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ABSTRACT 

Efficient analysis and classification of text performed at the 

edge of a network, especially on platforms with limited 

resources such as embedded systems and FPGA devices, 

creates computational challenges. Traditional CPU and GPU-

based natural language processing (NLP) methods struggle to 

meet the real-time and energy efficiency requirements of 

peripheral computing scenarios. To eliminate these limitations, 

this study suggests hardware support for an FPGA-based 

random forest algorithm for text classification. To meet the 

resource constraints inherent in embedded and FPGA-based 

systems, the proposed methodology includes model 

compression, simplified algorithmic optimization, fixed-

parameter configurations, fixed-point computing, and 

dimensionality reduction techniques, which effectively reduces 

both computational complexity and memory consumption. A 

hybrid CPU-FPGA pipelining architecture has been developed, 

in which the central processor performs text preprocessing 

tasks, including tokenization, TF-IDF vector computing, and 

function normalization, while the FPGA accelerates data output 

from the random forest algorithm using parallel computing and 

pipelining strategies. The FPGA implementation has been 

thoroughly tested for compliance with the Python-based 

reference processor model through a joint software and 

hardware verification process. The results demonstrated a high 

degree of numerical consistency, reaching a similarity of 

0.9990, which confirms the correctness of the end-to-end logic 

of feature extraction and classification. The proposed FPGA 

architecture provides a scalable solution for high-performance, 

low-latency NLP applications suitable for deployment in 

peripheral computing environments. 
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1. INTRODUCTION 
Text analysis techniques are commonly required to efficiently 

process massive amounts of textual data, extract key 

information, and classify it in application scenarios such as 

medicine, public opinion monitoring, and customer service. For 

instance, NLP techniques can extract meaningful information 

from unstructured clinical text data, including electronic health 

records, medical literature, physician notes, and patient reports 

[1]. The most commonly used BERT models in biomedical text 

processing include BioBERT, SciBERT, and PubMedBERT 

[2]. 

Traditional natural language processing (NLP) tasks typically 

rely on CPU or GPU computing, which is often 

computationally intensive and energy-consuming. In edge 

computing scenarios that require low latency and high energy 

efficiency, these environments generally have limited 

computational resources [3], making it difficult to meet the 

needs of real-time processing or low-power applications. Edge 

computing has applications in autonomous vehicles, smart 

cities, and healthcare. To meet these demands, the following 

strategies can be adopted: model compression, lightweight 

algorithms, edge-cloud collaboration, and the use of 

specialized hardware accelerators such as GPUs and FPGAs to 

enhance processing efficiency. Model compression involves 

techniques such as quantization, pruning, and knowledge 

distillation to reduce model size, although some accuracy loss 

may occur [4]. Lightweight algorithms aim to reduce code size 

and memory consumption by employing resource-efficient 

algorithms [5]. Edge-cloud collaboration involves offloading 

resource-intensive tasks to the cloud to alleviate the burden on 

edge devices [6]. Specialized hardware accelerators refer to the 

use of GPUs and FPGAs to improve processing efficiency [7]. 

These solutions facilitate efficient text processing and real-time 

response in resource-constrained environments. 

The application of FPGAs (Field-Programmable Gate Arrays) 

in machine learning acceleration has become increasingly 

widespread. However, applying FPGA hardware acceleration 

to NLP tasks requires addressing challenges such as efficiently 

handling large-scale vocabulary lookups, text preprocessing, 

and integrating traditional software components with hardware 

modules. In machine learning algorithms, CNNs [8] and deep 

learning models such as BERT [9] have been deployed on 

FPGAs, demonstrating improved throughput and energy 

efficiency compared to pure CPU-based solutions. Models such 

as SVM and BERT can be directly compressed through 

quantization and pruning, whereas random forests require 

model simplification (e.g., compact random forests, CRFs) to 

accommodate FPGA resource constraints. Additionally, TF-

IDF feature extraction involves dynamic memory allocation 

(e.g., term frequency statistics and inverse document frequency 

computation) and extensive string operations, making these 

tasks difficult to directly map onto FPGA hardware using 

hardware description languages (such as Verilog) or high-level 

synthesis (HLS) tools. Despite the existing gap between CPU-

based NLP feature extraction and FPGA-based classifiers, 

hybrid architectures provide an optimized approach for NLP 

processing. This study aims to design an FPGA-accelerated 

text classification architecture based on random forests to 
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achieve high-performance, low-latency intelligent text analysis 

applications in resource-constrained environments.  

2. METHODOLOGY 
To achieve efficient FPGA deployment, the overall research 

design consists of five stages: data collection and 

preprocessing, software-based model training and lightweight 

optimization, FPGA hardware design and adaptation, 

verification and performance evaluation, and engineering 

considerations for edge computing deployment. Specifically, 

after acquiring the dataset, training the model, and verifying its 

performance, the adopted algorithms undergo lightweight 

optimization and hardware-adaptive modifications to ensure 

that the model size and data structures match FPGA resources 

and characteristics. Subsequently, the core algorithm modules 

are implemented in fixed-point C++ to achieve superior 

performance and resource utilization efficiency on hardware. 

Finally, the design is subjected to hardware behavioral 

simulation using HLS tools to verify functionality and 

preliminary performance, considering additional factors 

present in actual deployment scenarios. The architecture of the 

entire hybrid pipelined CPU-FPGA system is illustrated in 

Figure 1, indicating the functional division between the CPU 

and FPGA. The CPU is primarily responsible for text data 

acquisition, cleaning, and feature extraction (such as TF-IDF 

vectorization), while the FPGA performs parallel inference 

using the fixed-point quantized random forest model to enable 

real-time or near-real-time classification decisions. 

 

Fig 1: Architecture Diagram of Hybrid Pipelined CPU-FPGA System.

2.1 Data Collection and Preprocessing 
For the complete implementation of text feature extraction and 

random forest as described in article [10], the data collection 

process during model training primarily relies on the ADReSS 

2020 Challenge dataset [11]. This dataset, provided by an open 

competition, is specifically designed for Alzheimer's disease 

(AD) diagnosis and contains speech data from 54 Alzheimer's 

patients and 54 healthy controls, along with their corresponding 

complete transcription texts.  

In subsequent collection of individual speech data, the adopted 

preprocessing method involves extracting complete speech 

transcription texts from each subject's audio recordings, 

followed by data cleaning procedures including the removal of 

noise symbols and ineffective stop words. For ease of 

subsequent analysis, all textual data were organized into a two-

dimensional data structure, and a binary classification label was 

assigned to each sample to distinguish between patient and 

control groups. In this experimental setup, the dataset was 

partitioned using K-fold cross-validation, after which the 

processed textual data were fed into machine learning models 

for training and evaluation. The GridSearchCV method was 

employed for systematic hyperparameter tuning of the models, 

including parameters of the TfidfVectorizer such as maximum 

features, stop words configuration, term frequency limits, as 

well as parameters of the Random Forest classifier such as the 

number of decision trees, maximum tree depth, and the 

minimum samples required for node splitting. The algorithm 

utilized in the experiment included the TfidfVectorizer feature 

extractor for transforming the transcribed texts into numerical 

vector representations, and a Random Forest algorithm for 

handling the binary classification task. The optimized Random 

Forest model achieved a classification accuracy of 85.2% on 

this binary classification task, demonstrating the effectiveness 

of the combination of these two algorithms in Alzheimer's 

disease detection. 

2.2 Lightweight Optimization and 

Hardware Adaptation of the Algorithm 
In the original Python training pipeline, the model utilizes grid 

search (e.g., for parameters such as max_features, stop_words, 

and analyzer) to automatically adjust configurations, which 

often leads to the generation of large vocabularies, construction 

of complex random forest structures, and high-dimensional 

feature representations. To adapt to resource-constrained 

environments such as embedded systems and FPGAs, the 

authors first refined the vocabulary during the text feature 

extraction stage, in the TfidfVectorizer, they fixed the 

'max_features' parameter at 934 while employing fixed 

configurations of stop_words='english' and ‘analyzer='word', 

this approach controlled the vocabulary size, reducing the 

complexity of subsequent feature computation and model 

deployment. Furthermore, to avoid the additional overhead 

associated with dynamic parameter tuning, the authors 

eliminated the grid search process and instead adopted fixed 

hyperparameter settings.  Second, to further reduce feature 

dimensionality, the original 934-dimensional TF-IDF feature 

space was compressed to 108 latent semantic dimensions by 

applying truncated singular-value decomposition. This step not 

only preserved the essential information of the textual data but 

also significantly reduced the input dimensionality of the 

random forest classifier, thereby lowering the hardware 

resource demands for LUTs, BRAMs, and other FPGA 

components.   

On this basis, the authors quantized the TF-IDF outputs into 

fixed-point form using a bespoke transformer, and substituted 

all floating-point operations with ap_fixed<32,16>. Fixed-

point quantization not only significantly reduces computational 

complexity while maintaining model accuracy but also serves 

as a prerequisite for FPGA implementation. Moreover, to 

simplify the hardware implementation of the random forest 

model, the authors adopted a fixed configuration of 

'RandomForestClassifier(n_estimators=10, max_depth=10, 

min_samples_split=5, min_samples_leaf=2, bootstrap=True) ', 

ensuring that both the number and depth of trees were strictly 
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constrained.  Finally, the authors exported the lightweight core 

model parameters separately, including the refined vocabulary 

(stored as 'vocabulary.json'), IDF values (stored as 

'idf_values.npy'), and the SVD matrix (stored as 

'svd_matrix.npy'), this ensures that during deployment, these 

preprocessed parameters can be directly loaded, avoiding 

unnecessary computational overhead from repeated training.   

In summary, by transforming large-scale search and high-

dimensional input into a combination of fixed configurations, 

fixed-point quantization, and dimensionality reduction, the 

authors successfully reduced model complexity and memory 

consumption, thereby providing foundational support for 

FPGA deployment. 

2.3 Fixed-Point Implementation of Text 

Feature Engineering (TF-IDF + SVD) in 

C++. 
Traditional TF-IDF feature extraction is used in natural 

language processing (NLP) workflows to capture key 

information in textual data. To accommodate hardware 

acceleration requirements, the authors employs std::string for 

tokenizing and preprocessing input text. During tokenization, 

std::istringstream is used to split the text by whitespace, and 

std::transform is applied to convert all characters to lowercase 

to facilitate case-insensitive matching. A predefined stopword 

set (std::unordered_set<std::string>), including high-frequency 

words with no substantial informational value (e.g., “the” and 

“of”), is loaded in advance to enable fast lookup. Each word is 

checked against the stopword set, and if found, it is skipped. 

Although this data structure is difficult to synthesize directly 

on FPGA, it ensures filtering efficiency while maintaining 

implementation simplicity and scalability. The efficient lookup 

performance on the CPU side supports the overall 

preprocessing phase of the system. 

During the term frequency (TF) computation phase, a fixed-

length array is used to store the occurrence count of each word 

within the document. Each token in the text is processed by first 

undergoing character cleansing (removing non-alphanumeric 

characters) and then mapping to a predefined vocabulary 

(which assigns an index to each word), the corresponding index 

is used to increment the count in the array. In the TF-IDF 

computation step, the term frequency (TF) is obtained directly 

from word occurrence counts, which are then multiplied by 

precomputed inverse document frequency (IDF) values stored 

in an idf_table (an array of IDF values saved from the Python 

preprocessing stage), this process directly yields the TF-IDF 

values. In the first iteration, all word TF-IDF values are 

computed, and their squared sum is accumulated to provide the 

denominator for L2 normalization. In the second iteration, each 

normalized TF-IDF value is multiplied by the corresponding 

weight in a preloaded SVD matrix (svd_matrix [j][i]). The sum 

of these weighted values across all words constitutes the j-th 

dimension of the output vector. The final output vector, 

consisting of 108 dimensions, represents the dimensionality-

reduced feature representation. 

L2 normalization is implemented as follows: first, the squared 

sum of all nonzero TF-IDF values is computed, and its square 

root is taken to obtain the L2 norm. During the second pass, 

each TF-IDF value is divided by the L2 norm, yielding 

normalized values, which are then multiplied by a fixed-point 

scaling factor (128.0) and converted into the fixed_t type. L2 

normalization ensures that the magnitude of the TF-IDF vector 

is standardized, preventing high-frequency words within a 

single document from disproportionately affecting subsequent 

calculations. The current implementation is entirely executed 

on the CPU using C++ code. By leveraging the standard library 

and precomputed vocabulary, IDF values, and SVD 

parameters, the entire process from text to feature vector 

computation is achieved efficiently. 

The feature vector output after SVD dimensionality reduction 

is a 108-dimensional array, which serves as an input to 

hardware modules. This array can be transferred to FPGA 

computation units via an AXI-Lite interface or passed using 

simple memory-mapped access or direct memory access 

(DMA), depending on the system architecture and performance 

requirements. The module design employs fixed-point 

arithmetic, laying the groundwork for future FPGA-based 

hardware acceleration. When porting the algorithm to FPGA, 

parallel computing advantages can be leveraged to accelerate 

term frequency computation, TF-IDF calculations, and matrix 

multiplications, thereby further enhancing processing speed. 

2.4 Hardware Acceleration for Random 

Forest 
The random forest module primarily utilizes multiple decision 

trees to predict input 108-dimensional fixed-point feature 

vectors, ultimately determining whether a sample is classified 

as AD (Alzheimer’s disease) using a voting mechanism. The 

logical process is as follows: the function 'evaluate_tree' takes 

a decision tree node array (nodes) and an input feature vector 

(features) as inputs, starting from the root node (node_id = 0). 

Using a fixed-depth loop (e.g., with a maximum depth of 32), 

at each level, the algorithm compares feature values to decide 

whether to traverse the left or right subtree. Upon reaching a 

leaf node, the node stores a parameter 'value_diff', which 

determines the tree’s prediction result by checking whether it 

is greater than zero (returning a Boolean value: true for AD, 

otherwise for non-AD). For non-leaf nodes, the algorithm 

compares the feature value at the specified index with the node 

threshold (node.threshold) to determine the index of the next 

node. This part directly employs fixed-point number 

comparison, eliminating the need for additional conversions, 

thus ensuring both efficiency and precision. 

The traversal loop employs the #pragma HLS PIPELINE 

directive, ensuring that each comparison operation is executed 

in a pipelined manner, thereby reducing latency. Additionally, 

the #pragma HLS INLINE off directive controls the function 

inlining strategy, ensuring that the implementation of 

'evaluate_tree' aligns with hardware optimization requirements 

and avoids excessive inlining, which could otherwise consume 

additional resources. 

Within the 'predict' function, the evaluations from 10 decision 

trees are executed by invoking evaluate_tree. The #pragma 

HLS UNROLL directive instructs the compiler to unroll these 

10 calls into a parallel hardware implementation. Each tree 

returns a Boolean value (converted into an integer and 

accumulated), and the final prediction is determined through a 

majority voting mechanism: if the vote count is greater than or 

equal to 5, the result is classified as AD; otherwise, it is 

classified as non-AD. 

To accommodate the hardware platform, the prediction 

function applies the #pragma HLS INTERFACE s_axilite 

directive, indicating that both the input array features and the 

prediction result are transmitted via the AXI-Lite interface. The 

AXI-Lite interface is well-suited for the transmission of small-

scale configuration data and control signals, as it is simple to 

use and requires minimal resources. Furthermore, by 

employing the #pragma HLS ARRAY_PARTITION directive, 
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the features array is partitioned according to a loop factor, 

thereby enhancing parallel access capability. 

3. HARDWARE SIMULATION AND 

SYNTHESIS VERIFICATION 
The correctness of the algorithm serves as a prerequisite for 

effective hardware acceleration, it is essential to validate, at the 

software level, that the feature extraction and classification 

logic currently implemented is correct. Specifically, the entire 

pipeline ‒ from raw text input through TF-IDF feature 

extraction to prediction ‒ must be verified to ensure accurate 

hardware acceleration on FPGA devices. 

The authors executed the script (get_stop_words.py) to 

extract the standard ENGLISH_STOP_WORDS set provided 

by scikit-learn and subsequently saved these words into a local 

text file named stopwords_en.txt. This step ensures that 

common irrelevant words are automatically filtered out in 

subsequent word frequency analyses, allowing the TF-IDF 

feature extraction process to focus more precisely on the key 

information. 

A lightweight Random Forest model 

(RandomForestClassifier) was trained using the previously 

implemented script (train_light_model.py). The training 

process involved learning the IDF parameters and SVD matrix 

through a pipeline comprising TfidfVectorizer, TruncatedSVD, 

and a custom FunctionTransformer (named to_fixed_point) to 

enable fixed-point representation. Upon completion of training, 

the resulting core files included the pipeline model 

(light_model.joblib), IDF parameters (idf_values.npy), the 

SVD principal component matrix (svd_matrix.npy), and the 

vocabulary mapping table (vocabulary.json) associated with 

the TfidfVectorizer. Subsequently, the authors executed 

convert_params.py to convert critical parameters from the 

trained model into a header file format (model_params.h) 

suitable for inclusion in C++, thereby completing the parameter 

export. 

The file 'main.cpp' was implemented to test the complete 

end-to-end functionality, demonstrating the entire process from 

raw text input to final prediction. The process first involves 

obtaining a 108-dimensional feature vector via the 

'tfidf_transform()' function, followed by performing Random 

Forest inference using the 'predict()' function. The test input 

was defined as a descriptive passage containing typical 

syntactic errors characteristic of Alzheimer’s patients. To 

facilitate comparison with Python-generated outputs, two 

functions were implemented: 'save_features()', which stores the 

108-dimensional fixed-point feature vector in binary format in 

the file "cpp_features.bin", and 'save_features_txt()', which 

saves the feature vector in textual format to "cpp_features.txt" 

for subsequent numerical analysis. An executable file was 

generated using the command: 

g++ -std=c++11 -I. -I"E:/vitis/Vitis_HLS/2022.2/include" 

main.cpp random_forest.cpp tfidf.cpp -o end2end.exe 

Upon execution, the terminal displayed "End-to-end 

prediction results in C++: 1", and produced the files 

'cpp_features.bin' and 'cpp_features.txt' for subsequent 

comparison with Python-based experimental results. A 

classification outcome of "1" indicates that the test text was 

correctly identified as belonging to Alzheimer's patients. 

To facilitate verification, the authors designed and 

implemented a Python-based inference module 

(predict_light_model.py) to replicate the inference pipeline 

constructed during training, performing model inference on 

identical input texts. Within this module, the function 

'preprocess_text()' reproduces the text cleaning logic used in 

training. Regular expressions (regex) were employed to remove 

time stamps (e.g., patterns like '\x15\d_\d\x15'), annotations 

(content within brackets), as well as special characters such as 

tabs, line breaks, and angle brackets, thereby standardizing the 

input text and ensuring consistency and robustness in 

subsequent feature extraction steps. To allow for comparison 

with the feature vectors generated on the C++ side, the resulting 

108-dimensional feature vector was exported to a text file 

named 'test_features.txt'. In the main function, the same input 

text as used in the C++ test case was selected, and the prediction 

function was invoked to obtain both the prediction result and 

the corresponding feature vector. Finally, the program printed 

the prediction result, displaying “The Python prediction result: 

1,” along with the dimensional information of the feature 

vector, and saved the generated feature vector file. 

To verify data consistency between the C++ and Python 

implementations, the feature vector files generated from both 

sides ("cpp_features.txt" and "test_features.txt") were loaded 

using NumPy's 'np.loadtxt()' function. The loaded vectors were 

then compared using the 'cosine_similarity' function provided 

by the scikit-learn library. Cosine similarity, a commonly used 

measure for assessing vector similarity, quantifies the 

similarity between vectors based on their direction, with values 

ranging from -1 to 1, where values closer to 1 indicate greater 

similarity. The obtained similarity score was 0.9990 (target 

threshold ≥0.99), demonstrating a high level of directional 

consistency between the vectors produced by the C++ and 

Python implementations. This result confirms that the TF-IDF 

and SVD computation logic has been correctly implemented, 

validating numerical consistency and the correctness of the 

end-to-end processing pipeline. 

3.1 Hardware preparation and Vitis 

compilation 
Run the code to convert 'vocabulary.json' into a C++ header file 

'vocabulary.h', thus statically embedding the vocabulary 

mapping table; export the random forest tree structure from 

'light_model.joblib' into 'trees.json', and subsequently generate 

'tree_params.h'; convert 'idf_values.npy' and 'svd_matrix.npy' 

into 'idf_values.h' and 'svd_matrix.h' respectively, facilitating 

their referencing as read-only tables within HLS. 

Import 'testbench.cpp', 'random_forest.cpp', 'tfidf.cpp', along 

with the previously generated header files (such as 

'tree_params.h', 'vocabulary.h', etc.) into Vitis for High-Level 

Synthesis (HLS). After running the C Simulation (CSIM), 

inference results identical to the software-side were obtained: 

FPGA predict result: 1; no errors were returned, confirming 

functional correctness. 

When Vitis HLS performs C Simulation and C Synthesis on 

C++ (.cpp) files, it generates corresponding reports to evaluate 

functional correctness, resource utilization, latency, and 

performance metrics. C Simulation verifies the functional 

correctness of the C/C++ code, ensuring that the algorithm 

logic is error-free. C Synthesis, on the other hand, converts the 

C/C++ code into an RTL-level (Verilog/VHDL) hardware 

description and assesses the resource consumption, timing, and 

latency of the hardware implementation. The Synthesis Report 

is shown in Figure 2. 
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Fig 2: Vitis HLS C Synthesis Report. 

3.2 Experimental Results and Analysis 
Table 1 presents the synthesis timing results of the FPGA 

design in the Vitis HLS environment. As shown in Table 1, the 

target FPGA device used in this experiment is xcvu11p-

flga2577-1-e, with a target clock period of 10 ns. The actual 

estimated clock period after synthesis is 6.368 ns, with an 

uncertainty of ±2.70 ns. The synthesis timing analysis shows 

that the total latency of the random forest inference function 

predict() is approximately 11192~11193 clock cycles. At the 

target clock frequency of 100 MHz, this implies that a single 

inference task takes about 112 µs, whereas based on the actual 

estimated clock period, the latency reduces to 71.3 µs. From 

these data, the derived FPGA operating frequency is calculated 

to be around 157 MHz (Derived clock frequency), which is 

obtained by taking the reciprocal of the clock period (1 / clock 

period). 

Table 1. Post-synthesis Timing Summary 

Parameter Value Unit 

Target Device xcvu11p-flga2577-1-e — 

Target Clock Period 10.0 ns 

Estimated clock period 6.368±0.270 ns 

Derived clock 

frequency 
157±6.7 MHz 

Latency (cycles) 11192~ 11193 cycles 

Latency @ 100 MHz 112 µs 

Latency @ estimated T 71.3 µs 

 

Next, FPGA resource utilization can be observed based on 

Table 2 and the stack figure 3. The FPGA design uses a total of 

370,421 LUTs (28%), 471,034 FFs (18%), and 546 DSP blocks 

(5.9%), while BRAM and UltraRAM are not utilized. As can 

be seen from the resource distribution figure 3, the primary 

resource consumption in the design is concentrated on LUTs 

and FFs, FPGA-internal Block RAM (BRAM) resources have 

not been utilized to store data. Overall, only 5% to 30% of 

resources are occupied on the ultra-large FPGA device. The 

decision tree structure (Random Forest) is mainly stored in 

LUTRAM, while the core computation utilizes DSP and LUT 

resources. The LUTRAM stores various tree node information, 

comprising a total of 30 ROM blocks. Most critical logic 

(including vote counting and feature comparison) uses fixed-

point arithmetic, requiring a certain number of DSP and LUT 

resources allocated by HLS for addition and multiplication 

operations. In the future, it would be possible to optimize the 

computational logic to map more computing tasks onto DSP 

resources. 

Table 2. Post-Synthesis Resource Utilization 

Parameter Value 
Device 

Capacity 

Utilization 

(%) 

LUT 370,421 1,296,000 28% 

FF 471,034 2,592,000 18% 

DSP Blocks 546 9216 5.9 % 

Block RAM 

(18Kb) 
0 4032 0% 

UltraRAM 0 960 0% 

 

Fig 3: Post-synthesis resource-utilization breakdown. 

Further, the authors compared the single-inference 

performance between CPU and FPGA implementations. As 

shown in Table 3, the total elapsed time parameter generated 

by the C Simulation indicated the total duration from the start 

to the end of the simulation process was 30.505 seconds. 

Meanwhile, the FPGA execution time was calculated by 

multiplying the clock period (Clock Period parameter from the 

csynth.rpt report) by the latency (number of cycles), resulting 

in approximately 0.0000713 seconds. Consequently, the 

authors calculated an idealized speedup of approximately 

427,840×. However, this speedup is highly idealized since it 

compares the "simulation environment plus pure hardware 

computation." In practical deployments, pure inference time on 

the CPU is typically much less than 30 seconds, and the FPGA 

requires data transfers through DDR, PCIe, or AXI interfaces; 

hence, transfer latency must be considered in real-world 

scenarios. 

To achieve more realistic results, the authors compiled and ran 

the same inference code using g++ with -O2 optimization on a 

2.9 GHz CPU, obtaining an average single inference latency of 

4.713 µs. Compared with the FPGA synthesis report, to ensure 

stable design operation, the synthesis tools typically use a target 

clock of 10 ns, corresponding to a frequency of 100 MHz. 

Under this frequency, the FPGA hardware latency per 

inference was 112 microseconds (µs). In this case, the CPU was 

approximately 24 times faster than the FPGA, primarily 

because the FPGA clock frequency was relatively low and had 

not yet leveraged batch parallelism or other methods to exploit 

hardware potential fully. When calculating the real FPGA 

latency, using 71.3 µs represented using the "Estimated Clock 

Period" from the HLS report, optimistically assuming the final 

implementation could also achieve approximately 157 MHz 

and disregarding board-level clock convergence and routing 

margins. Conversely, using 112 µs was based on the 

constrained clock period of 10 ns (100 MHz), which is more 

conservative and typically serves as the realizable target 

provided by most design flows before place-and-route. 
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Table 3. Inference Time and Speedup Comparison 

Comparison basis CPU Time FPGA Time Speedup Calculation Conclusion 

Real inference latency 

(optimistic) 
4.713 µs 71.3 µs 4.713 ÷71.3 ≈ 0.066 FPGA is ≈ 15× slower 

Real inference latency 

(conservative) 
4.713 µs 112 µs 4.713 ÷112  ≈ 0.042 FPGA is ≈ 24× slower 

Tool-level "idealized" 

comparison 
30.505 s 71.3 µs 30.505 s ÷ 71.3 µs ≈ 427840 

Reflects only tool-level simulation 

overhead, not actual hardware 

performance 

 
Overall, the current FPGA design exhibits favorable 

performance concerning functional correctness, resource 

utilization efficiency, and timing compliance. The top-level 

interface adheres to the AXI4-Lite standard, with features as 

input and result as output, interacting via register mapping. 

Hardware resource utilization complies with FPGA resource 

constraints; LUT, FF, and DSP usage do not exceed the target 

device's capacity. These experimental results indicate that the 

advantage of FPGA lies not in single-inference latency but 

rather in throughput, energy efficiency, and real-time 

processing capabilities. The effectiveness of FPGA 

acceleration depends on multiple factors, including task size, 

degree of data parallelization, hardware resources, and I/O 

bandwidth. 

Through the aforementioned multi-stage experiments and 

toolchain integration, the authors successfully completed the 

synthesis verification of the random forest inference IP in Vitis 

HLS and performed numerical and functional consistency 

comparisons with the Python/CPU implementations. The 

current validation process has achieved a high level of maturity 

in terms of functional correctness and data consistency. 

4. CONCLUSION 
This study designed and demonstrated a CPU–FPGA-based 

proof-of-concept framework to accelerate random-forest-based 

text classification tasks. The framework employs a lightweight 

random forest model and incorporates strategies such as 

algorithm lightweighting, fixed-parameter configuration, 

fixed-point quantization, and dimensionality reduction, thereby 

realizing algorithm deployment on FPGA. Experimental results 

show that the framework achieves high functional consistency 

with the Python reference implementation, with a cosine 

similarity of 0.9990, while occupying only approximately 28% 

of LUTs and 5.9% of DSP resources on a Xilinx VU11P device. 

This heterogeneous architecture offloads the inference kernel 

to hardware implementation, achieving a post-synthesis latency 

of approximately 112 µs at a conservative target frequency of 

100 MHz, while this latency can be further reduced to 71.3 µs 

based on the estimated clock period of 6.368 ns (≈157 MHz) 

from the synthesis report. 

However, the current prototype still executes TF-IDF and SVD 

feature extraction on the host CPU and has not undergone 

place-and-route or power analysis. Therefore, system-level 

latency and energy efficiency remain suboptimal. Future 

research will focus on increasing parallelism on the FPGA, 

using HLS directives to parallelize computations across each 

decision tree and each feature dimension, performing power 

evaluation after place-and-route, utilizing BRAM/URAM to 

cache model parameters and intermediate data to fully exploit 

FPGA resources, and further attempting to migrate the TF-IDF 

and SVD preprocessing to FPGA to eliminate PCIe/AXI 

transfer bottlenecks. It is anticipated that these improvements 

will further enhance throughput and strengthen the system's 

end-to-end hardware-accelerated performance. 
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