
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

39

Shared Media Web Service Architecture Design

Waseem I. Bader
Al-Salt College for Human Sciences,

Al-Balqa Applied University, Al-Salt, Jordan

ABSTRACT
As new devices and technologies are invented to access the

internet, from computer desktops, laptops, mobile phones to

smart tvs, there has been a great need to upgrade the techniques

used in the field of website design, because these new devices

come along with their own specific sizes and views. Although

most devices & technologies try to be as compatible as possible

with the common web design features, but there has been an

absolute need for website designers to do a lit bit more to adapt

to the fast growing race in internet devices and provide all their

viewers with the best possible experience while accessing their

websites. In this paper, we present the different techniques used

in creating responsive website designs that could adapt to

different technologies and devices while at the same time

focusing on cutting down the time and effort needed for a

website designer or programmer to maintain and edit his/her

website. The code samples in this paper were implemented using

the ASP.net programming language, but it can be implemented in

other development languages and environments using the same

concepts.

Keywords
Responsive Website Design, Dynamic Website, Adaptive Design

1. INTRODUCTION
Web application development has come a long way since the

beginning of the World Wide Web. The web environment today

uses HTML and CSS to view data and content to users while

JavaScript is used to interact with the client. These technologies

are called “front-end” or “client-side” technologies. “Back-end”

or “server-side” technologies on the other hand refer to the

technologies that execute on the server before the response is

sent to the client, which are responsible of data storage and

processing technologies, etc. [1][2]

In the early web development period, website designers didn’t

often need to worry much about how their website will look like

to different clients, because in general most of the users would

access their work from often similar desktop computers with

close screen resolution ranges, and their work would look very

similar to the original design made by the designer. This has

enabled many web designers to even use static specific

dimensions in their web design.

But today internet technologies are upgrading fast and different

devices are used and developed to access the internet, therefore

websites developed and designed by web designers and

programmers are viewed and accessed by a large number of

devices with different screen resolutions, orientations and views.

This fast upgrade in internet accessing devices has significantly

improved the number of users accessing the internet around the

world [3][4], but at the same time it has added more work on

website designers, because now they have to deal with many

viewing devices and technologies accessing their work. These

devices have different size ranges and capabilities making their

work a wonderful beauty on one device and a total mess on the

other.

Nowadays users access the same website from desktop

computers, laptops, mobile phones, iPhones, iPads, Blackberries,

notebooks, feed readers and even smart TVs. Each platform

displays the same page in a different feel from the others

depending on its size and viewing capabilities.

Whenever a user enters a website, he looks for a user-friendly

interface, quick access to his/her needs and a comfortable content

view without the need to worry about how they are accessing it.

[5] On the other hand, web designers and programmers have to

guarantee, as much as possible, to provide such an experience to

all their clients and from all the different internet-accessing

technologies.

Nowadays, with the huge improvement in mobile phones and its

ever growing increase in their popularity, as published reports

indicate that at least 65% of people aged 18-29 are accessing the

internet using mobile devices [6], therefore more responsive or

adaptive website design techniques are needed and used to

ensure the best possible viewing experience to the users.

Figure 1: Different Devices with various screen sizes and

resolutions

Responsive Web Design (RWD) is a name given to the set of

techniques used to develop one single website which adapts itself

on different devices and is capable of reshaping itself depending

on various screen sizes, resolutions and orientations from the

largest devices like the internet TV to the smallest ones on

mobile devices, another name used to describe it is “Adaptive

Web Design” which as its name indicates refers to the techniques

used in a website to enable it to adapt to different viewing

devices. [7][8]

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

40

Figure 2: Different Internet Devices Resolutions

2. RESPONSIVE WEB DESIGN

TECHNIQUES
There are three common techniques to prepare a responsive

website design:

• Fluid grid layouts (Relative-based grid).

• Flexible images and media.

• Media queries and screen resolution.

2.1 Fluid Grid Layouts
A website is generally built in a grid-based layout using HTML

tables or divs. Responsive web design is applied on the website

grid layout to enable it to be viewed smoothly on multiple

devices by specifying percentage-based dimensions to the web

page grid, this allows that part to resize or rearrange based on the

current viewing size. [9]

For example, if we have a website which contains a header, a

menu and a content part with a width of 1024 pixels as a whole

as shown in Figure.

Figure 3: Static Grid Layout

If we specify the widths of the three parts as static numbers then

the view of the website will be constant on all the different

devices, thus, larger screened devices will show the content to be

very small, while smaller ones will be too big to view it as shows

in figure:

Figure 4: Static Layout Example

So by using the Fluid Grid Layout technique we specify the

dimensions of the desired page in proportion to the maximum

size of the page. Thus the width of the header will be 100%

which is correspondent to the 1024 pixel of the whole page, for

the menu, the 256 pixels is equivalent to 25% of the maximum

size which is calculated as (256 / 1024) * 100 = 25% and the

content part will be (768 / 1024) * 100 which is equal to 75% of

the total page, so the resulting relative-based values of the same

page will be:

Figure 5: Dynamic Grid Layout

This can be achieved using HTML as follow:
<html>
 <body>
 <table width=”100%”>
 <tr>
 <td colspan=”2”>HEADER</td>
 </tr>
 <tr>
 <td width=”25%”>MENU</td>
 <td width=”75%”>CONTENT</td>
 </tr>
 </table>
 </body>
</html>

Figure 6: Fluid Grid Layout Code

Or by using the cascading style sheet (CSS) as shown:

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

41

<html>
 <head>
 <style type=”text/css”>
 #header { width:100%;}
 #menu { width:25%;}
 #content { width:75%;}
 </style>
 </head>
 <body>
 <table width=”100%”>
 <tr>
 <td id=”header” colspan=”2”>HEADER</td>
 </tr>
 <tr>
 <td id=”menu”>MENU</td>
 <td id=”content”>CONTENT</td>
 </tr>
 </table>
 </body>
</html>

Figure 7: Fluid Grid Layout Code with CSS

Therefore with the Fluid Grid Layout technique, the webpage

will be viewed with regards to the percentage perspective of the

current viewing device.

Figure 8: Fluid Grid Layout on different devices

2.2 Flexible images and media:
In this technique images or media in a webpage will

automatically resize or crop in regards with the current viewing

size or resolution, this can be done either by using relative

dimensions as in the previous section, cropping extra parts of an

image in smaller screen sizes or even by completely hiding an

image as screen size decreases [10].

Using relative dimensions:

Similar to the Fluid Grid Layout technique, relative dimensions

are used for images (or media) in a webpage instead of using

static values, for example for a 512px image in an 1024px page,

we can use a relative percentage number instead of 50% so now

its size will expand or shrink based on the entire page dimensions

to fill exactly half the page.

Figure 9: Relative Image Dimensions

This can be done by just specifying a 50% width for the image

width as follows:

<html>
 <body>
 …

 …
 </body>
</html>

Figure 10: Flexible Images Code

Cropping images:
An image can also be cropped to a specific width by using some

cascading style sheet (CSS) techniques as follows:

Figure 11: Image Cropping

<html>
<head>
 <style type="text/css">
 #cropdiv {
 width: 200px;
 height: 150px;
 overflow: hidden;
 }
 </style>
</head>
<body>
 <div id="cropdiv">

 </div>
</body>
</html>

Figure 12: Image Cropping Code

In this technique an image is cropped to a certain view window

and all the extra part of the image will be hidden. Although in

this example cropped width and height must have static values

but in the next section we will discuss how to prepare different

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

42

sizes for a crop container or even hide it completely using media

queries.

2.3 Media Queries and screen resolutions:

This RWD technique uses CSS3 media queries capabilities to

provide multiple fixed versions of an element for each screen

resolution range as follows [10][11][12]:

<html>
 <head>
 <style type=”text/css”>
 @media screen and (max-width:400px)
 {
 img
 {
 width: 200px;
 }
 }
 @media screen and (min-width:401px) and (max-
width:799px)
 {
 img
 {
 width: 400px;
 }
 }
 @media screen and (min-width:800px)
 {
 img
 {
 width: 800px;
 }
 }
 </style>
 </head>
 <body>
 …

 …
 </body>
</html>

Figure 13: Media Queries Code Sample

In the above example CSS3 media queries will be selected based

on the current viewing resolution, that is all browsers viewing the

current page from any source with a width less than 400px will

show the image with a fixed 200px width, likewise browsers

with resolution widths between 401px to 799px will show the

same image but with a 400px width, and all other browsers with

widths over 800px will show the image with an 800px width.

This techniques is clearly different from the relative values used

before which will change the width of an image in proportion

with every resolution value, here in this example on three

different “steps” of widths are provided for specific resolution

ranges.

Notice that the “screen” value means use this media query if the

content is viewed on any screen, there is another value that can

be used here which is “print” which means that this media query

will be used when printing it out only. So there can be different

styles between the screen and print out versions of a webpage

besides their resolutions.

Some other important options for the media query are using

“min-height” and “max-height” which clearly means the current

minimum and maximum height of the viewing browser. There is

also an option to check whether the current view is in “portrait”

or “landscape” view, by checking the “Orientation” value of

the media query, for example the following media query will be

used only for viewing browsers with minimum width of 400px

and in its landscape orientation and only when printed:

…
 @media print and (min-width:400px) and (orientation:
landscape)
 {
 //add desired css style here
 }
…

Figure 14: Media Queries Code Sample B

This technique can also be used to choose different sources for

an image, for example one source would be prepared for high

screen resolutions and another for lower ones and by using media

queries it is possible to check the users screen resolution and

choose the right source to view. Thus we can prepare a low-

resolution copy of an image to save some transmitting bandwidth

to smaller resolution devices as shown in the next example:

Figure 15: Different Image Sources

<html>
 <head>
 <style type=”text/css”>
 @media screen and (max-width:400px)
 {
 img [data-src-A]
 {
 content: attr(data-src-A, url);
 }
 }
 @media screen and (min-width:401px)
 {
 img [data-src-B]
 {
 content: attr(data-src-B, url);
 }
 }
 </style>
 </head>
 <body>
 …
 <img src=”aqsa.png” data-src-A=”aqsa.png” data-src-
B=”aqsa_big.png” />
 …
 </body>
</html>

Figure 16: Media Queries Code Sample with Different Image

Sources

So depending on the current viewing resolution and using CSS3

media queries one of the two prepared images will be used,

notice how in the HTML “img” tag we set the urls of both copies

with the user defined attributes to be matched in the style sheet.

CSS3 media queries is a very powerful technique to create

Adaptive web design, it can also be used to change the whole

viewing experience of a website, for example it can be used to

hide or show elements based on different sizes so that less

important parts can be eliminated in the viewing port in order to

save more space for more important parts of the page.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

43

Figure 17: CSS3 Media Query Example

As seen in the previous figure, the same webpage is shown in

different ways depending on the viewing size. Larger screens

show 3-columned page layout, medium screens show 2 columns

and smaller screens will show only 1 column. To do so, CSS3

media queries and “display” property is used as follows:

<html>
 <head>
 <style type=”text/css”>
 @media screen and (max-width:400px)
 {
 #div1 { display: block;}
 #div2 { display: none;}
 #div3 { display: none;}
 }
 @media screen and (min-width:401px) and (max-width:799px)
 {
 #div1 { display: block;}
 #div2 { display: block;}
 #div3 { display: none;}
 }
 @media screen and (min-width:800px)
 {
 #div1 { display: block;}
 #div2 { display: block;}
 #div3 { display: block;}
 }
 </style>
 </head>
 <body>
 …
 <div id=”div1”>….</div>
 …
 <div id=”div2”>….</div>
 …
 <div id=”div3”>….</div>
 …
 </body>
</html>

Figure 18: Hiding Elements Using Media Queries

As shown in example, “display” property will be toggled

between “block” which makes the element visible in the

webpage and “none” which indicates a hidden element based on

different screen sizes.

Also a complete external style sheet file with its specific look

and feel can be used for different screen size by using media

queries as follows:

<html>
 <head>
 <link rel=”stylesheet” type=”text/css” media=”screen and (max-
device-width: 480px)” href=”styleA.css” />
 <link rel=”stylesheet” type=”text/css” media=”screen and (min-
device-width: 481px)” href=”styleB.css” />
 </head>
 <body>
 <p> Hello World! </p>
 </body>
</html>

Figure 19: Different External CSS Style Sheets With Media

Queries

Where both external CSS files contain their own specific styles

for example:

Figure 20: External CSS Style Sheets Example

This will show the “Hello World!” paragraph with a font size

12pt in devices with maximum resolution width 480px while it

will be shown with font size 18pt for others as shown in figure:

Figure 21: Different external style sheets applied by media

queries

Notice that the difference between “min-width” and “min-

device-width” is that “min-width” specifies the minimum width

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

44

of the browser, while “min-device-width” specifies the minimum

device screen width, which will be different in case the used

browser, is not maximized to full screen of the device screen as

shown in figure.

Figure 22: Difference between min-width and min-device-

width

Also notice that there are others means of achieving responsive

typography that can be used such as by specifying the font size

using “em” or “%” values instead of pixels or points. As pixels

and points represent fixed font-sizes, while both “em” and “%”

values will represent relative font size of the general page font

size.

For example if the website general font size is 16px, a containing

part with a font size equal to “1em” is equivalent to “100%”

which is 16px in our case. If the font size is changed to “2em” it

is equivalent to “200%” which is 32px, we can also use “0.5em”

or “50%” to represent half the general font size which is 8px in

our example.

Figure 23: CSS font-size examples

We should also keep in mind that CCS3 media queries are not

supported for all web browsers available. Though it is supported

on most newer browsers versions such as in Internet Explorer

(IE) 9+, Firefox 3.5+, Safari 3+, Opera 7+, as well as on smart

phones and others. [13]

For older browsers versions there are some JQUERY libraries

that can be imported and used instead to perform the same

results.

3. SERVER-SIDE RESPONSIVE WEB

DESIGN
The three common responsive web design techniques discussed

in the previous section is of great help to create an adaptive

website design for most of the internet devices, at the same time,

there are some server-side RWD techniques that could take some

more time to prepare, but serve as a great help in achieving a

Responsive Web Design.

Taking into considerations that there are some devices and

browsers which are not compatible with CSS3 media queries,

these server-side coding techniques can serve as a good help as

well. In these techniques the webpage is prepared to suite the

current client viewing window as much as possible, and the web

designer will determine the best techniques to use in his work.

These techniques will be explained through a code example, so

first we will prepare a “RWD” class (layer) that will deal with

the adaptive web design functionalities:

public class RWD
{
 …
}

Figure 24: Responsive Web Design Server-Side Layer

3.1 Desktop/Laptop vs. Mobile Requests
The first function needed in the “RWD” layer is

“isMobileRequest” which determines if the current request to

the website is coming from a desktop computer or from a mobile

device, where the function return true if so and false otherwise.

public class RWD
{
 public static Boolean isMobileRequest()
 {
 Boolean res = false;
 ...
 return res;
 }
}

Figure 25: isMobileRequest function in RWD Layer

Every Http Request sent from any internet device to a website

contains a value of the current internet browser used to send the

request and is stored in the server variable

“HTTP_USER_AGENT”, for example the value of the User-

Agent Server variable in the HTTP request sent from a Chrome

browser would look like: [14]

Figure 26: Google Chrome User Agent Sample

This server variable can be accessed through code to determine

the current request source device. In the following code snippet

the result of the HTTP_USER_AGENT is referenced by the

String reference “useragent”.

public class RWD
{
 public static Boolean isMobileRequest()
 {
 Boolean res = false;
 String useragent =
HttpContext.Current.Request.ServerVariables["HTTP_USER_AGENT"];
 ...

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

45

 return res;
 }
}
Figure 27: Accessing HTTP_USER_AGENT in Server-Side

Code

Then we should compare the source browser with the available

mobile browsers and if the match is found then this request was

sent from a mobile phone, else it is sent from a desktop computer

or a laptop. In the example we will use Regular expressions to

store the available mobile browsers and regular expression

functions to match the user agent values. [15]

In general, if the HTTP_USER_AGENT value contains one of

the following patterns then it is coming from a mobile phone:

• Mobile

• iPhone, iPod, iPad -> this can be translated in

Regex as “iP(hone|od|ad)”

• Android

• BlackBerry

• IEMobile

• Kindle

• NetFront

• Silk-Accelerated

• hpqOS, webOs -> “(hpw|web)OS” in Regex

• Fennec

• Minimo

• Opera Mobi, Opera Mini -> “Opera M(obi|ini)” in

Regex

• Blazer

• Dolfin

• Dolphin

• Skyfire

• Zune

Thus the complete Regex expression would be:

“/Mobile|iP(hone|od|ad)|Android|BlackBerry|IEMobile|Kindl

e|NetFront|Silk-

Accelerated|(hpw|web)OS|Fennec|Minimo|Opera

M(obi|ini)|Blazer|Dolfin|Dolphin|Skyfire|Zune/”.

These user agent values are specific for mobile browsers and

cover almost all of them. In the following code snippet a

complete extended list of mobile phone browsers brands and

versions is used to determine if the current request is coming

from a mobile phone.

public class RWD
{
 public static Boolean isMobileRequest()
 {
 Boolean res = false;
 String useragent =
HttpContext.Current.Request.ServerVariables["HTTP_USER_AGENT"];

 Regex brand = new
Regex(@"(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|bla
zer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge
|maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm(
os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(
browser|link)|vodafone|wap|windows ce|xda|xiino",
RegexOptions.IgnoreCase | RegexOptions.Multiline);

 Regex version = new Regex(@"1207|6310|6590|3gso|4thp|50[1-
6]i|770s|802s|a wa|abac|ac(er|oo|s\-
)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|
au(di|\-m|r |s)|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-

(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-
|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-
d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1
u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-
|hi(pt|ta)|hp(i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-
(20|go|ma)|i230|iac(|\-
|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|k
eji|kgt(|\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg(g|\/(k|l|u)|50|54|\-[a-
w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-
cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-|
|o|v)|zz)|mt(50|p1|v)|mwbp|mywa|n10[0-2]|n20[2-
3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-
|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t
)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-
2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-
)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(0
1|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-
0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v
)|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-
mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-
9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-
v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-|
)|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-",
RegexOptions.IgnoreCase | RegexOptions.Multiline);

 if ((brand.IsMatch(u) || version.IsMatch(u.Substring(0, 4))))
 {
 res = true;
 }
 return res;
 }
}

Figure 28: Complete isMobileRequest function in RWD

Layer

Where the brand and version Regular Expressions try to match

the current browser with the available mobile browsers and if

matched a “true” value is returned from the function.

After preparing the “isMobileRequest” it can be used anywhere

in the website to determine if the current request is coming from

a mobile device or not as follows:

…

if (RWD. isMobileRequest())
{
 //code specific for mobile requests
}
else
{
 //code specific for desktop computers & laptops requests
}

…

Figure 29: Using isMobileRequest Function Example

Next we can prepare a “Pick” function that has 3 parameters:

• Computer value: this value should be used if request is

coming from a desktop computer or a laptop.

• Mobile value: this value should be used if the request is

coming from a mobile phone.

• All value: this value should be used in all cases.

This function will automatically pick the correct value based on

the current request source as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

46

public class RWD
{
 public static Boolean isMobileRequest()
 {
 …
 }
public static String Pick(String compVal, String mobVal, String all)
{
 if (isMobileRequest())
 {
 return mobVal + " " + all;
 }
 else
 {
 return compVal + " " + all;
 }
 }
}

Figure 30: Pick function in RWD Layer

After preparing the “Pick” function it can be used anywhere in

the website to choose between two values one for the

desktop/laptop computers and another for mobile computers for

example:

…
String imgwidth = RWD.Pick(“800”,”400”,”px”);
…

Figure 31: Using Pick Fucntion Example

This function will return “800px” for desktop/laptop computers

and “400px” for mobile phones. Then the “imgwidth” can be

used in the webpage as a dynamic value as follows:

…
<img src=”logo.png” width=”<%= imgwidth %>” />
…

Figure 32: Dynamic Binding Example

The previous code creates an image in the webpage with the

width based on the “imgwidth” value returned from the “Pick”

function. Notice that the dynamic value is bind to the html “img”

tag attribute using ASP.net inline displaying expression. [2]

An Overloaded version of the “Pick” function can be used

without the third parameter “all” for faster usage.

public class RWD
{
 public static Boolean isMobileRequest()
 {
 …
 }
public static String Pick(String compVal, String mobVal, String all)
{
 …
 }
public static String Pick(String compVal, String mobVal)
{
 return Pick(compVal, mobVal,””);
 }

}

Figure 33: Overloaded version of Pick

Where the same above example can be used as follows:
…

String imgwidth = RWD.Pick(“800px” , ”400px”);

…

Figure 34: Using Overloaded Pick Example

Server-side Client Resolution Access:
Moreover, with a lit bit of work we can access the client screen

resolution from the server-side code with the use of ASP.net

hidden fields and some JavaScript [16], lets take a look at the

code sample:

<html>
<body>
 <form id="form1" name="form1" runat="server">
 <asp:HiddenField id="clientScreenWidth" runat="Server" />
 <asp:HiddenField id="clientScreenHeight" runat="Server" />

 <%
 try
 {
 int hw = Int32.Parse("" + clientScreenWidth.Value);
 int hh = Int32.Parse("" + clientScreenHeight.Value);

 Session.Add("clientResolutionWidth",hw);
 Session.Add("clientScreenHeight", hw);
 %>

 <%
 if (hw > 1200)
 {
 %>
 BIG SCREEN LAYOUT
 <%
 }
 else
 {
 %>
 SMALL SCREEN LAYOUT
 <%
 }

 }
 catch (Exception exp)
 {
 //EMPTY SESSION VALUES
 }
 %>

 </form>
</body>
</html>

<script language="javascript" type="text/javascript">

 function getClientResolution() {
 document.getElementById('<%= clientScreenWidth.ClientID
%>').value = window.screen.availWidth;
 document.getElementById('<%= clientScreenHeight.ClientID
%>').value = window.screen.availHeight;
 }

 window.onload = function (e) {

if(<%=((""+Session["clientResolutionWidth"]).Equals("")).ToString
().ToLower()%>)
 {
 getClientResolution();
 document.forms['form1'].submit();
 }
 }
</script>
Figure 35: Server-Side Client Resolution Access Code

In this code, first we prepare two asp.net hidden field values to

store the client’s screen resolution width and height. After that

through a try/catch block we try to convert the two values stored

in the hidden fields from String to number, if an exception

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

47

occurred then there is no values stored for the client screen width

and height yet in the hidden fields. These values will be stored

later through the JavaScript code, since these values cannot be

accessed directly from server-side code.

If no exception occurs then the two hidden fields contains the

client screen width and height and the two values will be stored

in the server session so that it can be accessed everywhere in the

website. Using the Session to store these values will help us

perform this code only once during the client visit to the website.

Then these values can be used simply through conditions like in

the previous example to show different layouts based to specific

resolutions.

Finally the JavaScript Code at the end of the page, contains a

function called “getClientResolution” which will store the

current client screen resolutions into the hidden fields, The last

step is on the window “onload” event, that the server session

value for “clientResolutionWidth “ is checked if not found –

which means this is the first time this user accessed the page-

then the “getClientResolution” is executed and the form is

submitted to execute the code again with the client resolution

values submitted this time and stored in the hidden fields. The

client resolution values will be stored in the Server Session for

the whole time the user is communicating with the website even

for all the other pages thus this step will be performed only once

per website session. [2]

Although preparing such server-side layers might appear to take

a lot of time, but we should take into consideration that such

layers are prepared just once and then can be used in any project

later. So the time is only consumed once to prepare the layer.

4. RESPONSIVE WEB DESIGN

ANALYSIS
Responsive Web Design techniques have given website

designers great capabilities to achieve dynamic adaptive web

contents and have been a great breakthrough in the web

development process. These techniques have given web

designers a lot of benefits and at the same time have had some

limitations.

4.1 Advantages of Responsive Web Design:

[13]
Some of the advantages of Responsive Web Design are:

• Broadcasting content from a single webpage to multi-

devices and automatically adapting and resizing

content to the screen by making it easily read and

friendly viewed on each device, instead of making a

different copy of the webpage (or even a different

website) for each view which is very hard to maintain,

edit or upgrade.

• Users experience will be more fun and comfortable

without the need to zoom in or out or find it hard to

reach their needs since the display of the website is

properly viewed based on the current user device.

• Responsive Web Design can be used to serve up lower-

bandwidth images to mobile devices and save browsing

time and bandwidth.

• Hide non-essential elements on smaller screens to save

space for more important elements.

• Provide larger finger-friendly links and buttons for

mobile users.

• The Company saves more time and money by not

maintaining a mobile friendly site.

4.2 Disadvantages of Responsive Web Design:
Here are some of the disadvantages of Responsive Web Design:

• It is harder to implement by website designers and

programmers.

• Some of the Client-side Responsive Web Design is not

supported on all browsers or devices.

• The need to update the list of browser agents in the

server-side RWD for newly developed browser

companies.

• More processing time needed to switch the current

view into the proper display for the current device.

5. CONCLUSION

Since internet devices and technologies are changing very fast

there has been a great need of continuously adapting responsive

web designs to go along with it. In this paper, we presented the

different techniques to achieve Responsive Web Design showing

by example how it can be implemented, but these techniques are

still in their early stages, new ones will be produced as more

internet devices and technologies arrive. Web designers will also

provide different new opinions and techniques on how to achieve

complete Adaptive website design with minimum overhead costs

and will also continue to work in order to find new ideas to

match the changing world of devices, browsers and programming

technologies.

6. REFERENCES

[1] Dragos-Paul Pop, Adam Altar, “Designing an MVC Model

for Rapid Web Application Development” presented at the

24th DAAAM International Symposium on Intelligent

Manufacturing and Automation, 2013.

[2] J. Liberty, D. Hurwitz, Programming ASP.NET, 3rd ed.

O'Reilly Media. California, United Stated of America.

(2006).

[3] "Individuals using the Internet 2005 to 2014", Key ICT

indicators for developed and developing countries and the

world (totals and penetration rates), International

Telecommunication Union (ITU). Retrieved 25 May 2015.

[4] "Internet users per 100 inhabitants 1997 to 2007", ICT Data

and Statistics (IDS), International Telecommunication

Union (ITU). Retrieved 25 May 2015.

[5] Sharki, C. & Fisher, A. (2013). Jump Start Responsive Web

Design, Sitepoint Pty. Ltd: Australia.

[6] A. Gustafson "Adaptive Web Design", 2nd ed. New Riders,

United Stated of America. (2015).

[7] Smith, A., (2010). Mobile Access 2010. Pew Internet &

American Life Project, Jusly 7, 2010.

[8] S. Hay "Responsive Design Workflow", 1st ed. New Riders,

United Stated of America. (2013).

[9] MOHAMED, A.A., An Enhanced Approach to Responsive

Web Design Influid Grid Concept, 2015, JKUAT.

[10] B. Frain "Responsive web design with HTML5 and CSS3",

2nd ed. Birmingham : Packt Publishing Limited. (2015).

[11] C. Simmons "Instant Responsive Web Design".

Birmingham : Packt Publishing Limited. (2013).

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

48

[12] Gardner, B.S., Responsive web design: Enriching the user

experience. Sigma Journal: Inside the Digital Ecosystem,

2011. 11(1): p. 13-19

[13] Meltem Huri Baturay, Murat Birtane, “Responsive web

design: a new type of design for web-based instructional

content”, Ipek University, Ankara, Turkey, 2013.

[14] D. Gourley, B. Totty, M. Sayer, A. Aggarwal, S. Reddy

"HTTP: The Definitive Guide", 1st ed. O'Reilly Media, Inc.

(2002).

[15] J. Friedl "Mastering Regular Expressions", 2nd ed. O'Reilly

Media. California, United Stated of America. (2002).

[16] E. Brown "Learning JavaScript: JavaScript Essentials for

Modern Application Development", 3rd ed. O'Reilly Media.

California, United Stated of America. (2016).

7. AUTHOR’S PROFILE

Waseem I. Bader is an academic instructor at Al-Balqa’ Applied

University in Al-Salt, Jordan. He taught courses in Web Design

& Programming, and is currently the administrator of the official

website of the university. He has a Master Degree from the

college of Prince Abdullah Bin Ghazi for Information

Technology in Al-Balqa Applied University in Computer

Science.

