁ"* P T i1 + T prg) (3.20)

Proof: By the Binet’s formula,
AR K €

-T2

=) - ()
T -1, &n=0 t t
T\ P+ A+l TP+ A+
O o o B )
1-=L 1-2

t_Tl
+g+1 +g+1
tPratl — 7+ g

t— Ty
! {wwm — 1) =t =) & (170 =)
(ty —T)7*e t-t)t-1)

— 1
@ T ¥ Te)

This completes the proof.

Corollary 3.15.1: For (p + g) — oo, we get

t—@+a) t

Lpig=0Tpra = @aD (3.21)

Theorem 3.16: (Explicit formula) Forn > 1,

n-1
T, = Zl J( ; 1) 3n—2i—1(_1)i (3.22)
Proof: The proof i |s clear from the generating function (3.19).

3.3 Matrix Representation of Product of

Fibonacci and Lucas Numbers
In this section, we present two cross two matrices for
product of Fibonacci and Lucas numbers are given by

_ [ 3 1]
-1 ol
Theorem 3.17: For n € Z, we have

5] =ml ) @29

Proof: To prove the result, we will use induction on n.
(3.23) is true forn=1.
Suppose (3.23) is true for n, we get
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This completes the proof.
Theorem 3.18: For n € Z, we have

Tn1] _ n[T1]
_Tn]—M 3 (3.24)

4. CONCLUSION

This study presents the properties of product of Fibonacci and
Lucas numbers with the help of their Binet’s formula and
generating function. The concept can be executed for
generalized second order sequences as well as polynomials.
Also, present its two cross two matrices and find exciting
properties such as the nth power of the matrix. Sequence of
product of Fibonacci and Lucas numbers can also be called the
sequence of alternate Fibonacci numbers. The details of which
are in following table 2:

Table 2. Sequence of alternate Fibonacci numbers
n o 1 2 3 4 5 6 7 8

"IN ACAL S

7, | 0 1 3 8 21
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