International Journal of Computer Applications (0975 — 8887)

Volume 186 — No.81, April 2025

Shared Media Web Service Architecture Design

Waseem |. Bader
Al-Salt College for Human Sciences,
Al-Balga Applied University, Al-Salt, Jordan

ABSTRACT

Dealing with the media is one of the main subjects that
developers need to handle when building their websites,
projects and their related mobile applications. It can be quite
challenging especially if these projects are developed using
different programming languages and development
environments. It can also become a struggle when these
systems are applied within load-balancing environments or
limited-sized archiving solutions.

At the same time, organizing the related websites and projects
to share a common media service, can greatly improve the
capability of administrating them with ease, keeping the
consistency between different media files and the multi-
system environment that uses them, reducing the time and
effort needed for adding media capabilities to newer projects,
or even making any desired changes for the media service
functionality without affecting any project that uses it.

In this paper, a proposed shared media web service
architecture design for a related group of projects is presented
whichuses a single media web service to support all
applications, providing all the functionality needed to ensure
consistency between them while at the same time reducing the
time and effort needed for programmers and developers to
maintain them in the best possible way.The code samples in
this paper were implemented using the ASP.net programming
languagebut the same architecture can be implemented in any
other development language and environment.

Keywords

Web Development, Media Management, Web Services.

1. INTRODUCTION

There are many organizations around the world that need to
have multiple related websites, projects or even mobile
applications at the same time[1], these multi-systems need has
urged developers to come up with solutions regarding the
code redundancy problems among other issues. But one of the
major challenges that accompanies such systems is the Media
management architecture.

In the simplest, and we might say most problematic approach,
would be to make every project independent of the other
projects regarding its handling with its media. This approach
as direct as it can be, will force the developers to deal with big
and challenging problems on the long run.

Take for an example, a university that has its own Student
Registration website and another ELearning portal that deals
with the same list of students. At the same time, the university
has an Employee portal that provide services for the academic
and administrative staff of the university. In addition to these
systems, the university has a mobile application that provide
exactly the same services for its members.

The Registration website for example allows the students to
upload their profile pictures to it, and the ELearning portal
would show these profile pictures and might allow to upload
home works as well. Regarding the Employee portal, the
Teachers can also provide profile pictures, and in the
ELearning system, the class would show the profile picture of
its instructor as well. All these media files can also be
uploaded or viewed within the mobile application of the
university.

If each system handles its own media files separate from the
others, then the same media files uploaded to one system must
be re-uploaded to the other systems as well, or duplicate
media files must be shared across different systems which
would come up with its own consistency problems[2].

An Architecture of a shared media web service is then the best
solution to support all related projects to overcome the
challenges aroused by the need to share media files between
them.This shared media web service ispresented and
discussed in details to suggest the best techniques that can be
implemented to provide as much consistency, flexibility and
effectivity as possible for developers in such a development
architectural scenario, as shown in the following figure:

Storage
w_—
=
SO
11

Media

Web Service

T 17 T T
- . =

Registeration ~ ELearning Employee Mobile
ystem System Portal App

Figure 1: Shared MediaWebService Architecture
2. WEB SERVICE ARCHITECTURE

First of all, a web service is a piece of software that makes
itself available over the internet and uses a standardized XML
messaging system to provide a method of communication
between different applications that might use different

39

programming languages or development environments[3]. It
can be used to provide the needed media processingtools
among related websites by providing the shared services and
media between them.

A web service is basically a web application which is
generally a class containing a list of web methods that could
be used by other applications. The web service should be
deployed on a web server with a specific URL address in
order for other applications to be able to reach the web service
and consume its available web methods. In case of a web
service built with ASP.net, it will have a URL similar to the
following:

http://www.myUniversityDomain.com/myUniversityWebServ
ices/UniversityWebService.asmx

Each supported functionality that the web service should
provide will be presented as separate web method that any
external application can access by passing the appropriate
parameters to the web method and receiving the
corresponding return value from the web service to the
accessing application.The following figure shows the structure
of a UniversityMedia Web Service with a sample web method
calledDeleteFile that receives a String parameter that
corresponds to the filename to be deleted from the media
server, and then the method would return a Boolean value
corresponding to a successful delete operation or a failed one
as shown in the same figure:

namespace myUniversityWebServices

{

[WebService(Namespace = "http://www.myUniversityDomain.com
N
public class UniversityWebServices:
System.Web.Services.WebService

{
[WebMethod]
public BooleanDeleteFile(String fileName)
{
Boolean fileDeleted = ...
/lthe code to save the file from byte array format onto the server
return fileDeleted,;
}
}
}

International Journal of Computer Applications (0975 — 8887)

Volume 186 — No.81, April 2025

Add Reference...
Add Service Reference...
oy Add Connected Service
Add Analyzer...
B Manage NuGet Packages...

Figure 3: Adding a reference to a web service in Visual
Studio

In the Advanced section of the Add Service Reference
Window, the Add Web Reference button should be used and
the web service URL address and reference name in the
website should be set before adding the web service reference
as shown in the following figure:

Web Service Methods

Web Service Reference Name

v

< > Canc

Figure 4: Adding a reference to a web service in Visual
Studio

After adding the web service reference in the ASP.net website
project, the reference name set in the previous window will be
used to access the web service methods in the required web
pages of the web site as shown in the following example:

Figure 2: University Web Service Structure

2.1Consuming the Web Service from

different websites or projects.

In order to use the web service from an ASP.net website, a
reference to the Media Web Service must be added in Visual
Studio by using the URL address of the desired web
service[4]. By right clicking the project in the solution
explorer and choosing"Add Service Reference" option from
the context menu as shown in the following figure:

UniversityWebServiceuniws = new UniversityWebService ();
Boolean result = uniws.DeleteFile ("profilepicl.jpeg");
/ldeal with returned Boolean value here

Figure 5: using DeleteFile Web Service Method from the
website

2.2Consuming the Web Service from the
Mobile Application

To use the web service from an Android mobile application
for example, any Soap supporting build-in or third-party
libraries can be used. For Example, KSoap2is a lightweight
open source library that can be usedto interoperate with most
popular SOAP engines and hence can be used to access the
employee web service in hand.[5]

In order to access a web method in the web service a
SoapObiject instance must be created with the web service
URL address, method name and its corresponding parameter
names and values, in addition to the use of an HttpTransport
and SoapSerializationEnvelopeobjects as showing in the
following code sample:

40

SoapObject soapRequest = new
SoapObject("http://www.myUniversityDomain.com/", "DeleteFile");

/IAdding the corresponding parameters to the Soap request
PropertyInfo pi = new PropertyInfo();
pi.setName(“fileName");

pi.setValue(“profilepicl.jpeg *);

pi.setType(String.class);

soapRequest.addProperty(pi);

SoapSerializationEnvelope envelope = new SoapSerializationEnvelope(
SoapEnvelope.VER11);

envelope.dotNet = true;
envelope.setOutputSoapObject(soapRequest);

HttpTransportSE httpTransport = new
HttpTransportSE("http://www.myUniversityDomain.com/myUniversityWebSer
vices/UniversityWebService.asmx");

Boolean result = false;

try {
httpTransport.call("http://www.myUniversityDomain.com/DeleteFile",
envelope);

result= envelope.getResponse();
} catch (Exception exception) {
/I Deal with any Exceptions here

}

International Journal of Computer Applications (0975 — 8887)

Volume 186 — No.81, April 2025

On the other hand,Base64 (also known as tetrasexagesimal) is
a group of binary-to-text encoding schemes that transforms
binary data into a sequence of printable characters, limited to
a set of 64 unique characters. More specifically, the source
binary data is taken 6 bits at a time, then this group of 6 bits is
mapped to one of 64 unique characters. with all binary-to-text
encoding schemes, Base64 is designed to carry data stored in
binary formats across channels that only reliably support text
content, Base64 is quite easier for humans to read, as well as
for applications to generate and parse, most programming
languages provide different libraries for encoding and
decoding binary data to and from Base64 Strings.[7]

After receiving the Base64 String, the web service then would
decode the content to the actual byte array that would be later
stored into the media server as shown in the following figure:

[WebMethod]

public Boolean UploadFile (String fileName, String base64Content)

{

byte[] fileData = Convert.FromBase64String(base64Content);
Boolean fileUploaded = ...

/lthe code to save the file from byte array format onto the server
return fileUploaded;

}
}

Figure 6: Accessing a web service method from an
Android Application

After receiving the response from the web service method, the
application would show convenient outputs to the user
interface.

2.3Web Service Media Upload Method

The main operation that need to be available in the Media
Web Service is that ability to upload files from the different
websites and projects. In this operation,file content is sent to
the web service for processing. There are two common
techniques to send the content of the file to the web service
method:

e Byte Arrays.
e Base64 Strings

When using Byte Arrays the actual content of the file is sent
as a collection of bytes, where each byte contains 8 bits
(binary numbers)[6]. As shown in the following figure:

[WebMethod]
public Boolean UploadFile (String fileName, byte[] bytes)
{
String DestFolder = “PhysicalUploadFolderPath™;
Boolean fileUploaded = false;
/lthe code to save the file from byte array format onto the server
string filePath = DestFolder + fileName;
try
{
File.WriteAllBytes(filePath, bytes);
fileUploaded = true;

}
catch (System.Exeption exp)
{
Illog exception
}

return fileUploaded;

}

Figure 7: Employee Web Service Upload File Web Method

Figure 8: Employee Web Service Upload File Web Method

Base64 String technique is better to use instead of the byte
array one for different reasons:

e Some systems and applications only support text data.
Base64 allows binary data to be included in such
systems without compatibility issues

e Base64-encoded data can be easily included in URLs,
JSON, XML, or other text-based formats without
worrying about issues like special character encoding.

e Many protocols (like SMTP for email) are designed to
handle text and may not support raw binary data.
Using Base64 allows binary data to be sent over these
protocols without issues

e Sending binary data directly can lead to corruption,
especially if the data contains byte sequences that
might be interpreted as control characters or
delimiters.[8]

Now for Example, if we have a page in the registration
website that allows students to upload their profile picture as
shown in the following figure:

choose your profile picture :

Choose File | No file chosen

Figure 9: Registration Profile Picture Upload Form

The content of the file is sent to the web service as Base64
String for processing and storing on the Media Server, and

41

then a Boolean result is returned back to the website to notify
the user of the result of the upload.

The Following code sample shows how to usetheUploadFile
web method from the consuming website:

HttpPostedFile postedFile = myFileUpload.PostedFile;
byte[] fileBinaryData;

using (BinaryReader reader = new
BinaryReader(postedFile.InputStream))

{

fileBinaryData =
reader.ReadBytes((int)postedfile.InputStream.Length);

}

String fileBase64String = Convert. ToBase64String(fileBinaryData);
UniversityWebServiceuniws = new UniversityWebService ();
Boolean result = uniws.UploadFile

("profilepicl.jpeg" fileBase64String);

/ldeal with returned Boolean value here

International Journal of Computer Applications (0975 — 8887)

Volume 186 — No.81, April 2025

sequences that a hacker could change manually and display
files he is not supposed to see. For example, if the file name is
studentl.pdf for example, a hacker can try to display
information for student2.pdf if the desired file name is not
encrypted before being displayed.

The second note, is that the service should display the media
file in the viewer page without displaying any details
regarding the physical location of the files. These notes are
discussed further in the following code samples.

First a URL Generator web method should be added to the
web service, this method will accept one parameter which is
the filename and returns to the consuming project the URL to
the MediaViewer ASPX page with the encrypted filename,
this URL can be used in the website or project to link its users
to the media file in the Media Viewer.

Figure 10: using UploadFile Web Service Method from the
website

Based on the returned value from the web service, the user
should be notified with a corresponding display message as
follows:

Thank you
your profile picture has been uploaded successfully.

[WebMethod]
public String GetMediaFileURL(String FileName)
{

FileName =
System.Web.HttpUTtility.UrlEncode(MyEncrypt(FileName));

return
“http://www.myUniversityDomain.com/myUniversityWebServices/M
ediaViewer.aspx?filename="+ FileName;

}

Figure 11: UploadFile response display message to the
user

3. DISPLAYING FILES FROM THE
MEDIA WEB SERVICE

After uploading files to the media server, the web service need
to provide ways to allow the different websites and projects to
view the uploaded files. Two main techniques should be
supported to provide full capabilities to the service consumers.

e Media Viewer Page and its URL Generator Web
Method

e Media Web Handler and its URL Generator Web
Method

3.1 Media Viewer Page and its URL
Generator Web Method

In this technique, a special Media Viewer Page is prepared on
the media web service project to view the different media
files, and a Web Method is designed to create the exact link to
the media in the viewer file.

The Media Viewer Page (ASPX page) would accept a Query
String to the desired media file name and the file would be
processed within the page and displayed to the user[9].

In this technique two notes must be taken into consideration,
the first one is that the web service should handle the media
file name in an encrypted matter in order not to show the
exact filename that is being shown. This is extremely
important specially if the media file names contain numeric

Figure 12: using GetMediaFileURL Web Service Method
from the website

Note that MyEncrypt is a user-defined method that should be
used to encrypt the filename in order to append it to the query
string of the generated Media File URL.

Regarding the UrlEncode method it is a built-in method that
converts characters that are not allowed in a URL such as
blanks and punctuations into character-entity equivalents.

So when a project uses the GetMediaFileURL web method to
get the URL of a file like studentl.jpeg the result would look
something like this:

http://www.myUniversityDomain.com/myUniversityWebServ
ices/MediaViewer.aspx?filename=UXrvDOtCNxY CApFCyw
KGo

When the user clicks this generated link, the Media Viewer
ASPX page is called and the encrypted filename is passed as a
parameter to it.

| MediaViewer.aspx?file=UXrvDOtCNXYCApFCywKGouNIKO3P2

Figure 13: using GetMediaFileURL Web Service Method
from the website

The Media Viewer page then receives the encrypted file name
query string parameter, decodes it, and displays the specified
content in the web browser as shown in the following figure:

42

<htmlI>
<body>
<formid="form1"runat="server">
<div>

Welcome to File Viewer!
<%

String DestServer = "d:/Uploads/";
String filename = "" + Request.QueryString[filename"];

filename =
MyDecrypt(System.Web.HttpUtility.UrIDecode(filename));

Response.Clear();
String fileFullPath = DestServer + filename;

if (System.10.File.Exists(fileFullPath))

{

Response.ContentType =
getFileContentType(getFileExtension(filename));

Response.WriteFile(fileFullPath);
Response.End();

}
else

{

Response.Write("File Not Found.");
}
}

OA)>
</div>
</form>
</body>
</html>

Figure 14: Media Viewer ASPX Page

As shown in the previous figure, the Media Viewer gets the
filename from the Query String, URL decodes it, decrypts it
back to its original value, then appends the physical location
of the uploads folder to the filename and displays the content
of the file based on the content type of its extension to the
client. Note that using the WriteFile method from the
response, avoids the displaying of the actual physical location
of the media file in the resulting output.

To use this technique from the consumer part, the
GetMediaFileURL is called to get the correct URL of the
media file and a link is created to the generated Media Viewer
URL to allow the user to view the file as shown in the
following figure:

International Journal of Computer Applications (0975 — 8887)

Volume 186 — No.81, April 2025

The user would see on his browser a link that when clicked
will open the media file in the MediaViewer ASPX page as
shown in figure:

Click Here To View The Profile Picture

MediaViewer aspxifie=UXrvDOICHXYCA

Figure 16: the output of the GetMediaFileURL sample
code

3.2Media Web Handler and its URL
Generator Web Method

This second technique provides for the media web service
consumers the ability to view the media content through their
pages such as images or videos. As the first technique, a web
method must be created to generate the URL of the desired
media file, in addition to providing a web handler (ASHX)
page to return the content of the media[10].

The URL generator method is similar to the one used in the
first technique, but the return URL will point the web handler
that will be used to handle the media content as shown in the
following figure:

[WebMethod]
public String GetMediaFileHandlerURL(String FileName)
{

FileName =
System.Web.HttpUTtility.UrlEncode(MyEncrypt(FileName));

return
“http://www.myUniversityDomain.com/myUniversityWebServices/M
ediaHandler.ashx?filename="+ FileName;

}

<%

UniversityWebServiceuniws = new UniversityWebService ();
String mediaURL = uniws.GetMediaFileURL ("profilepicl.jpeg");
%>

<a target="_blank” href="<%= mediaURL%>">Click Here To View
The Profile Picture

Figure 17: using GetMediaFileHandlerURL Web Service
Method from the website

Notice that we also want to encode and encrypt the filename
in the generated URL.

The ASHX Media Web Handler is also similar to Media
Viewer File in the first technique, but instead of viewing the
content in the ASPX page, it returns the content for displaying
to the consumer project, as shown in the figure:

Figure 15: using GetMediaFileURL Web Service Method
from the website

publicclassMediaHandler : IHttpHandler
{

publicvoid ProcessRequest(HttpContext context)

{
String DestServer = "d:/Uploads/";
String filename ="" +

43

context.Request.QueryString[filename"];

filename =
MyDecrypt(System.Web.HttpUtility.UrIDecode(filename));

String fileFullPath = DestServer + filename;

if (System.10.File.Exists(fileFullPath))

{
String fileExt = getFileExtension(fileFullPath);

if (isimgExt(fileExt))
{
String contentType = getFileContentType(fileExt);

System.Drawing.Imaging.ImageFormat imgFormat =
FileSrvc.FileSrvcFunctions.getimageFormat(fileExt);

context.Response.ContentType = contentType;

System.Drawing.Image olmg =
System.Drawing.Image.FromFile(fileFullPath, true);

olmg.Save(context.Response.OutputStream,
imgFormat);

olmg.Dispose();
}
elseif (isVideoExt(fileExt))
{
String contentType = getFileContentType(fileExt);
context.Response.ContentType = contentType;
context.Response.WriteFile(fileFullPath);

Figure 18: the Media Handler code

Note that the isImgExt and is VideoExt are user-defined
methods that check if the media extension is one of the images
extensions such as jpg,jpeg,png,gif or one of the video
extensions such as mp4,avimpeg. Likewise, the
getFileExtension and getFileContentType as also user-defined
methods that extracts the extension part of the file name and
gets the corresponding content type based on it.

To use this technique from the consumer part, the
GetMediaFileHandlerURL is called to get the correct URL of
the media file and the generated Media Handler link is used to
view the media in the project to the user as shown in the
following figure:

<%

UniversityWebServiceuniws = new UniversityWebService ();
String mediaURL = uniws.GetMediaFileHandlerURL
("profilepicl.jpeg");

%>

<img src="<%= mediaURL%>"/>

International Journal of Computer Applications (0975 — 8887)

Volume 186 — No.81, April 2025

¥

Figure 20: the output of the GetMediaFileHandlerURL
sample code

4. ENHANCING THE MEDIA WEB
SERVICE

Many features can be added to the base media service type
discussed in the previous parts, of these two major features are
discussed to enhance the functionality and security of the web
service which are:

e Arranging Media Service Types

e Providing Consumer Authentication

4.1 Arranging Media Service Types

In the previous parts, all the media files uploaded by the
different media web service consumers are expected to be
found in exactly the same location, which might be applicable
for some cases specially if the number of consumers is few or
the number of expected media files is limited, but in most
cases this scenario is not the desired one, and an arrangement
of the uploaded media files in sub locations are much needed.
To achieve such arrangement, a service type must be set when
processing the media files in the web service.

First, a Database Table must be created to store the service
type information for each required service in the logic
architecture. For each service we store a unique service ID,
descriptive name, the physical sub location name, and a String
Keyword that we’ll be using in later parts, as shown in the
following figure:

1 Registration REG_FOLDER REG
System

2 ELearning System | ELEARN_FOLDER | ELEARN

3 Employee Portal EMP_FOLDER EMP

4

Figure 19: using GetMediaFileHandlerURL Web Service
Method from the website

The user would see on his browser the desired media file from
the content returned by the Media Handler ASHX page as
shown in figure:

Figure 21: Media Services Database Table Sample

These services will have its own physical sub folder within
the media service storage location, as shown in the following
figure:

44

Main Media

Storage Folder

L

REG_FOLDER ELEARN_FOLDER EMP_FOLDER

International Journal of Computer Applications (0975 — 8887)

Volume 186 — No.81, April 2025

The Media Viewer ASPX page as well will use now the
received Service Type ID to get the appropriate Service Sub
Directory to view the correct media file as shown in the
following figure:

Figure 22: Media Service Storage Sub Systems
Architecture

This Service type must be provided by the consumer projects
when accessing the different web methods of the media web
service. The UploadFile web method for example, must be
modified to accept a service type in addition to the filename
and file content. This service type is then used to get the
corresponding sub folder of the service, to upload the media
file to the correct sub folder in the media storage architecture
as shown in the following code sample:

[WebMethod]
public Boolean UploadFile (int ServiceTypelD, String fileName, String
base64Content)

{
String DestFolder = “PhysicalUploadFolderPath”;

String subDIR = //get the Directory that matches the service type ID from
DB

Boolean fileUploaded = false;
/lthe code to save the file from byte array format onto the server
string filePath = DestFolder + subDIR+ fileName;
try
{
File.WriteAlIBytes(filePath, bytes);
fileUploaded = true;

}
catch (System.Exeption exp)
{
/llog exception
}
return fileUploaded; }

}

Figure 23: Upload File Web Method with Service Types.

Likewise, the GetMediaFileURL would also accept the
service type ID in addition to the filename, and both
parameters are passed to the Media Viewer Page as shown in
figure:

[WebMethod]
public String GetMediaFileURL (int ServiceTypelD, String FileName)

{

String ServiceTypelDEnc =
System.Web.HttpUtility.UrlEncode(MyEncrypt(ServiceTypelD));
FileName =
System.Web.HttpUtility.UrlEncode(MyEncrypt(FileName));

return
“http://www.myUniversityDomain.com/myUniversityWebServices/M
ediaViewer.aspx?ServiceTypelDEnc="+

ServiceTypel DEnc+"&filename="+ FileName;

}

<html>
<body>
<formid="form1"runat="server">
<div>
Welcome to File Viewer!
<%
String DestServer = "d:/Uploads/";

String ServiceTypelDEnc =" +
Request.QueryString[“ServiceTypelDEnc"];

int ServiceTypelD =
MyDecrypt(System.Web.HttpUtility.UrIDecode(Service Typel DEnc))

i

String subdir = //get the Service Directory that matches the service
type ID

String filename = "" + Request.QueryString[“filename"];

filename =
MyDecrypt(System.Web.HttpUtility.UrIDecode(filename));

Response.Clear();
String fileFullPath = DestServer + subdir + filename;

if (System.l10O.File.Exists(fileFullPath))

{

Response.ContentType =
getFileContentType(getFileExtension(filename));

Response.WriteFile(fileFullPath);
Response.End();

}
else

{

Response.Write("File Not Found.");
}
}

%>
</div>
</form>
</body>
</html>

Figure 25: Media Viewer ASPX Page with Service Types.

The consumer website now just provides the required Service
Type Id when accessing the media viewer web service
methods to identify which service type to use to upload or
view the desired media file as shown in the figure:

Figure 24: GetMediaFileURL Web Service Method with
Service Types

<%

UniversityWebServiceuniws = new UniversityWebService ();

String mediaURL = uniws.GetMediaFileURL (1,"profilepicl.jpeg");
%>

<a target=""_blank” href="<%= mediaURL%>">Click Here To View
The Profile Picture

Figure 26: using GetMediaFileURL Web Service Method
from the website with service types.

45

This previous sample will get the media URL of the media file
profilepicl.jpeg from within the Registration sub system in
the media storage.

This enhanced sub system technique can be further improved
to allow more coding readability and minimize errors by using
the Service Keywords with their IDs in the database as
dynamicEnumeration Type values to be used by the service
consumers.

An Enumeration type (or Enum type) is a value type defined
by a set of named constants of the underlying integral numeric
type, this Enum can be generated dynamically to create a
Dynamic Link Library file (DLL) containing all the service
types from the database service table, and allow the media
service consumers to access these service types through there
Keyword values instead of the integer ones, which would be
easier to read and avoids the error of using a wrong service
type IDs.

To create the dynamic service types Enum, a simple code can
be used to loop through the services and generate a Key-1D
Enum pair for each service in the database as shown in the
figure:

International Journal of Computer Applications (0975 — 8887)

Volume 186 — No.81, April 2025

case the unauthenticated users can use the web service to
upload or view files from the Media storage, which should be
quite an easy task for a hacker. In this case further security
concerns should be taken into consideration, with the main
step should be to enforce a password to be sent from the
different consumers of the media web service, this password
can be used both as a way to authenticate the access to the
web service, and also can be used to allow different
consumers to access different web methods of the web service
if needed.

AppDomain currentDomain = AppDomain.CurrentDomain;
AssemblyName name = new AssemblyName("UniServiceTypes");

AssemblyBuilder assemblyBuilder =
currentDomain.DefineDynamicAssembly(name,

AssemblyBuilderAccess.RunAndSave);

ModuleBuilder moduleBuilder =
assemblyBuilder.DefineDynamicModule(name.Name,name.Name +
"dily;

EnumBuilder myEnum =
moduleBuilder.DefineEnum("Enumerated Types.UniServiceTypes
e", TypeAttributes.Public, typeof(int));

foreach (// loop through the SIDs, SKeys from the Database table)
{
myEnum.DefineL.iteral(SKey, SID);
}
myEnum.CreateType();
assemblyBuilder.Save(name.Name + ".dII");

[WebMethod]

public String GetMediaFileURL(String password,int ServiceTypelD,
String FileName)

{

if (//check usagekey is authenticated and can access this web
method from database)

{

String ServiceTypelDEnc =
System.Web.HttpUTtility.UrlEncode(MyEncrypt(ServiceTypelD));

FileName =
System.Web.HttpUTtility.UrlEncode(MyEncrypt(FileName));

return
“http://www.myUniversityDomain.com/myUniversityWebServices/M
ediaViewer.aspx?ServiceTypel DEnc="+
ServiceTypelDEnc+"&filename="+ FileName;

}

else

{

throw new Exception(InvalidKeyExceptionMsg);

@,

return *7;

}

Figure 27: Create the dynamic Service Types Enum DLL.

This created DLL file that contains the dynamic Service
Types Enum, can be accessed from all the media service
consumers, in order to use the Enum as the service type as
shown in the following figure:

<%

UniversityWebServiceuniws = new UniversityWebService ();

String mediaURL = uniws.GetMediaFileURL
(UniServiceTypes.REG,"profilepicl.jpeg");

%>

<a target=""_blank” href="<%= mediaURL%>">Click Here To View
The Profile Picture

Figure 28: using GetMediaFileURL Web Service Method
with service types from the Dynamic Enum.

4.2Providing Consumer Authentication

If the web service is published online, and the service
consumers are connecting to the service though the internet,
then there is a great risk in hand in case the URL of the web
service is known to any unauthenticated users, because in this

Figure 29: GetMediaFileURL Web Service Method with
authentication

In this case we are pretty sure that only the consumers who
have valid passwords can access the web methods even if the
web service is on public networks or on the internet.

5. SHARED MEDIA WEB SERVICE
ARCHITECTURE ANALYSIS

The proposed shared media architectural techniques
providedevelopers and programmers with great flexibility to
manage multiple related websites, projects orapplications in
the best possible way. These techniques have offered a lot of
benefits but at the same time have had some limitations.

5.1 Advantages of using a Shared Media

Web Service Architecture
Some of the advantages of using a shared media web service
architectureare:

e After preparing the media web service architecture for
the first time, any new website or project would save
itself time and effort to add the media management
functionality.

e Projects and Websites can be deployed in a load
balancer model, to reduce the traffic on one site,
without any problems regarding any missing or
duplicate media files or consistency issues.

46

e Archiving systems would be much easier because of
the minimum size needed for them, because all the
media files are separate from the original projects.

e Server administrators can move the storage location or
increase its size or even install new anti-virus soft
wares on it without any need to change any
application that uses the media web service.

e Any new application with different programming
languages or development environments can be easily
added to the business with minimum effort and time
because all the functionally is already prepared by the
web service and all the media files are shared in a
cross-platform technique.

5.2 Disadvantages ofusing a Shared Media

Web Service Architecture
Here are some of the disadvantages of using a shared media
web service architecture:

e It needs more time initially to set up the needed media
web service architecture, although it saves greater
times later on.

e Some extratime is needed to upload and retrieve the
media files from the web service in opposite to using
local projects to store the media files.

6. CONCLUSION

Many businesses need to have multiple applications or
projects serving the clients and users of it, these applications
can vary in programming languages and development
environments. Developers of such multi-system environments
are forced to deal with the overhead of dealing with shared
media files. In this paper, a shared media web service
architectural design and implementation is represented and
discussed in details to suggest the best possible techniques of
such a business architecture to provide the consistency and
flexibility among the different business applications and
reduce as much obstacles that come with maintainingsuch an
architecture.New and improvedideas and techniques need to
be researched and invented to provide betterarchitectural
designs to try to minimize the few disadvantages that still

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)

Volume 186 — No.81, April 2025

exist and to fulfill the growing changes and demands in the
world of business application developments and programming
technologies.

7. REFERENCES

[1] Nawir, F., & Hendrawan, S. A, "The Impact of Website
Usability and Mobile Optimization on Customer
Satisfaction and Sales Conversion Rates in E-commerce
Businesses in Indonesia”, The Eastasouth Journal of
Information System and Computer Science, 2024.

[2] Vardhan, M., Kushwaha, D.S., "File replication and
consistency maintenance mechanism in a trusted
distributed environment”, CSI Transactions on ICT,
Springer, 2013.

[3] Newcomer E., Understanding Web Services -
XMLWSDLSOAP, 1st ed. AddisonWesley Professional.
Boston, United Stated of America. (2002).

[4] Ugurlu T., Pro ASP.NET Web API: HTTP Web Services
in ASP.NET (Expert's Voice in .NET), 1st ed. Apress.
New York, United Stated of America. (2013).

[5] "kSOAP2" Kilobyte Objects,[Online].Available:
http://kobjects.org/. [Accessed 16March 2025].

[6] Perkins B., Jon D. Reid, Beginning C# and .NET, 2021
Edition. John Wiley &Sons, Inc., Hoboken, New Jersey,
United Stated of America. (2021).

[7] Sumartono 1., Siahaan A., Arpan A., "Base64 Character
Encoding and Decoding Modeling", International Journal
of Recent Trends in Engineering & Research, 2016.

[8] Kumar K., Pandey B., Next Generation Mechanisms for
Data Encryption, 1% Edition, CRC Press, Florida, United
Stated of America. (2025).

[9] Danylko J., ASP.NET 8 Best Practices: Explore
techniques, patterns, and practices to develop effective
large-scale .NET web apps, 1st ed. Packt Publishing Ltd.
Birmingham, UK. (2023).

[10] Millett S., Professional ASP.NET Design Patterns, 1st
ed. Wiley Publishing, Inc. Indiana, United Stated of
America. (2010).

47

