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ABSTRACT 

Fall accidents are becoming an increasingly common and 

serious issue worldwide, particularly among the elderly. These 

incidents are not only the leading cause of injuries and fatalities 

in older adults but also significantly impact their quality of life. 

Therefore, the research and development of automatic fall 

detection systems have become increasingly significant. 

Current fall detection devices often offer wearable solutions, 

which can cause unnecessary inconvenience and even reduce 

effectiveness. Elderly individuals, especially those in poor 

health, may forget to wear these devices. Therefore, developing 

an automatic fall detection system offers a more effective 

solution to address this issue. The proposed system uses 

MediaPipe for human body key-point extraction combined 

with a classification model of a Long-short term memory 

(LSTM) network or K-Nearest-Neighbor (KNN) algorithm. It 

is capable of identifying the fall actions of humans in real-time 

environment. 
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1. INTRODUCTION 
According to statistics from the World Health Organization 

(WHO) [1], there are 684,000 fall-related deaths annually, 

making falls the second leading cause of unintentional injury 

deaths after road traffic accidents. Over 80% of fall-related 

deaths occur in low- and middle-income countries, with the 

highest mortality rates found in adults over the age of 60. 

Automating the fall detection process saves time and effort and 

creates a safer environment for the elderly. This can enhance 

their quality of life and provide them and their families peace 

of mind. This research topic not only addresses practical needs 

in improving safety and healthcare for the elderly but also 

reflects our commitment to leveraging technology to tackle 

significant societal challenges. Fall detection devices currently 

available on the market are often designed to be worn on the 

body [2][3][4], which can lead to unnecessary inconvenience 

and may even reduce their effectiveness. Older adults, 

particularly those with compromised health, may frequently 

forget to wear these devices. Therefore, the development of an 

automated fall detection system using cameras would address 

this issue more effectively. 

Computer vision-based fall detection is a critical area of 

research, especially for elder care and home safety monitoring. 

Developing an automated fall detection system is challenging 

due to the short duration of fall events and the complex body 

postures involved, which distinguish falls from other activities. 

Furthermore, variations in background and real-time video 

angles pose significant hurdles. 

Pose estimation models have emerged as a promising 

alternative for automated fall detection and classification.  The 

research presented in [5][6] specifically investigated the 

efficacy of pose estimation for this purpose.  Utilizing models 

such as OpenPose, PoseNet, DeepPose, and AlphaPose, the 

authors extracted key kinematic metrics, including body tilt 

angles and inter-joint distances.  Their findings suggest that 

pose estimation-based fall detection achieves superior accuracy 

compared to traditional sensor-based methodologies.  

However, this approach remains susceptible to challenges 

related to video input quality and camera perspective. 

Similarly, [7] proposes a fall detection system integrating pose 

estimation with a Gated Recurrent Unit (GRU) network to 

process sequential data. GRU is used to analyze the kinematic 

changes in joints across video frames. This method not only 

detects falls but also predicts the direction of the fall. 

Experimental results demonstrate high accuracy, particularly in 

complex scenarios such as falling while standing up or falling 

backward. 

In addition to traditional pose estimation models like OpenPose 

and AlphaPose, [8] employs MediaPipe Pose, a recently 

introduced skeleton detection model, to extract real-time joint 

features. This is combined with an IoT platform to provide 

automated alerts. The system's advantages include continuous 

monitoring at a low cost and effective AI-IoT integration. Real-

world experiments show that the system is suitable for 

deployment in homes or nursing facilities, though 

improvements are needed in low-light environments. 

Beyond fall detection, [9] identifies the direction of falls, a 

critical factor in assessing the severity of incidents. By 

analyzing features such as the center of gravity and body 

orientation, the system classifies scenarios like lateral falls, 

forward falls, or backward falls. This method performs well 

across diverse testing environments but encounters difficulties 

with atypical postures. 

Recognizing that a fall is a sequential motion, Long Short-Term 

Memory (LSTM) networks, particularly when combined with 

an attention mechanism as explored in [10], offer a promising 

approach.  The authors propose leveraging LSTM's inherent 

capacity for processing sequential data, such as human 

movement, and integrating an attention mechanism to focus on 

the most salient portions of the motion sequence for fall 

recognition.  This aims to improve both accuracy and 

robustness compared to traditional fall detection methods.  The 

effectiveness of this LSTM-attention approach is evaluated 

through experiments benchmarked against established 

baselines.  Key aspects of this research include the specific 

LSTM-attention architecture employed, the feature extraction 

techniques used, details of the dataset utilized, and the 

performance metrics considered.  Ultimately, this work seeks 

to contribute to the development of more reliable and 

automated fall detection systems, with a particular focus on 
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applications within elderly care. 

Motivated by the related research published in the literature, 

this study presents an automated fall detection system based on 

an LSTM architecture and the KNN algorithm, utilizing 

MediaPipe for human body keypoint extraction. The proposed 

real-time system will reduce the risk of late recognition of fall 

action. 

The rest of the paper is organized as follows: Section 2 details 

the background of keypoint extraction and classification 

models. Section 3 presents the architecture, algorithm and data 

model of our proposed fall detection solution. Section 4 

presents the outcomes of the test experiments and evaluates the 

system's performance. Finally, the conclusion and future work 

are discussed in section 5. 

2. BACKGROUND 

2.1 Keypoint extraction 
Keypoints are extracted from the video frames collected from 

the videos utilizing the MediaPipe Pose in the suggested 

method. It is a machine-learning pipeline comprising numerous 

models operating together. A Pose Landmark Model that 

returns high-accuracy human pose keypoints from the Region 

of Interest (ROI) of each frame determined by the pose 

detector.  

  

Fig 1: Pose detector and tracker of MediaPipe 

In the domain of pose estimation, a two-stage machine learning 

pipeline, commonly referred to as the detector-tracker pipeline, 

is demonstrated in Figure 1. This pipeline comprises two 

distinct phases: detection and tracking. The initial detection 

phase employs a detector, typically a pre-trained object 

detection model or a coarse pose estimation model, to identify 

the Region of Interest (ROI) within the image frame. This ROI 

delineates the area containing the subject or individual whose 

pose is to be precisely estimated. Standard detectors employed 

in this context include YOLO, SSD, and Faster R-CNN for 

general object detection. At the same time, more specialized 

models like OpenPose and AlphaPose are utilized for human 

pose detection. 

Subsequently, the tracking phase utilizes a tracker to predict the 

precise location of pose keypoints within the identified ROI. 

These keypoints represent anatomical landmarks or salient 

points on the human body, such as eyes, nose, elbows, and 

knees. The number of keypoints can vary depending on the 

specific application and desired level of detail (e.g., 17 

keypoints for the COCO dataset, or 33 keypoints as 

mentioned). Standard tracking algorithms include Kalman 

filters, MeanShift, Kernelized Correlation Filters (KCF), and 

DeepSORT, each exhibiting distinct advantages and 

disadvantages in speed, accuracy, and robustness to 

challenging conditions such as occlusions or rapid movements. 

A crucial aspect of video applications is the optimization of 

computational efficiency. Instead of executing the detector on 

every frame, it is typically applied only to the first frame to 

establish the initial ROI. For subsequent frames, the ROI is 

inferred from the predicted keypoint positions of the preceding 

frame. This approach relies on the assumption that pose 

changes between consecutive frames are minimal, allowing the 

tracker to efficiently predict the ROI without the 

computationally intensive detection process. ROI inference can 

be performed through various methods, such as creating a 

bounding box encompassing the predicted keypoints with a 

defined margin or employing more sophisticated techniques 

based on keypoint motion estimation. However, this method is 

not without limitations. Particularly, inaccuracies in tracking 

and pose estimation may arise when the subject undergoes 

rapid movements, experiences occlusions, or exhibits abrupt 

pose changes. In such instances, re-detection, involving the re-

application of the detector, can be employed to rectify the 

tracking process. 

Thus, the extracted keypoints are stored NumPy array as 

Python files and get stored. Figure 2 represents the Keypoint 

extraction process with Mediapipe module. 

 
a) No Fall 

 
b) Fall 

Fig 2: Keypoint extraction process 



International Journal of Computer Applications (0975 – 8887)  

Volume 186 – No.80, April 2025 

36 

 

Fig 3: Keypoints detect by MediaPipe [11]

2.2 Classification model 

2.2.1 LSTM model 
LSTM is an extension of Recurrent Neural Networks (RNN); it 

is chosen because of the inability to remember a long sequences 

of memory and forgetting redundant information, which, in 

detail in this research is the “Fall” action. In this problem, we 

have used LSTM as one of our choices, where information is 

transferred through gates in a sequence chain, including the 

relevant information from earlier states. The figure of LSTM 

model is provided in Figure 4 for a better understanding of the 

flow and concept of LSTM. Here, 

 

Fig 4: LSTM working process 

- o denotes for Pointwise multiplication. 

- + denotes for Pointwise addition. 

- S denotes for Sigmoid activation 

- T denotes for Tanh activation 

The forget gate is an essential part of this model and is pre-

trained to judge whether information from input data would be 

remembered/forgotten fully or partially. In this research, we 

only use one layer of LSTM (50 units, sigmoid activation 

function) and a Dense Layer (1 unit) as our problem only 

aiming to classify two classes Fall (1) and No Fall (0). 

 

2.2.2 KNN model 
The K-Nearest Neighbors (KNN) algorithm is used to classify 

the actions of identified objects. KNN is a machine learning 

algorithm for classification, where each new dataset collected 

from an object is compared to the k most similar datasets from 

the training set. The output is classified into two actions: "Fall" 

or "No Fall." 

The primary limitation of KNN lies in its execution time due to 

the lack of a preprocessing step. Each new data point to be 

classified must be compared with the k most similar data points 

in the unprocessed training set, which can result in inefficiency. 

The Euclidean distance is one of common measures to find the 

nearest data, which is given by 

𝑑(𝐾1, 𝐾2) = √∑(𝐾1𝑛 − 𝐾2𝑛)2

𝑛

𝑖=1

 

where 𝐾1 = (𝑘11, 𝑘12 , … , 𝑘1𝑛) and 𝐾2 = (𝑘21, 𝑘22, … , 𝑘2𝑛) 

[12]. 

3. PROPOSED FALL DETECTION 

SOLUTION 
This proposed method uses a vision-based categorization 

system for “Fall” action. In contrast to a static pose, a fall pose 

motion comprises a complex motion of body gestures. A single 

frame can determine a static pose or action, whereas a sequence 

of bodies determines a dynamic action. MediaPipe module is 

used to extract the key points. The body pose is considered the 

region of interest, and the key points are extracted from these 

regions. Then, the key points extracted are given as input to the 

built LSTM model, and then the camera shows a fall alert 

message to indicate if there is a chain of fall action throughout 

the input frames.  

3.1 Architecture 
The biomechanics of falls are complex and exhibit significant 

variability depending on both the direction of the fall and the 

individual's reactive movements.  The proposed fall detection 

system, depicted in Figure 5, is structured around three core 

components: video acquisition, keypoint extraction, and fall 

classification.  In selecting a suitable model for keypoint 

extraction, several state-of-the-art pose detection/estimation 
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models were evaluated.  MediaPipe was ultimately chosen due 

to its demonstrated accuracy and cross-platform compatibility, 

making it well-suited for both the current research and potential 

future development.  

The extracted keypoints are structured into an array for 

subsequent training.  To evaluate performance, two distinct 

action classification models are employed in parallel: a Long 

Short-Term Memory (LSTM) network and a K-Nearest 

Neighbors (KNN) algorithm.  The LSTM network, with its 

gated architecture comprising input, output, and forget gates, is 

well-suited to capture the temporal dependencies inherent in 

human actions and address the short-term memory 

requirements of fall detection.  Simultaneously, the KNN 

algorithm provides a computationally less complex and faster 

alternative, potentially more amenable to real-time 

implementation. 

 

Fig 5: Architecture of the proposed fall detection system 

Below is the step-by-step algorithm for an overall process of 

the proposed system: 

BEGIN 

1. Dataset videos are created for fall activity. 

2. The recorded videos get converted to the image frames using 

OpenCV. 

3. Training. 

(3.1) Keypoint Extraction done with Mediapipe. 

(3.2) LSTM/KNN classification for each frame (model, input 

shape). 

4. Fall detection 

(4.1) Fall detection using classification results from a set of 8 

frames continuously when 4 out of 8 are classified as “Fall” 

END 

 

3.2 Features for Fall Detection 
In this research, the features used to detect the fall action are 

proposed as follows. In Figure 6, recognizing the fact that the 

elbow joint angles (1, 2), hip joint angles (3, 4), and knee 

joint angles (5, 6) are usually changed significantly during 

the fall action, the changes of these angles in 4 consecutive 

video frames are adopted as features to detect the fall. These 

joint angles can be easily calculated from the keypoints 

extracted using MediaPipe. There are 24 features calculated 

from the joint angles as follows: 

( 1 ) ( ),( 1,..,6; 1,..,4)ij i if k j k j i ja a= + - - - = =  

Besides the changes in joint angles, the change of Shape Aspect 

Ratio (SAR), which has been proven to be essential for “Fall” 

judgment [13], is also used as an additional feature. The SAR 

value can be obtained by dividing the height by the width of the 

bounding box of the human body detected in each video frame. 

We can form a feature matrix F from the mentioned features as 

below: 

11 61 1

14 64 4

f f SAR

F

f f SAR

é ù
ê ú
ê ú=
ê ú
ê ú
ê úë û

L

M O M M

L
 

In total, a matrix with 28 elements is used as input data for Fall 

Detection. 

 

Fig 6: Joint angles used in fall detection 

3.3 Dataset Acquisition 
The CAUCAFall Dataset [6], supplemented by our own 

collected data, was used to train the fall classification models. 

In the CAUCAFall Dataset, body poses were captured in video 

format and converted into sequences of image frames as in 

Figure 7. Recognizing that falls typically occur quickly, videos 

were recorded for a short duration (5-7 seconds) to minimize 

the imbalance between "Fall" and "No Fall" instances. A total 

of 40 videos were recorded, with keypoints extracted from each 

frame and stored in a data file for training the classification 

model. To further enrich the dataset, we self-collected an 

additional 12 videos. The combined dataset comprises 29 "Fall" 

videos, depicting various fall types (forward, backward, left, 

right, sitting), and 23 "No Fall" videos, showcasing other 

actions such as hopping and kneeling. 
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Fig 7: Dataset use for training and validation 

After frame-by-frame extraction across all videos in the 

keypoint dataset, a total of 17,301 frames were used for training 

and validation, employing a 70/30 split ratio.  Each input data 

point was manually labeled as either "Fall" (1) or "No Fall" (0). 

4. TEST RESULT AND PERFORMANCE 

EVALUATION 

4.1 Model training 
A total of 17,301 sets of input data were used for training 

purposes for both LSTM and KNN models, with variable 

Camera position, background, and lighting conditions. 

For KNN classification model, we process training in 3 

different values of k (3, 5 and 7) to assess the impact of this 

parameter on model accuracy. 

Its Precision, Recall and F1-Score evaluate the performance of 

the built method. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑣𝑖𝑒
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Table 1 provides the performance of KNN classification model 

for each frame with input support by MediaPipe Pose keypoint 

extraction. It is clear that k = 5 provide the highest accuracy 

with nearly 91.99%. It is evident that a k value that is too large 

or too small is not suitable; a small k value leads to less 

reference data to compare with, or a large k value can increase 

noise data.  

Similarly, for LSTM, we evaluate model performance with 

epoch = 50, batch size =16. Table 2 provide the performance 

result of MediaPipe-LSTM model.

Table 1. Performance result of MediaPipe-KNN model 

k value Class Precision Recall F1-score Accuracy 

k=3 
0 (No Fall) 0.93 0.99 0.96 

91.63% 
1 (Fall) 0.29 0.60 0.60 

k=5 
0 (No Fall) 0.92 0.99 0.96 

91.99% 
1 (Fall) 0.33 0.30 0.28 

k=7 
0 (No Fall) 0.92 1.00 0.96 

92.19% 
1 (Fall) 0.42 0.20 0.10 

 

Table 2. Performance result of MediaPipe-LSTM model 

Class Precision Recall F1-score Accuracy 

0 (No Fall) 0.9324 0.9886 0.9597 92.34% 

1 (Fall) 0.5217 0.1481 0.2308 

 

Fig 8: Fall alert raising flow 

4.2 Result Analysis 
Following model training, a "Fall Alert" mechanism was 

implemented, as depicted in Figure 8.  This mechanism triggers 

a fall alert if three out of eight consecutive frames are classified 

as "Fall" by the pre-trained model.  Recognizing that a single 

frame is insufficient for reliable fall detection, a set of 30 short 

videos, comprising 11 fall events, was used to evaluate the 

algorithm's performance.  Evaluation was conducted on a 

system with an Intel Core i7 processor, 16GB RAM, and an 

NVIDIA GeForce RTX 3050 Ti GPU.  In addition to accuracy, 

precision, and recall, the Frames Per Second (FPS) metric was 

also considered to assess the method's processing speed.  The 

evaluation results are presented in Table 3. 

Table 3. Performance result of model 

Methods Pre. Rec. F1. Acc. FPS 

MediaPipe+

LSTM 
0.73 1.00 0.84 90.00% 12.76 

MediaPipe+

KNN 
0.82 0.84 0.83 83.33% 25.12 

The comparative evaluation of the LSTM network and the K-

Nearest Neighbors (KNN) algorithm reveals key insights into 

their respective performance in fall detection tasks. Overall, the 

LSTM model demonstrates slightly higher accuracy than the 

FRAME FALL/ NO FALL

ALERT MESSAGE

PRE_PROCESSING & KEYPOINTS EXTRACTION FALL DETECTION

…

FALL CLASSIFIACTIONPOSE ESTIMATE

Keypoint 

angles

SAR



International Journal of Computer Applications (0975 – 8887)  

Volume 186 – No.80, April 2025 

39 

KNN algorithm. A closer look at class-wise accuracy where 

class 0 denotes "No Fall" and class 1 denotes "Fall” shows that 

the LSTM model significantly outperforms KNN in correctly 

identifying "Fall" instances. In contrast, both models achieve 

comparable accuracy for the "No Fall" class, with each 

reaching approximately 90%. 

This discrepancy in classification performance between the two 

classes can be largely attributed to the nature of the training 

data. The dataset comprises short video sequences, wherein fall 

events typically span only in a few frames. Conversely, the 

majority of frames depict non-fall activities. This inherent class 

imbalance biases the models towards the "No Fall" class, 

making it more challenging to accurately detect the 

comparatively rare "Fall" frames. The LSTM model, with its 

temporal learning capabilities, is better equipped to capture the 

sequential patterns associated with fall events, enabling 

improved detection of these short, transient actions. 

In terms of computational efficiency, however, KNN holds a 

substantial advantage. The KNN algorithm operates at an 

average frame rate of approximately 24 frames per second 

(FPS), making it highly suitable for real-time deployment. In 

contrast, the LSTM model achieves a lower processing speed 

of about 12 FPS, which may pose limitations in latency-

sensitive applications. This notable difference highlights 

KNN’s suitability for resource-constrained or performance-

critical environments, especially when additional features or 

sensors are to be integrated without significantly impacting 

responsiveness. 

In summary, while the LSTM model provides better accuracy, 

particularly in identifying fall events, its higher computational 

cost makes it less ideal for real-time applications. KNN, on the 

other hand, offers a balanced trade-off between speed and 

accuracy, positioning it as a more pragmatic choice in scenarios 

where rapid decision-making and low-latency processing are 

critical. 

5. CONCLUSION 
An advantage of this method is that it is designed to be a real-

time interface and easy to access. The keypoint extraction 

model effectively extracts critical information for action 

classification based on human pose, while the proposed 

combination of techniques ensures faster making it suitable for 

real-world applications. Implementing the LSTM network and 

KNN algorithm increases the option for Fall detection and 

proposes an interface that can reduce the risk of Fall, especially 

for elderly people. The challenge is enhancing the method's 

accuracy. Unlike other approaches, it achieves superior speed, 

which is crucial in real-time fall detection scenarios.   

The system's accuracy remains a challenge to improve, but the 

solution can be embedded in a compact, convenient device, 

ensuring accessibility and practicality. This project's potential 

is vast, with many possibilities for future enhancements. For 

example, the dataset could be expanded to include different 

backgrounds and fall poses, while model adjustments could 

fine-tune performance. The input image frame size could also 

be standardized to match the training dataset for improved 

results. 

Looking ahead, the developed method can be adapted for 

specific embedded computers such as Raspberry Pi or Jetson 

Nano, optimizing device performance. Furthermore, it holds 

great promise for expansion into mobile or web applications, 

increasing accessibility to a wide range of users. 
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