
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

39

Shared Media Web Service Architecture Design

Waseem I. Bader
Al-Salt College for Human Sciences,

Al-Balqa Applied University, Al-Salt, Jordan

ABSTRACT
Dealing with the media is one of the main subjects that

developers need to handle when building their websites,

projects and their related mobile applications. It can be quite

challenging especially if these projects are developed using

different programming languages and development

environments. It can also become a struggle when these

systems are applied within load-balancing environments or

limited-sized archiving solutions.

At the same time, organizing the related websites and projects

to share a common media service, can greatly improve the

capability of administrating them with ease, keeping the

consistency between different media files and the multi-

system environment that uses them, reducing the time and

effort needed for adding media capabilities to newer projects,

or even making any desired changes for the media service

functionality without affecting any project that uses it.

In this paper, a proposed shared media web service

architecture design for a related group of projects is presented

whichuses a single media web service to support all

applications, providing all the functionality needed to ensure

consistency between them while at the same time reducing the

time and effort needed for programmers and developers to

maintain them in the best possible way.The code samples in

this paper were implemented using the ASP.net programming

languagebut the same architecture can be implemented in any

other development language and environment.

Keywords

Web Development, Media Management, Web Services.

1. INTRODUCTION
There are many organizations around the world that need to

have multiple related websites, projects or even mobile

applications at the same time[1], these multi-systems need has

urged developers to come up with solutions regarding the

code redundancy problems among other issues. But one of the

major challenges that accompanies such systems is the Media

management architecture.

In the simplest, and we might say most problematic approach,

would be to make every project independent of the other

projects regarding its handling with its media. This approach

as direct as it can be, will force the developers to deal with big

and challenging problems on the long run.

Take for an example, a university that has its own Student

Registration website and another ELearning portal that deals

with the same list of students. At the same time, the university

has an Employee portal that provide services for the academic

and administrative staff of the university. In addition to these

systems, the university has a mobile application that provide

exactly the same services for its members.

The Registration website for example allows the students to

upload their profile pictures to it, and the ELearning portal

would show these profile pictures and might allow to upload

home works as well. Regarding the Employee portal, the

Teachers can also provide profile pictures, and in the

ELearning system, the class would show the profile picture of

its instructor as well. All these media files can also be

uploaded or viewed within the mobile application of the

university.

If each system handles its own media files separate from the

others, then the same media files uploaded to one system must

be re-uploaded to the other systems as well, or duplicate

media files must be shared across different systems which

would come up with its own consistency problems[2].

An Architecture of a shared media web service is then the best

solution to support all related projects to overcome the

challenges aroused by the need to share media files between

them.This shared media web service ispresented and

discussed in details to suggest the best techniques that can be

implemented to provide as much consistency, flexibility and

effectivity as possible for developers in such a development

architectural scenario, as shown in the following figure:

Figure 1: Shared MediaWebService Architecture

2. WEB SERVICE ARCHITECTURE
First of all, a web service is a piece of software that makes

itself available over the internet and uses a standardized XML

messaging system to provide a method of communication

between different applications that might use different

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

40

programming languages or development environments[3]. It

can be used to provide the needed media processingtools

among related websites by providing the shared services and

media between them.

A web service is basically a web application which is

generally a class containing a list of web methods that could

be used by other applications. The web service should be

deployed on a web server with a specific URL address in

order for other applications to be able to reach the web service

and consume its available web methods. In case of a web

service built with ASP.net, it will have a URL similar to the

following:

http://www.myUniversityDomain.com/myUniversityWebServ

ices/UniversityWebService.asmx

Each supported functionality that the web service should

provide will be presented as separate web method that any

external application can access by passing the appropriate

parameters to the web method and receiving the

corresponding return value from the web service to the

accessing application.The following figure shows the structure

of a UniversityMedia Web Service with a sample web method

calledDeleteFile that receives a String parameter that

corresponds to the filename to be deleted from the media

server, and then the method would return a Boolean value

corresponding to a successful delete operation or a failed one

as shown in the same figure:

namespace myUniversityWebServices

{

 [WebService(Namespace = "http://www.myUniversityDomain.com

")]

public class UniversityWebServices:

System.Web.Services.WebService

 {

 [WebMethod]

 public BooleanDeleteFile(String fileName)

 {

 Boolean fileDeleted = …

//the code to save the file from byte array format onto the server

 return fileDeleted;

 }

 }

}

Figure 2: University Web Service Structure

2.1Consuming the Web Service from

different websites or projects.
In order to use the web service from an ASP.net website, a

reference to the Media Web Service must be added in Visual

Studio by using the URL address of the desired web

service[4]. By right clicking the project in the solution

explorer and choosing"Add Service Reference" option from

the context menu as shown in the following figure:

Figure 3: Adding a reference to a web service in Visual

Studio

In the Advanced section of the Add Service Reference

Window, the Add Web Reference button should be used and

the web service URL address and reference name in the

website should be set before adding the web service reference

as shown in the following figure:

Figure 4: Adding a reference to a web service in Visual

Studio

After adding the web service reference in the ASP.net website

project, the reference name set in the previous window will be

used to access the web service methods in the required web

pages of the web site as shown in the following example:

UniversityWebServiceuniws = new UniversityWebService ();

Boolean result = uniws.DeleteFile ("profilepic1.jpeg");

//deal with returned Boolean value here

…

Figure 5: using DeleteFile Web Service Method from the

website

2.2Consuming the Web Service from the

Mobile Application
To use the web service from an Android mobile application

for example, any Soap supporting build-in or third-party

libraries can be used. For Example, KSoap2is a lightweight

open source library that can be usedto interoperate with most

popular SOAP engines and hence can be used to access the

employee web service in hand.[5]

In order to access a web method in the web service a

SoapObject instance must be created with the web service

URL address, method name and its corresponding parameter

names and values, in addition to the use of an HttpTransport

and SoapSerializationEnvelopeobjects as showing in the

following code sample:

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

41

SoapObject soapRequest = new

SoapObject("http://www.myUniversityDomain.com/", "DeleteFile");

//Adding the corresponding parameters to the Soap request

PropertyInfo pi = new PropertyInfo();

pi.setName("fileName");

pi.setValue("profilepic1.jpeg ");

pi.setType(String.class);

soapRequest.addProperty(pi);

SoapSerializationEnvelope envelope = new SoapSerializationEnvelope(

SoapEnvelope.VER11);

envelope.dotNet = true;

envelope.setOutputSoapObject(soapRequest);

HttpTransportSE httpTransport = new

HttpTransportSE("http://www.myUniversityDomain.com/myUniversityWebSer

vices/UniversityWebService.asmx");

Boolean result = false;

try {

 httpTransport.call("http://www.myUniversityDomain.com/DeleteFile",

envelope);

result= envelope.getResponse();

} catch (Exception exception) {

// Deal with any Exceptions here

 }

…

Figure 6: Accessing a web service method from an

Android Application

After receiving the response from the web service method, the

application would show convenient outputs to the user

interface.

2.3Web Service Media Upload Method
The main operation that need to be available in the Media

Web Service is that ability to upload files from the different

websites and projects. In this operation,file content is sent to

the web service for processing. There are two common

techniques to send the content of the file to the web service

method:

 Byte Arrays.

 Base64 Strings

When using Byte Arrays the actual content of the file is sent

as a collection of bytes, where each byte contains 8 bits

(binary numbers)[6]. As shown in the following figure:

[WebMethod]

public Boolean UploadFile (String fileName, byte[] bytes)

{

 String DestFolder = “PhysicalUploadFolderPath”;

 Boolean fileUploaded = false;

//the code to save the file from byte array format onto the server

 string filePath = DestFolder + fileName;

 try

 {

File.WriteAllBytes(filePath, bytes);

fileUploaded = true;

 }

 catch (System.Exeption exp)

 {

 //log exception

 }

 return fileUploaded;

}

Figure 7: Employee Web Service Upload File Web Method

On the other hand,Base64 (also known as tetrasexagesimal) is

a group of binary-to-text encoding schemes that transforms

binary data into a sequence of printable characters, limited to

a set of 64 unique characters. More specifically, the source

binary data is taken 6 bits at a time, then this group of 6 bits is

mapped to one of 64 unique characters. with all binary-to-text

encoding schemes, Base64 is designed to carry data stored in

binary formats across channels that only reliably support text

content, Base64 is quite easier for humans to read, as well as

for applications to generate and parse, most programming

languages provide different libraries for encoding and

decoding binary data to and from Base64 Strings.[7]

After receiving the Base64 String, the web service then would

decode the content to the actual byte array that would be later

stored into the media server as shown in the following figure:

[WebMethod]

public Boolean UploadFile (String fileName, String base64Content)

{

byte[] fileData = Convert.FromBase64String(base64Content);

 Boolean fileUploaded = …

//the code to save the file from byte array format onto the server

 return fileUploaded;

 }

 }

Figure 8: Employee Web Service Upload File Web Method

Base64 String technique is better to use instead of the byte

array one for different reasons:

 Some systems and applications only support text data.

Base64 allows binary data to be included in such

systems without compatibility issues

 Base64-encoded data can be easily included in URLs,

JSON, XML, or other text-based formats without

worrying about issues like special character encoding.

 Many protocols (like SMTP for email) are designed to

handle text and may not support raw binary data.

Using Base64 allows binary data to be sent over these

protocols without issues

 Sending binary data directly can lead to corruption,

especially if the data contains byte sequences that

might be interpreted as control characters or

delimiters.[8]

Now for Example, if we have a page in the registration

website that allows students to upload their profile picture as

shown in the following figure:

Figure 9: Registration Profile Picture Upload Form

The content of the file is sent to the web service as Base64

String for processing and storing on the Media Server, and

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

42

then a Boolean result is returned back to the website to notify

the user of the result of the upload.

The Following code sample shows how to usetheUploadFile

web method from the consuming website:

HttpPostedFile postedFile = myFileUpload.PostedFile;

byte[] fileBinaryData;

using (BinaryReader reader = new

BinaryReader(postedFile.InputStream))

{

 fileBinaryData =

reader.ReadBytes((int)postedfile.InputStream.Length);

}

String fileBase64String = Convert.ToBase64String(fileBinaryData);

UniversityWebServiceuniws = new UniversityWebService ();

Boolean result = uniws.UploadFile

("profilepic1.jpeg",fileBase64String);

//deal with returned Boolean value here

…

Figure 10: using UploadFile Web Service Method from the

website

Based on the returned value from the web service, the user

should be notified with a corresponding display message as

follows:

Figure 11: UploadFile response display message to the

user

3. DISPLAYING FILES FROM THE

MEDIA WEB SERVICE
After uploading files to the media server, the web service need

to provide ways to allow the different websites and projects to

view the uploaded files. Two main techniques should be

supported to provide full capabilities to the service consumers.

 Media Viewer Page and its URL Generator Web

Method

 Media Web Handler and its URL Generator Web

Method

3.1 Media Viewer Page and its URL

Generator Web Method
In this technique, a special Media Viewer Page is prepared on

the media web service project to view the different media

files, and a Web Method is designed to create the exact link to

the media in the viewer file.

The Media Viewer Page (ASPX page) would accept a Query

String to the desired media file name and the file would be

processed within the page and displayed to the user[9].

In this technique two notes must be taken into consideration,

the first one is that the web service should handle the media

file name in an encrypted matter in order not to show the

exact filename that is being shown. This is extremely

important specially if the media file names contain numeric

sequences that a hacker could change manually and display

files he is not supposed to see. For example, if the file name is

student1.pdf for example, a hacker can try to display

information for student2.pdf if the desired file name is not

encrypted before being displayed.

The second note, is that the service should display the media

file in the viewer page without displaying any details

regarding the physical location of the files. These notes are

discussed further in the following code samples.

First a URL Generator web method should be added to the

web service, this method will accept one parameter which is

the filename and returns to the consuming project the URL to

the MediaViewer ASPX page with the encrypted filename,

this URL can be used in the website or project to link its users

to the media file in the Media Viewer.

[WebMethod]

public String GetMediaFileURL(String FileName)

{

FileName =

System.Web.HttpUtility.UrlEncode(MyEncrypt(FileName));

return

“http://www.myUniversityDomain.com/myUniversityWebServices/M

ediaViewer.aspx?filename="+ FileName;

}

Figure 12: using GetMediaFileURL Web Service Method

from the website

Note that MyEncrypt is a user-defined method that should be

used to encrypt the filename in order to append it to the query

string of the generated Media File URL.

Regarding the UrlEncode method it is a built-in method that

converts characters that are not allowed in a URL such as

blanks and punctuations into character-entity equivalents.

So when a project uses the GetMediaFileURL web method to

get the URL of a file like student1.jpeg the result would look

something like this:

http://www.myUniversityDomain.com/myUniversityWebServ

ices/MediaViewer.aspx?filename=UXrvD0tCNxYCApFCyw

KGo

When the user clicks this generated link, the Media Viewer

ASPX page is called and the encrypted filename is passed as a

parameter to it.

Figure 13: using GetMediaFileURL Web Service Method

from the website

The Media Viewer page then receives the encrypted file name

query string parameter, decodes it, and displays the specified

content in the web browser as shown in the following figure:

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

43

<html>

<body>

<formid="form1"runat="server">

<div>

 Welcome to File Viewer!

<%

 String DestServer = "d:/Uploads/";

 String filename = "" + Request.QueryString["filename"];

 filename =

MyDecrypt(System.Web.HttpUtility.UrlDecode(filename));

 Response.Clear();

 String fileFullPath = DestServer + filename;

if (System.IO.File.Exists(fileFullPath))

 {

 Response.ContentType =

getFileContentType(getFileExtension(filename));

 Response.WriteFile(fileFullPath);

 Response.End();

 }

else

 {

 Response.Write("File Not Found.");

 }

 }

%>

</div>

</form>

</body>

</html>

Figure 14: Media Viewer ASPX Page

As shown in the previous figure, the Media Viewer gets the

filename from the Query String, URL decodes it, decrypts it

back to its original value, then appends the physical location

of the uploads folder to the filename and displays the content

of the file based on the content type of its extension to the

client. Note that using the WriteFile method from the

response, avoids the displaying of the actual physical location

of the media file in the resulting output.

To use this technique from the consumer part, the

GetMediaFileURL is called to get the correct URL of the

media file and a link is created to the generated Media Viewer

URL to allow the user to view the file as shown in the

following figure:

<%

UniversityWebServiceuniws = new UniversityWebService ();

String mediaURL = uniws.GetMediaFileURL ("profilepic1.jpeg");

%>

<a target=”_blank” href=”<%= mediaURL%>”>Click Here To View

The Profile Picture

…

Figure 15: using GetMediaFileURL Web Service Method

from the website

The user would see on his browser a link that when clicked

will open the media file in the MediaViewer ASPX page as

shown in figure:

Figure 16: the output of the GetMediaFileURL sample

code

3.2Media Web Handler and its URL

Generator Web Method
This second technique provides for the media web service

consumers the ability to view the media content through their

pages such as images or videos. As the first technique, a web

method must be created to generate the URL of the desired

media file, in addition to providing a web handler (ASHX)

page to return the content of the media[10].

The URL generator method is similar to the one used in the

first technique, but the return URL will point the web handler

that will be used to handle the media content as shown in the

following figure:

[WebMethod]

public String GetMediaFileHandlerURL(String FileName)

{

FileName =

System.Web.HttpUtility.UrlEncode(MyEncrypt(FileName));

return

“http://www.myUniversityDomain.com/myUniversityWebServices/M

ediaHandler.ashx?filename="+ FileName;

}

Figure 17: using GetMediaFileHandlerURL Web Service

Method from the website

Notice that we also want to encode and encrypt the filename

in the generated URL.

The ASHX Media Web Handler is also similar to Media

Viewer File in the first technique, but instead of viewing the

content in the ASPX page, it returns the content for displaying

to the consumer project, as shown in the figure:

publicclassMediaHandler : IHttpHandler

 {

publicvoid ProcessRequest(HttpContext context)

 {

String DestServer = "d:/Uploads/";

 String filename = "" +

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

44

context.Request.QueryString["filename"];

 filename =

MyDecrypt(System.Web.HttpUtility.UrlDecode(filename));

String fileFullPath = DestServer + filename;

if (System.IO.File.Exists(fileFullPath))

 {

 String fileExt = getFileExtension(fileFullPath);

if (isImgExt(fileExt))

 {

 String contentType = getFileContentType(fileExt);

 System.Drawing.Imaging.ImageFormat imgFormat =

FileSrvc.FileSrvcFunctions.getImageFormat(fileExt);

 context.Response.ContentType = contentType;

 System.Drawing.Image oImg =

System.Drawing.Image.FromFile(fileFullPath, true);

 oImg.Save(context.Response.OutputStream,

imgFormat);

 oImg.Dispose();

 }

elseif (isVideoExt(fileExt))

 {

 String contentType = getFileContentType(fileExt);

 context.Response.ContentType = contentType;

 context.Response.WriteFile(fileFullPath);

 }

 }

 }

 }

 }

Figure 18: the Media Handler code

Note that the isImgExt and is VideoExt are user-defined

methods that check if the media extension is one of the images

extensions such as jpg,jpeg,png,gif or one of the video

extensions such as mp4,avi,mpeg. Likewise, the

getFileExtension and getFileContentType as also user-defined

methods that extracts the extension part of the file name and

gets the corresponding content type based on it.

To use this technique from the consumer part, the

GetMediaFileHandlerURL is called to get the correct URL of

the media file and the generated Media Handler link is used to

view the media in the project to the user as shown in the

following figure:

<%

UniversityWebServiceuniws = new UniversityWebService ();

String mediaURL = uniws.GetMediaFileHandlerURL

("profilepic1.jpeg");

%>

<img src=”<%= mediaURL%>”/>

…

Figure 19: using GetMediaFileHandlerURL Web Service

Method from the website

The user would see on his browser the desired media file from

the content returned by the Media Handler ASHX page as

shown in figure:

Figure 20: the output of the GetMediaFileHandlerURL

sample code

4. ENHANCING THE MEDIA WEB

SERVICE
Many features can be added to the base media service type

discussed in the previous parts, of these two major features are

discussed to enhance the functionality and security of the web

service which are:

 Arranging Media Service Types

 Providing Consumer Authentication

4.1 Arranging Media Service Types
In the previous parts, all the media files uploaded by the

different media web service consumers are expected to be

found in exactly the same location, which might be applicable

for some cases specially if the number of consumers is few or

the number of expected media files is limited, but in most

cases this scenario is not the desired one, and an arrangement

of the uploaded media files in sub locations are much needed.

To achieve such arrangement, a service type must be set when

processing the media files in the web service.

First, a Database Table must be created to store the service

type information for each required service in the logic

architecture. For each service we store a unique service ID,

descriptive name, the physical sub location name, and a String

Keyword that we’ll be using in later parts, as shown in the

following figure:

SID SName SDirectory SKey

1 Registration

System

REG_FOLDER REG

2 ELearning System ELEARN_FOLDER ELEARN

3 Employee Portal EMP_FOLDER EMP

4 … … …

Figure 21: Media Services Database Table Sample

These services will have its own physical sub folder within

the media service storage location, as shown in the following

figure:

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

45

Figure 22: Media Service Storage Sub Systems

Architecture

This Service type must be provided by the consumer projects

when accessing the different web methods of the media web

service. The UploadFile web method for example, must be

modified to accept a service type in addition to the filename

and file content. This service type is then used to get the

corresponding sub folder of the service, to upload the media

file to the correct sub folder in the media storage architecture

as shown in the following code sample:

[WebMethod]

public Boolean UploadFile (int ServiceTypeID, String fileName, String

base64Content)

{

 String DestFolder = “PhysicalUploadFolderPath”;

 String subDIR = //get the Directory that matches the service type ID from

DB

 Boolean fileUploaded = false;

 //the code to save the file from byte array format onto the server

 string filePath = DestFolder + subDIR+ fileName;

 try

 {

 File.WriteAllBytes(filePath, bytes);

 fileUploaded = true;

 }

 catch (System.Exeption exp)

 {

 //log exception

 }

 return fileUploaded; }

 }

Figure 23: Upload File Web Method with Service Types.

Likewise, the GetMediaFileURL would also accept the

service type ID in addition to the filename, and both

parameters are passed to the Media Viewer Page as shown in

figure:

[WebMethod]

public String GetMediaFileURL(int ServiceTypeID, String FileName)

{

String ServiceTypeIDEnc =

System.Web.HttpUtility.UrlEncode(MyEncrypt(ServiceTypeID));

FileName =

System.Web.HttpUtility.UrlEncode(MyEncrypt(FileName));

return

“http://www.myUniversityDomain.com/myUniversityWebServices/M

ediaViewer.aspx?ServiceTypeIDEnc="+

ServiceTypeIDEnc+”&filename="+ FileName;

}

Figure 24: GetMediaFileURL Web Service Method with

Service Types

The Media Viewer ASPX page as well will use now the

received Service Type ID to get the appropriate Service Sub

Directory to view the correct media file as shown in the

following figure:

<html>

<body>

<formid="form1"runat="server">

<div>

 Welcome to File Viewer!

<%

 String DestServer = "d:/Uploads/";

String ServiceTypeIDEnc = "" +

Request.QueryString["ServiceTypeIDEnc"];

int ServiceTypeID =

MyDecrypt(System.Web.HttpUtility.UrlDecode(ServiceTypeIDEnc))

;

String subdir = //get the Service Directory that matches the service

type ID

 String filename = "" + Request.QueryString["filename"];

 filename =

MyDecrypt(System.Web.HttpUtility.UrlDecode(filename));

 Response.Clear();

 String fileFullPath = DestServer + subdir + filename;

if (System.IO.File.Exists(fileFullPath))

 {

 Response.ContentType =

getFileContentType(getFileExtension(filename));

 Response.WriteFile(fileFullPath);

 Response.End();

 }

else

 {

 Response.Write("File Not Found.");

 }

 }

%>

</div>

</form>

</body>

</html>

Figure 25: Media Viewer ASPX Page with Service Types.

The consumer website now just provides the required Service

Type Id when accessing the media viewer web service

methods to identify which service type to use to upload or

view the desired media file as shown in the figure:

<%

UniversityWebServiceuniws = new UniversityWebService ();

String mediaURL = uniws.GetMediaFileURL (1,"profilepic1.jpeg");

%>

<a target=”_blank” href=”<%= mediaURL%>”>Click Here To View

The Profile Picture

Figure 26: using GetMediaFileURL Web Service Method

from the website with service types.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

46

This previous sample will get the media URL of the media file

profilepic1.jpeg from within the Registration sub system in

the media storage.

This enhanced sub system technique can be further improved

to allow more coding readability and minimize errors by using

the Service Keywords with their IDs in the database as

dynamicEnumeration Type values to be used by the service

consumers.

An Enumeration type (or Enum type) is a value type defined

by a set of named constants of the underlying integral numeric

type, this Enum can be generated dynamically to create a

Dynamic Link Library file (DLL) containing all the service

types from the database service table, and allow the media

service consumers to access these service types through there

Keyword values instead of the integer ones, which would be

easier to read and avoids the error of using a wrong service

type IDs.

To create the dynamic service types Enum, a simple code can

be used to loop through the services and generate a Key-ID

Enum pair for each service in the database as shown in the

figure:

AppDomain currentDomain = AppDomain.CurrentDomain;

AssemblyName name = new AssemblyName("UniServiceTypes");

AssemblyBuilder assemblyBuilder =

currentDomain.DefineDynamicAssembly(name,

AssemblyBuilderAccess.RunAndSave);

ModuleBuilder moduleBuilder =

assemblyBuilder.DefineDynamicModule(name.Name,name.Name +

".dll");

EnumBuilder myEnum =

moduleBuilder.DefineEnum("EnumeratedTypes.UniServiceTypes

e",TypeAttributes.Public, typeof(int));

foreach (// loop through the SIDs, SKeys from the Database table)

{

 myEnum.DefineLiteral(SKey, SID);

}

myEnum.CreateType();

assemblyBuilder.Save(name.Name + ".dll");

Figure 27: Create the dynamic Service Types Enum DLL.

This created DLL file that contains the dynamic Service

Types Enum, can be accessed from all the media service

consumers, in order to use the Enum as the service type as

shown in the following figure:

<%

UniversityWebServiceuniws = new UniversityWebService ();

String mediaURL = uniws.GetMediaFileURL

(UniServiceTypes.REG,"profilepic1.jpeg");

%>

<a target=”_blank” href=”<%= mediaURL%>”>Click Here To View

The Profile Picture

…

Figure 28: using GetMediaFileURL Web Service Method

with service types from the Dynamic Enum.

4.2Providing Consumer Authentication
If the web service is published online, and the service

consumers are connecting to the service though the internet,

then there is a great risk in hand in case the URL of the web

service is known to any unauthenticated users, because in this

case the unauthenticated users can use the web service to

upload or view files from the Media storage, which should be

quite an easy task for a hacker. In this case further security

concerns should be taken into consideration, with the main

step should be to enforce a password to be sent from the

different consumers of the media web service, this password

can be used both as a way to authenticate the access to the

web service, and also can be used to allow different

consumers to access different web methods of the web service

if needed.

[WebMethod]

public String GetMediaFileURL(String password,int ServiceTypeID,

String FileName)

{

if (//check usagekey is authenticated and can access this web

method from database)

{

String ServiceTypeIDEnc =

System.Web.HttpUtility.UrlEncode(MyEncrypt(ServiceTypeID));

FileName =

System.Web.HttpUtility.UrlEncode(MyEncrypt(FileName));

return

“http://www.myUniversityDomain.com/myUniversityWebServices/M

ediaViewer.aspx?ServiceTypeIDEnc="+

ServiceTypeIDEnc+”&filename="+ FileName;

}

else

{

throw new Exception(InvalidKeyExceptionMsg);

}

return “”;

}

Figure 29: GetMediaFileURL Web Service Method with

authentication

In this case we are pretty sure that only the consumers who

have valid passwords can access the web methods even if the

web service is on public networks or on the internet.

5. SHARED MEDIA WEB SERVICE

ARCHITECTURE ANALYSIS
The proposed shared media architectural techniques

providedevelopers and programmers with great flexibility to

manage multiple related websites, projects orapplications in

the best possible way. These techniques have offered a lot of

benefits but at the same time have had some limitations.

5.1 Advantages of using a Shared Media

Web Service Architecture
Some of the advantages of using a shared media web service

architectureare:

 After preparing the media web service architecture for

the first time, any new website or project would save

itself time and effort to add the media management

functionality.

 Projects and Websites can be deployed in a load

balancer model, to reduce the traffic on one site,

without any problems regarding any missing or

duplicate media files or consistency issues.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

47

 Archiving systems would be much easier because of

the minimum size needed for them, because all the

media files are separate from the original projects.

 Server administrators can move the storage location or

increase its size or even install new anti-virus soft

wares on it without any need to change any

application that uses the media web service.

 Any new application with different programming

languages or development environments can be easily

added to the business with minimum effort and time

because all the functionally is already prepared by the

web service and all the media files are shared in a

cross-platform technique.

5.2 Disadvantages ofusing a Shared Media

Web Service Architecture
Here are some of the disadvantages of using a shared media

web service architecture:

 It needs more time initially to set up the needed media

web service architecture, although it saves greater

times later on.

 Some extratime is needed to upload and retrieve the

media files from the web service in opposite to using

local projects to store the media files.

6. CONCLUSION
Many businesses need to have multiple applications or

projects serving the clients and users of it, these applications

can vary in programming languages and development

environments. Developers of such multi-system environments

are forced to deal with the overhead of dealing with shared

media files. In this paper, a shared media web service

architectural design and implementation is represented and

discussed in details to suggest the best possible techniques of

such a business architecture to provide the consistency and

flexibility among the different business applications and

reduce as much obstacles that come with maintainingsuch an

architecture.New and improvedideas and techniques need to

be researched and invented to provide betterarchitectural

designs to try to minimize the few disadvantages that still

exist and to fulfill the growing changes and demands in the

world of business application developments and programming

technologies.

7. REFERENCES
[1] Nawir, F., & Hendrawan, S. A, "The Impact of Website

Usability and Mobile Optimization on Customer

Satisfaction and Sales Conversion Rates in E-commerce

Businesses in Indonesia", The Eastasouth Journal of

Information System and Computer Science, 2024.

[2] Vardhan, M., Kushwaha, D.S., "File replication and

consistency maintenance mechanism in a trusted

distributed environment", CSI Transactions on ICT,

Springer, 2013.

[3] Newcomer E., Understanding Web Services –

XMLWSDLSOAP, 1st ed. AddisonWesley Professional.

Boston, United Stated of America. (2002).

[4] Ugurlu T., Pro ASP.NET Web API: HTTP Web Services

in ASP.NET (Expert's Voice in .NET), 1st ed. Apress.

New York, United Stated of America. (2013).

[5] "kSOAP2" Kilobyte Objects,[Online].Available:

http://kobjects.org/. [Accessed 16March 2025].

[6] Perkins B., Jon D. Reid, Beginning C# and .NET, 2021

Edition. John Wiley &Sons, Inc., Hoboken, New Jersey,

United Stated of America. (2021).

[7] Sumartono I., Siahaan A., Arpan A., "Base64 Character

Encoding and Decoding Modeling", International Journal

of Recent Trends in Engineering & Research, 2016.

[8] Kumar K., Pandey B., Next Generation Mechanisms for

Data Encryption, 1st Edition, CRC Press, Florida, United

Stated of America. (2025).

[9] Danylko J., ASP.NET 8 Best Practices: Explore

techniques, patterns, and practices to develop effective

large-scale .NET web apps, 1st ed. Packt Publishing Ltd.

Birmingham, UK. (2023).

[10] Millett S., Professional ASP.NET Design Patterns, 1st

ed. Wiley Publishing, Inc. Indiana, United Stated of

America. (2010).

IJCATM : www.ijcaonline.org

