
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

49

Hardware Support for Intelligent Text Analysis using

FPGA for Accelerating Random Forest-based

Classification

Vishniakou Uladzimir Anatol'evich
Belarusian State University of Informatics and

Radioelectronics
Minsk, Belarus

Yu ChuYue
Belarusian State University of Informatics and

Radioelectronics
Minsk, Belarus

ABSTRACT

Efficient analysis and classification of text performed at the

edge of a network, especially on platforms with limited

resources such as embedded systems and FPGA devices,

creates computational challenges. Traditional CPU and GPU-

based natural language processing (NLP) methods struggle to

meet the real-time and energy efficiency requirements of

peripheral computing scenarios. To eliminate these limitations,

this study suggests hardware support for an FPGA-based

random forest algorithm for text classification. To meet the

resource constraints inherent in embedded and FPGA-based

systems, the proposed methodology includes model

compression, simplified algorithmic optimization, fixed-

parameter configurations, fixed-point computing, and

dimensionality reduction techniques, which effectively reduces

both computational complexity and memory consumption. A

hybrid CPU-FPGA pipelining architecture has been developed,

in which the central processor performs text preprocessing

tasks, including tokenization, TF-IDF vector computing, and

function normalization, while the FPGA accelerates data output

from the random forest algorithm using parallel computing and

pipelining strategies. The FPGA implementation has been

thoroughly tested for compliance with the Python-based

reference processor model through a joint software and

hardware verification process. The results demonstrated a high

degree of numerical consistency, reaching a similarity of

0.9990, which confirms the correctness of the end-to-end logic

of feature extraction and classification. The proposed FPGA

architecture provides a scalable solution for high-performance,

low-latency NLP applications suitable for deployment in

peripheral computing environments.

General Terms

Algorithms, Hardware Acceleration, Natural Language

Processing, FPGA, Embedded Systems, Edge Computing,

Machine Learning, Performance Optimization, Verification.

Keywords

FPGA, Random Forest, Text Analytics, TF-IDF, Hardware

Acceleration.

1. INTRODUCTION
Text analysis techniques are commonly required to efficiently

process massive amounts of textual data, extract key

information, and classify it in application scenarios such as

medicine, public opinion monitoring, and customer service. For

instance, NLP techniques can extract meaningful information

from unstructured clinical text data, including electronic health

records, medical literature, physician notes, and patient reports

[1]. The most commonly used BERT models in biomedical text

processing include BioBERT, SciBERT, and PubMedBERT

[2].

Traditional natural language processing (NLP) tasks typically

rely on CPU or GPU computing, which is often

computationally intensive and energy-consuming. In edge

computing scenarios that require low latency and high energy

efficiency, these environments generally have limited

computational resources [3], making it difficult to meet the

needs of real-time processing or low-power applications. Edge

computing has applications in autonomous vehicles, smart

cities, and healthcare. To meet these demands, the following

strategies can be adopted: model compression, lightweight

algorithms, edge-cloud collaboration, and the use of

specialized hardware accelerators such as GPUs and FPGAs to

enhance processing efficiency. Model compression involves

techniques such as quantization, pruning, and knowledge

distillation to reduce model size, although some accuracy loss

may occur [4]. Lightweight algorithms aim to reduce code size

and memory consumption by employing resource-efficient

algorithms [5]. Edge-cloud collaboration involves offloading

resource-intensive tasks to the cloud to alleviate the burden on

edge devices [6]. Specialized hardware accelerators refer to the

use of GPUs and FPGAs to improve processing efficiency [7].

These solutions facilitate efficient text processing and real-time

response in resource-constrained environments.

The application of FPGAs (Field-Programmable Gate Arrays)

in machine learning acceleration has become increasingly

widespread. However, applying FPGA hardware acceleration

to NLP tasks requires addressing challenges such as efficiently

handling large-scale vocabulary lookups, text preprocessing,

and integrating traditional software components with hardware

modules. In machine learning algorithms, CNNs [8] and deep

learning models such as BERT [9] have been deployed on

FPGAs, demonstrating improved throughput and energy

efficiency compared to pure CPU-based solutions. Models such

as SVM and BERT can be directly compressed through

quantization and pruning, whereas random forests require

model simplification (e.g., compact random forests, CRFs) to

accommodate FPGA resource constraints. Additionally, TF-

IDF feature extraction involves dynamic memory allocation

(e.g., term frequency statistics and inverse document frequency

computation) and extensive string operations, making these

tasks difficult to directly map onto FPGA hardware using

hardware description languages (such as Verilog) or high-level

synthesis (HLS) tools. Despite the existing gap between CPU-

based NLP feature extraction and FPGA-based classifiers,

hybrid architectures provide an optimized approach for NLP

processing. This study aims to design an FPGA-accelerated

text classification architecture based on random forests to

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

50

achieve high-performance, low-latency intelligent text analysis

applications in resource-constrained environments.

2. METHODOLOGY
To achieve efficient FPGA deployment, the overall research

design consists of five stages: data collection and

preprocessing, software-based model training and lightweight

optimization, FPGA hardware design and adaptation,

verification and performance evaluation, and engineering

considerations for edge computing deployment. Specifically,

after acquiring the dataset, training the model, and verifying its

performance, the adopted algorithms undergo lightweight

optimization and hardware-adaptive modifications to ensure

that the model size and data structures match FPGA resources

and characteristics. Subsequently, the core algorithm modules

are implemented in fixed-point C++ to achieve superior

performance and resource utilization efficiency on hardware.

Finally, the design is subjected to hardware behavioral

simulation using HLS tools to verify functionality and

preliminary performance, considering additional factors

present in actual deployment scenarios. The architecture of the

entire hybrid pipelined CPU-FPGA system is illustrated in

Figure 1, indicating the functional division between the CPU

and FPGA. The CPU is primarily responsible for text data

acquisition, cleaning, and feature extraction (such as TF-IDF

vectorization), while the FPGA performs parallel inference

using the fixed-point quantized random forest model to enable

real-time or near-real-time classification decisions.

Fig 1: Architecture Diagram of Hybrid Pipelined CPU-FPGA System.

2.1 Data Collection and Preprocessing
For the complete implementation of text feature extraction and

random forest as described in article [10], the data collection

process during model training primarily relies on the ADReSS

2020 Challenge dataset [11]. This dataset, provided by an open

competition, is specifically designed for Alzheimer's disease

(AD) diagnosis and contains speech data from 54 Alzheimer's

patients and 54 healthy controls, along with their corresponding

complete transcription texts.

In subsequent collection of individual speech data, the adopted

preprocessing method involves extracting complete speech

transcription texts from each subject's audio recordings,

followed by data cleaning procedures including the removal of

noise symbols and ineffective stop words. For ease of

subsequent analysis, all textual data were organized into a two-

dimensional data structure, and a binary classification label was

assigned to each sample to distinguish between patient and

control groups. In this experimental setup, the dataset was

partitioned using K-fold cross-validation, after which the

processed textual data were fed into machine learning models

for training and evaluation. The GridSearchCV method was

employed for systematic hyperparameter tuning of the models,

including parameters of the TfidfVectorizer such as maximum

features, stop words configuration, term frequency limits, as

well as parameters of the Random Forest classifier such as the

number of decision trees, maximum tree depth, and the

minimum samples required for node splitting. The algorithm

utilized in the experiment included the TfidfVectorizer feature

extractor for transforming the transcribed texts into numerical

vector representations, and a Random Forest algorithm for

handling the binary classification task. The optimized Random

Forest model achieved a classification accuracy of 85.2% on

this binary classification task, demonstrating the effectiveness

of the combination of these two algorithms in Alzheimer's

disease detection.

2.2 Lightweight Optimization and

Hardware Adaptation of the Algorithm
In the original Python training pipeline, the model utilizes grid

search (e.g., for parameters such as max_features, stop_words,

and analyzer) to automatically adjust configurations, which

often leads to the generation of large vocabularies, construction

of complex random forest structures, and high-dimensional

feature representations. To adapt to resource-constrained

environments such as embedded systems and FPGAs, the

authors first refined the vocabulary during the text feature

extraction stage, in the TfidfVectorizer, they fixed the

'max_features' parameter at 934 while employing fixed

configurations of stop_words='english' and ‘analyzer='word',

this approach controlled the vocabulary size, reducing the

complexity of subsequent feature computation and model

deployment. Furthermore, to avoid the additional overhead

associated with dynamic parameter tuning, the authors

eliminated the grid search process and instead adopted fixed

hyperparameter settings. Second, to further reduce feature

dimensionality, the original 934-dimensional TF-IDF feature

space was compressed to 108 latent semantic dimensions by

applying truncated singular-value decomposition. This step not

only preserved the essential information of the textual data but

also significantly reduced the input dimensionality of the

random forest classifier, thereby lowering the hardware

resource demands for LUTs, BRAMs, and other FPGA

components.

On this basis, the authors quantized the TF-IDF outputs into

fixed-point form using a bespoke transformer, and substituted

all floating-point operations with ap_fixed<32,16>. Fixed-

point quantization not only significantly reduces computational

complexity while maintaining model accuracy but also serves

as a prerequisite for FPGA implementation. Moreover, to

simplify the hardware implementation of the random forest

model, the authors adopted a fixed configuration of

'RandomForestClassifier(n_estimators=10, max_depth=10,

min_samples_split=5, min_samples_leaf=2, bootstrap=True) ',

ensuring that both the number and depth of trees were strictly

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

51

constrained. Finally, the authors exported the lightweight core

model parameters separately, including the refined vocabulary

(stored as 'vocabulary.json'), IDF values (stored as

'idf_values.npy'), and the SVD matrix (stored as

'svd_matrix.npy'), this ensures that during deployment, these

preprocessed parameters can be directly loaded, avoiding

unnecessary computational overhead from repeated training.

In summary, by transforming large-scale search and high-

dimensional input into a combination of fixed configurations,

fixed-point quantization, and dimensionality reduction, the

authors successfully reduced model complexity and memory

consumption, thereby providing foundational support for

FPGA deployment.

2.3 Fixed-Point Implementation of Text

Feature Engineering (TF-IDF + SVD) in

C++.
Traditional TF-IDF feature extraction is used in natural

language processing (NLP) workflows to capture key

information in textual data. To accommodate hardware

acceleration requirements, the authors employs std::string for

tokenizing and preprocessing input text. During tokenization,

std::istringstream is used to split the text by whitespace, and

std::transform is applied to convert all characters to lowercase

to facilitate case-insensitive matching. A predefined stopword

set (std::unordered_set<std::string>), including high-frequency

words with no substantial informational value (e.g., “the” and

“of”), is loaded in advance to enable fast lookup. Each word is

checked against the stopword set, and if found, it is skipped.

Although this data structure is difficult to synthesize directly

on FPGA, it ensures filtering efficiency while maintaining

implementation simplicity and scalability. The efficient lookup

performance on the CPU side supports the overall

preprocessing phase of the system.

During the term frequency (TF) computation phase, a fixed-

length array is used to store the occurrence count of each word

within the document. Each token in the text is processed by first

undergoing character cleansing (removing non-alphanumeric

characters) and then mapping to a predefined vocabulary

(which assigns an index to each word), the corresponding index

is used to increment the count in the array. In the TF-IDF

computation step, the term frequency (TF) is obtained directly

from word occurrence counts, which are then multiplied by

precomputed inverse document frequency (IDF) values stored

in an idf_table (an array of IDF values saved from the Python

preprocessing stage), this process directly yields the TF-IDF

values. In the first iteration, all word TF-IDF values are

computed, and their squared sum is accumulated to provide the

denominator for L2 normalization. In the second iteration, each

normalized TF-IDF value is multiplied by the corresponding

weight in a preloaded SVD matrix (svd_matrix [j][i]). The sum

of these weighted values across all words constitutes the j-th

dimension of the output vector. The final output vector,

consisting of 108 dimensions, represents the dimensionality-

reduced feature representation.

L2 normalization is implemented as follows: first, the squared

sum of all nonzero TF-IDF values is computed, and its square

root is taken to obtain the L2 norm. During the second pass,

each TF-IDF value is divided by the L2 norm, yielding

normalized values, which are then multiplied by a fixed-point

scaling factor (128.0) and converted into the fixed_t type. L2

normalization ensures that the magnitude of the TF-IDF vector

is standardized, preventing high-frequency words within a

single document from disproportionately affecting subsequent

calculations. The current implementation is entirely executed

on the CPU using C++ code. By leveraging the standard library

and precomputed vocabulary, IDF values, and SVD

parameters, the entire process from text to feature vector

computation is achieved efficiently.

The feature vector output after SVD dimensionality reduction

is a 108-dimensional array, which serves as an input to

hardware modules. This array can be transferred to FPGA

computation units via an AXI-Lite interface or passed using

simple memory-mapped access or direct memory access

(DMA), depending on the system architecture and performance

requirements. The module design employs fixed-point

arithmetic, laying the groundwork for future FPGA-based

hardware acceleration. When porting the algorithm to FPGA,

parallel computing advantages can be leveraged to accelerate

term frequency computation, TF-IDF calculations, and matrix

multiplications, thereby further enhancing processing speed.

2.4 Hardware Acceleration for Random

Forest
The random forest module primarily utilizes multiple decision

trees to predict input 108-dimensional fixed-point feature

vectors, ultimately determining whether a sample is classified

as AD (Alzheimer’s disease) using a voting mechanism. The

logical process is as follows: the function 'evaluate_tree' takes

a decision tree node array (nodes) and an input feature vector

(features) as inputs, starting from the root node (node_id = 0).

Using a fixed-depth loop (e.g., with a maximum depth of 32),

at each level, the algorithm compares feature values to decide

whether to traverse the left or right subtree. Upon reaching a

leaf node, the node stores a parameter 'value_diff', which

determines the tree’s prediction result by checking whether it

is greater than zero (returning a Boolean value: true for AD,

otherwise for non-AD). For non-leaf nodes, the algorithm

compares the feature value at the specified index with the node

threshold (node.threshold) to determine the index of the next

node. This part directly employs fixed-point number

comparison, eliminating the need for additional conversions,

thus ensuring both efficiency and precision.

The traversal loop employs the #pragma HLS PIPELINE

directive, ensuring that each comparison operation is executed

in a pipelined manner, thereby reducing latency. Additionally,

the #pragma HLS INLINE off directive controls the function

inlining strategy, ensuring that the implementation of

'evaluate_tree' aligns with hardware optimization requirements

and avoids excessive inlining, which could otherwise consume

additional resources.

Within the 'predict' function, the evaluations from 10 decision

trees are executed by invoking evaluate_tree. The #pragma

HLS UNROLL directive instructs the compiler to unroll these

10 calls into a parallel hardware implementation. Each tree

returns a Boolean value (converted into an integer and

accumulated), and the final prediction is determined through a

majority voting mechanism: if the vote count is greater than or

equal to 5, the result is classified as AD; otherwise, it is

classified as non-AD.

To accommodate the hardware platform, the prediction

function applies the #pragma HLS INTERFACE s_axilite

directive, indicating that both the input array features and the

prediction result are transmitted via the AXI-Lite interface. The

AXI-Lite interface is well-suited for the transmission of small-

scale configuration data and control signals, as it is simple to

use and requires minimal resources. Furthermore, by

employing the #pragma HLS ARRAY_PARTITION directive,

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

52

the features array is partitioned according to a loop factor,

thereby enhancing parallel access capability.

3. HARDWARE SIMULATION AND

SYNTHESIS VERIFICATION
The correctness of the algorithm serves as a prerequisite for

effective hardware acceleration, it is essential to validate, at the

software level, that the feature extraction and classification

logic currently implemented is correct. Specifically, the entire

pipeline ‒ from raw text input through TF-IDF feature

extraction to prediction ‒ must be verified to ensure accurate

hardware acceleration on FPGA devices.

The authors executed the script (get_stop_words.py) to

extract the standard ENGLISH_STOP_WORDS set provided

by scikit-learn and subsequently saved these words into a local

text file named stopwords_en.txt. This step ensures that

common irrelevant words are automatically filtered out in

subsequent word frequency analyses, allowing the TF-IDF

feature extraction process to focus more precisely on the key

information.

A lightweight Random Forest model

(RandomForestClassifier) was trained using the previously

implemented script (train_light_model.py). The training

process involved learning the IDF parameters and SVD matrix

through a pipeline comprising TfidfVectorizer, TruncatedSVD,

and a custom FunctionTransformer (named to_fixed_point) to

enable fixed-point representation. Upon completion of training,

the resulting core files included the pipeline model

(light_model.joblib), IDF parameters (idf_values.npy), the

SVD principal component matrix (svd_matrix.npy), and the

vocabulary mapping table (vocabulary.json) associated with

the TfidfVectorizer. Subsequently, the authors executed

convert_params.py to convert critical parameters from the

trained model into a header file format (model_params.h)

suitable for inclusion in C++, thereby completing the parameter

export.

The file 'main.cpp' was implemented to test the complete

end-to-end functionality, demonstrating the entire process from

raw text input to final prediction. The process first involves

obtaining a 108-dimensional feature vector via the

'tfidf_transform()' function, followed by performing Random

Forest inference using the 'predict()' function. The test input

was defined as a descriptive passage containing typical

syntactic errors characteristic of Alzheimer’s patients. To

facilitate comparison with Python-generated outputs, two

functions were implemented: 'save_features()', which stores the

108-dimensional fixed-point feature vector in binary format in

the file "cpp_features.bin", and 'save_features_txt()', which

saves the feature vector in textual format to "cpp_features.txt"

for subsequent numerical analysis. An executable file was

generated using the command:

g++ -std=c++11 -I. -I"E:/vitis/Vitis_HLS/2022.2/include"

main.cpp random_forest.cpp tfidf.cpp -o end2end.exe

Upon execution, the terminal displayed "End-to-end

prediction results in C++: 1", and produced the files

'cpp_features.bin' and 'cpp_features.txt' for subsequent

comparison with Python-based experimental results. A

classification outcome of "1" indicates that the test text was

correctly identified as belonging to Alzheimer's patients.

To facilitate verification, the authors designed and

implemented a Python-based inference module

(predict_light_model.py) to replicate the inference pipeline

constructed during training, performing model inference on

identical input texts. Within this module, the function

'preprocess_text()' reproduces the text cleaning logic used in

training. Regular expressions (regex) were employed to remove

time stamps (e.g., patterns like '\x15\d_\d\x15'), annotations

(content within brackets), as well as special characters such as

tabs, line breaks, and angle brackets, thereby standardizing the

input text and ensuring consistency and robustness in

subsequent feature extraction steps. To allow for comparison

with the feature vectors generated on the C++ side, the resulting

108-dimensional feature vector was exported to a text file

named 'test_features.txt'. In the main function, the same input

text as used in the C++ test case was selected, and the prediction

function was invoked to obtain both the prediction result and

the corresponding feature vector. Finally, the program printed

the prediction result, displaying “The Python prediction result:

1,” along with the dimensional information of the feature

vector, and saved the generated feature vector file.

To verify data consistency between the C++ and Python

implementations, the feature vector files generated from both

sides ("cpp_features.txt" and "test_features.txt") were loaded

using NumPy's 'np.loadtxt()' function. The loaded vectors were

then compared using the 'cosine_similarity' function provided

by the scikit-learn library. Cosine similarity, a commonly used

measure for assessing vector similarity, quantifies the

similarity between vectors based on their direction, with values

ranging from -1 to 1, where values closer to 1 indicate greater

similarity. The obtained similarity score was 0.9990 (target

threshold ≥0.99), demonstrating a high level of directional

consistency between the vectors produced by the C++ and

Python implementations. This result confirms that the TF-IDF

and SVD computation logic has been correctly implemented,

validating numerical consistency and the correctness of the

end-to-end processing pipeline.

3.1 Hardware preparation and Vitis

compilation
Run the code to convert 'vocabulary.json' into a C++ header file

'vocabulary.h', thus statically embedding the vocabulary

mapping table; export the random forest tree structure from

'light_model.joblib' into 'trees.json', and subsequently generate

'tree_params.h'; convert 'idf_values.npy' and 'svd_matrix.npy'

into 'idf_values.h' and 'svd_matrix.h' respectively, facilitating

their referencing as read-only tables within HLS.

Import 'testbench.cpp', 'random_forest.cpp', 'tfidf.cpp', along

with the previously generated header files (such as

'tree_params.h', 'vocabulary.h', etc.) into Vitis for High-Level

Synthesis (HLS). After running the C Simulation (CSIM),

inference results identical to the software-side were obtained:

FPGA predict result: 1; no errors were returned, confirming

functional correctness.

When Vitis HLS performs C Simulation and C Synthesis on

C++ (.cpp) files, it generates corresponding reports to evaluate

functional correctness, resource utilization, latency, and

performance metrics. C Simulation verifies the functional

correctness of the C/C++ code, ensuring that the algorithm

logic is error-free. C Synthesis, on the other hand, converts the

C/C++ code into an RTL-level (Verilog/VHDL) hardware

description and assesses the resource consumption, timing, and

latency of the hardware implementation. The Synthesis Report

is shown in Figure 2.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

53

Fig 2: Vitis HLS C Synthesis Report.

3.2 Experimental Results and Analysis
Table 1 presents the synthesis timing results of the FPGA

design in the Vitis HLS environment. As shown in Table 1, the

target FPGA device used in this experiment is xcvu11p-

flga2577-1-e, with a target clock period of 10 ns. The actual

estimated clock period after synthesis is 6.368 ns, with an

uncertainty of ±2.70 ns. The synthesis timing analysis shows

that the total latency of the random forest inference function

predict() is approximately 11192~11193 clock cycles. At the

target clock frequency of 100 MHz, this implies that a single

inference task takes about 112 µs, whereas based on the actual

estimated clock period, the latency reduces to 71.3 µs. From

these data, the derived FPGA operating frequency is calculated

to be around 157 MHz (Derived clock frequency), which is

obtained by taking the reciprocal of the clock period (1 / clock

period).

Table 1. Post-synthesis Timing Summary

Parameter Value Unit

Target Device xcvu11p-flga2577-1-e —

Target Clock Period 10.0 ns

Estimated clock period 6.368±0.270 ns

Derived clock

frequency
157±6.7 MHz

Latency (cycles) 11192~ 11193 cycles

Latency @ 100 MHz 112 µs

Latency @ estimated T 71.3 µs

Next, FPGA resource utilization can be observed based on

Table 2 and the stack figure 3. The FPGA design uses a total of

370,421 LUTs (28%), 471,034 FFs (18%), and 546 DSP blocks

(5.9%), while BRAM and UltraRAM are not utilized. As can

be seen from the resource distribution figure 3, the primary

resource consumption in the design is concentrated on LUTs

and FFs, FPGA-internal Block RAM (BRAM) resources have

not been utilized to store data. Overall, only 5% to 30% of

resources are occupied on the ultra-large FPGA device. The

decision tree structure (Random Forest) is mainly stored in

LUTRAM, while the core computation utilizes DSP and LUT

resources. The LUTRAM stores various tree node information,

comprising a total of 30 ROM blocks. Most critical logic

(including vote counting and feature comparison) uses fixed-

point arithmetic, requiring a certain number of DSP and LUT

resources allocated by HLS for addition and multiplication

operations. In the future, it would be possible to optimize the

computational logic to map more computing tasks onto DSP

resources.

Table 2. Post-Synthesis Resource Utilization

Parameter Value
Device

Capacity

Utilization

(%)

LUT 370,421 1,296,000 28%

FF 471,034 2,592,000 18%

DSP Blocks 546 9216 5.9 %

Block RAM

(18Kb)
0 4032 0%

UltraRAM 0 960 0%

Fig 3: Post-synthesis resource-utilization breakdown.

Further, the authors compared the single-inference

performance between CPU and FPGA implementations. As

shown in Table 3, the total elapsed time parameter generated

by the C Simulation indicated the total duration from the start

to the end of the simulation process was 30.505 seconds.

Meanwhile, the FPGA execution time was calculated by

multiplying the clock period (Clock Period parameter from the

csynth.rpt report) by the latency (number of cycles), resulting

in approximately 0.0000713 seconds. Consequently, the

authors calculated an idealized speedup of approximately

427,840×. However, this speedup is highly idealized since it

compares the "simulation environment plus pure hardware

computation." In practical deployments, pure inference time on

the CPU is typically much less than 30 seconds, and the FPGA

requires data transfers through DDR, PCIe, or AXI interfaces;

hence, transfer latency must be considered in real-world

scenarios.

To achieve more realistic results, the authors compiled and ran

the same inference code using g++ with -O2 optimization on a

2.9 GHz CPU, obtaining an average single inference latency of

4.713 µs. Compared with the FPGA synthesis report, to ensure

stable design operation, the synthesis tools typically use a target

clock of 10 ns, corresponding to a frequency of 100 MHz.

Under this frequency, the FPGA hardware latency per

inference was 112 microseconds (µs). In this case, the CPU was

approximately 24 times faster than the FPGA, primarily

because the FPGA clock frequency was relatively low and had

not yet leveraged batch parallelism or other methods to exploit

hardware potential fully. When calculating the real FPGA

latency, using 71.3 µs represented using the "Estimated Clock

Period" from the HLS report, optimistically assuming the final

implementation could also achieve approximately 157 MHz

and disregarding board-level clock convergence and routing

margins. Conversely, using 112 µs was based on the

constrained clock period of 10 ns (100 MHz), which is more

conservative and typically serves as the realizable target

provided by most design flows before place-and-route.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

54

Table 3. Inference Time and Speedup Comparison

Comparison basis CPU Time FPGA Time Speedup Calculation Conclusion

Real inference latency

(optimistic)
4.713 µs 71.3 µs 4.713 ÷71.3 ≈ 0.066 FPGA is ≈ 15× slower

Real inference latency

(conservative)
4.713 µs 112 µs 4.713 ÷112 ≈ 0.042 FPGA is ≈ 24× slower

Tool-level "idealized"

comparison
30.505 s 71.3 µs 30.505 s ÷ 71.3 µs ≈ 427840

Reflects only tool-level simulation

overhead, not actual hardware

performance

Overall, the current FPGA design exhibits favorable

performance concerning functional correctness, resource

utilization efficiency, and timing compliance. The top-level

interface adheres to the AXI4-Lite standard, with features as

input and result as output, interacting via register mapping.

Hardware resource utilization complies with FPGA resource

constraints; LUT, FF, and DSP usage do not exceed the target

device's capacity. These experimental results indicate that the

advantage of FPGA lies not in single-inference latency but

rather in throughput, energy efficiency, and real-time

processing capabilities. The effectiveness of FPGA

acceleration depends on multiple factors, including task size,

degree of data parallelization, hardware resources, and I/O

bandwidth.

Through the aforementioned multi-stage experiments and

toolchain integration, the authors successfully completed the

synthesis verification of the random forest inference IP in Vitis

HLS and performed numerical and functional consistency

comparisons with the Python/CPU implementations. The

current validation process has achieved a high level of maturity

in terms of functional correctness and data consistency.

4. CONCLUSION
This study designed and demonstrated a CPU–FPGA-based

proof-of-concept framework to accelerate random-forest-based

text classification tasks. The framework employs a lightweight

random forest model and incorporates strategies such as

algorithm lightweighting, fixed-parameter configuration,

fixed-point quantization, and dimensionality reduction, thereby

realizing algorithm deployment on FPGA. Experimental results

show that the framework achieves high functional consistency

with the Python reference implementation, with a cosine

similarity of 0.9990, while occupying only approximately 28%

of LUTs and 5.9% of DSP resources on a Xilinx VU11P device.

This heterogeneous architecture offloads the inference kernel

to hardware implementation, achieving a post-synthesis latency

of approximately 112 µs at a conservative target frequency of

100 MHz, while this latency can be further reduced to 71.3 µs

based on the estimated clock period of 6.368 ns (≈157 MHz)

from the synthesis report.

However, the current prototype still executes TF-IDF and SVD

feature extraction on the host CPU and has not undergone

place-and-route or power analysis. Therefore, system-level

latency and energy efficiency remain suboptimal. Future

research will focus on increasing parallelism on the FPGA,

using HLS directives to parallelize computations across each

decision tree and each feature dimension, performing power

evaluation after place-and-route, utilizing BRAM/URAM to

cache model parameters and intermediate data to fully exploit

FPGA resources, and further attempting to migrate the TF-IDF

and SVD preprocessing to FPGA to eliminate PCIe/AXI

transfer bottlenecks. It is anticipated that these improvements

will further enhance throughput and strengthen the system's

end-to-end hardware-accelerated performance.

5. REFERENCES
[1] Andrzej Janowski. Natural Language Processing

Techniques for Clinical Text Analysis in Healthcare.

Journal of Advanced Analytics in Healthcare

Management, 7(1):51–76, Mar. 2023.

[2] Rehana H, Çam NB, Basmaci M, Zheng J, Jemiyo C, He

Y, Özgür A, Hur J. Evaluation of GPT and BERT-based

models on identifying proteinprotein interactions in

biomedical text. ArXiv, 2023: arXiv: 2303.17728 v2.

[3] Martin Wisniewski, Lucas, Jean-Michel Bec, Guillaume

Boguszewski, and Abdoulaye Gamatié. Hardware

Solutions for Low-Power Smart Edge Computing. Journal

of Low Power Electronics and Applications, 12(4):61,

2022.

[4] Movva, Rajiv, Jinhao Lei, Shayne Longpre, Ajay Gupta,

and Chris DuBois. Combining Compressions for

Multiplicative Size Scaling on Natural Language Tasks.

arXiv preprint, 2022. arXiv:2208.09684.

[5] Liao, Youqi, Shuhao Kang, Jianping Li, Yang Liu, Yun

Liu, Zhen Dong, Bisheng Yang, and Xieyuanli Chen.

Mobile-seed: Joint semantic segmentation and boundary

detection for mobile robots. IEEE Robotics and

Automation Letters, 2024.

[6] Liu, Linyuan, Haibin Zhu, Tianxing Wang, and Mingwei

Tang. A Fast and Efficient Task Offloading Approach in

Edge-Cloud Collaboration Environment. Electronics,

13(2): 313, 2024.

[7] Zhang, Chaoyu, Hexuan Yu, Yuchen Zhou, and Hai Jiang.

High-Performance and Energy-Efficient FPGA-GPU-

CPU Heterogeneous System Implementation. In

Advances in Parallel & Distributed Processing, and

Applications: Proceedings from PDPTA'20, CSC'20,

MSV'20, and GCC'20, pages 477–492. Springer, 2021.

[8] Mouri Zadeh Khaki A, Choi A. Optimizing Deep

Learning Acceleration on FPGA for Real-Time and

Resource-Efficient Image Classification. Applied

Sciences, 15(1), 2025.

[9] Hamza Khan, Asma Khan, Zainab Khan, Lun Bin Huang,

Kun Wang, and Lei He. NPE: An FPGA-based Overlay

Processor for Natural Language Processing. arXiv

preprint arXiv:2104.06535, 2021.

[10] Vishniakou U.A and Chuyue Yu. Using Machine

Learning for Recognition of Alzheimer's Disease Based

on Transcription Information. Reports of BSUIR, 21(6):

106–112, 2023.

[11] Saturnino Luz, Fasih Haider, Sofia de la Fuente, Davida

Fromm, and Brian MacWhinney. Alzheimer’s dementia

recognition through spontaneous speech: The ADReSS

challenge. arXiv preprint arXiv:2004.06833, 2020.

IJCATM : www.ijcaonline.org

