
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.80, April 2025

34

Automate Fall Detection using MediaPipe Keypoint-

Extraction

Linh Tran
Dept. of Control Engineering and Automation

Ho Chi Minh University of Technology
Ho Chi Minh, Viet Nam

Thai Hoang Huynh
Dept. of Control Engineering and Automation

Ho Chi Minh University of Technology
Ho Chi Minh, Viet Nam

ABSTRACT

Fall accidents are becoming an increasingly common and

serious issue worldwide, particularly among the elderly. These

incidents are not only the leading cause of injuries and fatalities

in older adults but also significantly impact their quality of life.

Therefore, the research and development of automatic fall

detection systems have become increasingly significant.

Current fall detection devices often offer wearable solutions,

which can cause unnecessary inconvenience and even reduce

effectiveness. Elderly individuals, especially those in poor

health, may forget to wear these devices. Therefore, developing

an automatic fall detection system offers a more effective

solution to address this issue. The proposed system uses

MediaPipe for human body key-point extraction combined

with a classification model of a Long-short term memory

(LSTM) network or K-Nearest-Neighbor (KNN) algorithm. It

is capable of identifying the fall actions of humans in real-time

environment.

Keywords

Key-point extraction, Fall detection, MediaPipe, KNN, LSTM

1. INTRODUCTION
According to statistics from the World Health Organization

(WHO) [1], there are 684,000 fall-related deaths annually,

making falls the second leading cause of unintentional injury

deaths after road traffic accidents. Over 80% of fall-related

deaths occur in low- and middle-income countries, with the

highest mortality rates found in adults over the age of 60.

Automating the fall detection process saves time and effort and

creates a safer environment for the elderly. This can enhance

their quality of life and provide them and their families peace

of mind. This research topic not only addresses practical needs

in improving safety and healthcare for the elderly but also

reflects our commitment to leveraging technology to tackle

significant societal challenges. Fall detection devices currently

available on the market are often designed to be worn on the

body [2][3][4], which can lead to unnecessary inconvenience

and may even reduce their effectiveness. Older adults,

particularly those with compromised health, may frequently

forget to wear these devices. Therefore, the development of an

automated fall detection system using cameras would address

this issue more effectively.

Computer vision-based fall detection is a critical area of

research, especially for elder care and home safety monitoring.

Developing an automated fall detection system is challenging

due to the short duration of fall events and the complex body

postures involved, which distinguish falls from other activities.

Furthermore, variations in background and real-time video

angles pose significant hurdles.

Pose estimation models have emerged as a promising

alternative for automated fall detection and classification. The

research presented in [5][6] specifically investigated the

efficacy of pose estimation for this purpose. Utilizing models

such as OpenPose, PoseNet, DeepPose, and AlphaPose, the

authors extracted key kinematic metrics, including body tilt

angles and inter-joint distances. Their findings suggest that

pose estimation-based fall detection achieves superior accuracy

compared to traditional sensor-based methodologies.

However, this approach remains susceptible to challenges

related to video input quality and camera perspective.

Similarly, [7] proposes a fall detection system integrating pose

estimation with a Gated Recurrent Unit (GRU) network to

process sequential data. GRU is used to analyze the kinematic

changes in joints across video frames. This method not only

detects falls but also predicts the direction of the fall.

Experimental results demonstrate high accuracy, particularly in

complex scenarios such as falling while standing up or falling

backward.

In addition to traditional pose estimation models like OpenPose

and AlphaPose, [8] employs MediaPipe Pose, a recently

introduced skeleton detection model, to extract real-time joint

features. This is combined with an IoT platform to provide

automated alerts. The system's advantages include continuous

monitoring at a low cost and effective AI-IoT integration. Real-

world experiments show that the system is suitable for

deployment in homes or nursing facilities, though

improvements are needed in low-light environments.

Beyond fall detection, [9] identifies the direction of falls, a

critical factor in assessing the severity of incidents. By

analyzing features such as the center of gravity and body

orientation, the system classifies scenarios like lateral falls,

forward falls, or backward falls. This method performs well

across diverse testing environments but encounters difficulties

with atypical postures.

Recognizing that a fall is a sequential motion, Long Short-Term

Memory (LSTM) networks, particularly when combined with

an attention mechanism as explored in [10], offer a promising

approach. The authors propose leveraging LSTM's inherent

capacity for processing sequential data, such as human

movement, and integrating an attention mechanism to focus on

the most salient portions of the motion sequence for fall

recognition. This aims to improve both accuracy and

robustness compared to traditional fall detection methods. The

effectiveness of this LSTM-attention approach is evaluated

through experiments benchmarked against established

baselines. Key aspects of this research include the specific

LSTM-attention architecture employed, the feature extraction

techniques used, details of the dataset utilized, and the

performance metrics considered. Ultimately, this work seeks

to contribute to the development of more reliable and

automated fall detection systems, with a particular focus on

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.80, April 2025

35

applications within elderly care.

Motivated by the related research published in the literature,

this study presents an automated fall detection system based on

an LSTM architecture and the KNN algorithm, utilizing

MediaPipe for human body keypoint extraction. The proposed

real-time system will reduce the risk of late recognition of fall

action.

The rest of the paper is organized as follows: Section 2 details

the background of keypoint extraction and classification

models. Section 3 presents the architecture, algorithm and data

model of our proposed fall detection solution. Section 4

presents the outcomes of the test experiments and evaluates the

system's performance. Finally, the conclusion and future work

are discussed in section 5.

2. BACKGROUND

2.1 Keypoint extraction
Keypoints are extracted from the video frames collected from

the videos utilizing the MediaPipe Pose in the suggested

method. It is a machine-learning pipeline comprising numerous

models operating together. A Pose Landmark Model that

returns high-accuracy human pose keypoints from the Region

of Interest (ROI) of each frame determined by the pose

detector.

Fig 1: Pose detector and tracker of MediaPipe

In the domain of pose estimation, a two-stage machine learning

pipeline, commonly referred to as the detector-tracker pipeline,

is demonstrated in Figure 1. This pipeline comprises two

distinct phases: detection and tracking. The initial detection

phase employs a detector, typically a pre-trained object

detection model or a coarse pose estimation model, to identify

the Region of Interest (ROI) within the image frame. This ROI

delineates the area containing the subject or individual whose

pose is to be precisely estimated. Standard detectors employed

in this context include YOLO, SSD, and Faster R-CNN for

general object detection. At the same time, more specialized

models like OpenPose and AlphaPose are utilized for human

pose detection.

Subsequently, the tracking phase utilizes a tracker to predict the

precise location of pose keypoints within the identified ROI.

These keypoints represent anatomical landmarks or salient

points on the human body, such as eyes, nose, elbows, and

knees. The number of keypoints can vary depending on the

specific application and desired level of detail (e.g., 17

keypoints for the COCO dataset, or 33 keypoints as

mentioned). Standard tracking algorithms include Kalman

filters, MeanShift, Kernelized Correlation Filters (KCF), and

DeepSORT, each exhibiting distinct advantages and

disadvantages in speed, accuracy, and robustness to

challenging conditions such as occlusions or rapid movements.

A crucial aspect of video applications is the optimization of

computational efficiency. Instead of executing the detector on

every frame, it is typically applied only to the first frame to

establish the initial ROI. For subsequent frames, the ROI is

inferred from the predicted keypoint positions of the preceding

frame. This approach relies on the assumption that pose

changes between consecutive frames are minimal, allowing the

tracker to efficiently predict the ROI without the

computationally intensive detection process. ROI inference can

be performed through various methods, such as creating a

bounding box encompassing the predicted keypoints with a

defined margin or employing more sophisticated techniques

based on keypoint motion estimation. However, this method is

not without limitations. Particularly, inaccuracies in tracking

and pose estimation may arise when the subject undergoes

rapid movements, experiences occlusions, or exhibits abrupt

pose changes. In such instances, re-detection, involving the re-

application of the detector, can be employed to rectify the

tracking process.

Thus, the extracted keypoints are stored NumPy array as

Python files and get stored. Figure 2 represents the Keypoint

extraction process with Mediapipe module.

a) No Fall

b) Fall

Fig 2: Keypoint extraction process

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.80, April 2025

36

Fig 3: Keypoints detect by MediaPipe [11]

2.2 Classification model

2.2.1 LSTM model
LSTM is an extension of Recurrent Neural Networks (RNN); it

is chosen because of the inability to remember a long sequences

of memory and forgetting redundant information, which, in

detail in this research is the “Fall” action. In this problem, we

have used LSTM as one of our choices, where information is

transferred through gates in a sequence chain, including the

relevant information from earlier states. The figure of LSTM

model is provided in Figure 4 for a better understanding of the

flow and concept of LSTM. Here,

Fig 4: LSTM working process

- o denotes for Pointwise multiplication.

- + denotes for Pointwise addition.

- S denotes for Sigmoid activation

- T denotes for Tanh activation

The forget gate is an essential part of this model and is pre-

trained to judge whether information from input data would be

remembered/forgotten fully or partially. In this research, we

only use one layer of LSTM (50 units, sigmoid activation

function) and a Dense Layer (1 unit) as our problem only

aiming to classify two classes Fall (1) and No Fall (0).

2.2.2 KNN model
The K-Nearest Neighbors (KNN) algorithm is used to classify

the actions of identified objects. KNN is a machine learning

algorithm for classification, where each new dataset collected

from an object is compared to the k most similar datasets from

the training set. The output is classified into two actions: "Fall"

or "No Fall."

The primary limitation of KNN lies in its execution time due to

the lack of a preprocessing step. Each new data point to be

classified must be compared with the k most similar data points

in the unprocessed training set, which can result in inefficiency.

The Euclidean distance is one of common measures to find the

nearest data, which is given by

𝑑(𝐾1, 𝐾2) = √∑(𝐾1𝑛 − 𝐾2𝑛)2

𝑛

𝑖=1

where 𝐾1 = (𝑘11, 𝑘12 , … , 𝑘1𝑛) and 𝐾2 = (𝑘21, 𝑘22, … , 𝑘2𝑛)

[12].

3. PROPOSED FALL DETECTION

SOLUTION
This proposed method uses a vision-based categorization

system for “Fall” action. In contrast to a static pose, a fall pose

motion comprises a complex motion of body gestures. A single

frame can determine a static pose or action, whereas a sequence

of bodies determines a dynamic action. MediaPipe module is

used to extract the key points. The body pose is considered the

region of interest, and the key points are extracted from these

regions. Then, the key points extracted are given as input to the

built LSTM model, and then the camera shows a fall alert

message to indicate if there is a chain of fall action throughout

the input frames.

3.1 Architecture
The biomechanics of falls are complex and exhibit significant

variability depending on both the direction of the fall and the

individual's reactive movements. The proposed fall detection

system, depicted in Figure 5, is structured around three core

components: video acquisition, keypoint extraction, and fall

classification. In selecting a suitable model for keypoint

extraction, several state-of-the-art pose detection/estimation

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.80, April 2025

37

models were evaluated. MediaPipe was ultimately chosen due

to its demonstrated accuracy and cross-platform compatibility,

making it well-suited for both the current research and potential

future development.

The extracted keypoints are structured into an array for

subsequent training. To evaluate performance, two distinct

action classification models are employed in parallel: a Long

Short-Term Memory (LSTM) network and a K-Nearest

Neighbors (KNN) algorithm. The LSTM network, with its

gated architecture comprising input, output, and forget gates, is

well-suited to capture the temporal dependencies inherent in

human actions and address the short-term memory

requirements of fall detection. Simultaneously, the KNN

algorithm provides a computationally less complex and faster

alternative, potentially more amenable to real-time

implementation.

Fig 5: Architecture of the proposed fall detection system

Below is the step-by-step algorithm for an overall process of

the proposed system:

BEGIN

1. Dataset videos are created for fall activity.

2. The recorded videos get converted to the image frames using

OpenCV.

3. Training.

(3.1) Keypoint Extraction done with Mediapipe.

(3.2) LSTM/KNN classification for each frame (model, input

shape).

4. Fall detection

(4.1) Fall detection using classification results from a set of 8

frames continuously when 4 out of 8 are classified as “Fall”

END

3.2 Features for Fall Detection
In this research, the features used to detect the fall action are

proposed as follows. In Figure 6, recognizing the fact that the

elbow joint angles (1, 2), hip joint angles (3, 4), and knee

joint angles (5, 6) are usually changed significantly during

the fall action, the changes of these angles in 4 consecutive

video frames are adopted as features to detect the fall. These

joint angles can be easily calculated from the keypoints

extracted using MediaPipe. There are 24 features calculated

from the joint angles as follows:

(1) (),(1,..,6; 1,..,4)ij i if k j k j i ja a= + - - - = =

Besides the changes in joint angles, the change of Shape Aspect

Ratio (SAR), which has been proven to be essential for “Fall”

judgment [13], is also used as an additional feature. The SAR

value can be obtained by dividing the height by the width of the

bounding box of the human body detected in each video frame.

We can form a feature matrix F from the mentioned features as

below:

11 61 1

14 64 4

f f SAR

F

f f SAR

é ù
ê ú
ê ú=
ê ú
ê ú
ê úë û

L

M O M M

L

In total, a matrix with 28 elements is used as input data for Fall

Detection.

Fig 6: Joint angles used in fall detection

3.3 Dataset Acquisition
The CAUCAFall Dataset [6], supplemented by our own

collected data, was used to train the fall classification models.

In the CAUCAFall Dataset, body poses were captured in video

format and converted into sequences of image frames as in

Figure 7. Recognizing that falls typically occur quickly, videos

were recorded for a short duration (5-7 seconds) to minimize

the imbalance between "Fall" and "No Fall" instances. A total

of 40 videos were recorded, with keypoints extracted from each

frame and stored in a data file for training the classification

model. To further enrich the dataset, we self-collected an

additional 12 videos. The combined dataset comprises 29 "Fall"

videos, depicting various fall types (forward, backward, left,

right, sitting), and 23 "No Fall" videos, showcasing other

actions such as hopping and kneeling.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.80, April 2025

38

Fig 7: Dataset use for training and validation

After frame-by-frame extraction across all videos in the

keypoint dataset, a total of 17,301 frames were used for training

and validation, employing a 70/30 split ratio. Each input data

point was manually labeled as either "Fall" (1) or "No Fall" (0).

4. TEST RESULT AND PERFORMANCE

EVALUATION

4.1 Model training
A total of 17,301 sets of input data were used for training

purposes for both LSTM and KNN models, with variable

Camera position, background, and lighting conditions.

For KNN classification model, we process training in 3

different values of k (3, 5 and 7) to assess the impact of this

parameter on model accuracy.

Its Precision, Recall and F1-Score evaluate the performance of

the built method.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑣𝑖𝑒

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Table 1 provides the performance of KNN classification model

for each frame with input support by MediaPipe Pose keypoint

extraction. It is clear that k = 5 provide the highest accuracy

with nearly 91.99%. It is evident that a k value that is too large

or too small is not suitable; a small k value leads to less

reference data to compare with, or a large k value can increase

noise data.

Similarly, for LSTM, we evaluate model performance with

epoch = 50, batch size =16. Table 2 provide the performance

result of MediaPipe-LSTM model.

Table 1. Performance result of MediaPipe-KNN model

k value Class Precision Recall F1-score Accuracy

k=3
0 (No Fall) 0.93 0.99 0.96

91.63%
1 (Fall) 0.29 0.60 0.60

k=5
0 (No Fall) 0.92 0.99 0.96

91.99%
1 (Fall) 0.33 0.30 0.28

k=7
0 (No Fall) 0.92 1.00 0.96

92.19%
1 (Fall) 0.42 0.20 0.10

Table 2. Performance result of MediaPipe-LSTM model

Class Precision Recall F1-score Accuracy

0 (No Fall) 0.9324 0.9886 0.9597 92.34%

1 (Fall) 0.5217 0.1481 0.2308

Fig 8: Fall alert raising flow

4.2 Result Analysis
Following model training, a "Fall Alert" mechanism was

implemented, as depicted in Figure 8. This mechanism triggers

a fall alert if three out of eight consecutive frames are classified

as "Fall" by the pre-trained model. Recognizing that a single

frame is insufficient for reliable fall detection, a set of 30 short

videos, comprising 11 fall events, was used to evaluate the

algorithm's performance. Evaluation was conducted on a

system with an Intel Core i7 processor, 16GB RAM, and an

NVIDIA GeForce RTX 3050 Ti GPU. In addition to accuracy,

precision, and recall, the Frames Per Second (FPS) metric was

also considered to assess the method's processing speed. The

evaluation results are presented in Table 3.

Table 3. Performance result of model

Methods Pre. Rec. F1. Acc. FPS

MediaPipe+

LSTM
0.73 1.00 0.84 90.00% 12.76

MediaPipe+

KNN
0.82 0.84 0.83 83.33% 25.12

The comparative evaluation of the LSTM network and the K-

Nearest Neighbors (KNN) algorithm reveals key insights into

their respective performance in fall detection tasks. Overall, the

LSTM model demonstrates slightly higher accuracy than the

FRAME FALL/ NO FALL

ALERT MESSAGE

PRE_PROCESSING & KEYPOINTS EXTRACTION FALL DETECTION

…

FALL CLASSIFIACTIONPOSE ESTIMATE

Keypoint

angles

SAR

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.80, April 2025

39

KNN algorithm. A closer look at class-wise accuracy where

class 0 denotes "No Fall" and class 1 denotes "Fall” shows that

the LSTM model significantly outperforms KNN in correctly

identifying "Fall" instances. In contrast, both models achieve

comparable accuracy for the "No Fall" class, with each

reaching approximately 90%.

This discrepancy in classification performance between the two

classes can be largely attributed to the nature of the training

data. The dataset comprises short video sequences, wherein fall

events typically span only in a few frames. Conversely, the

majority of frames depict non-fall activities. This inherent class

imbalance biases the models towards the "No Fall" class,

making it more challenging to accurately detect the

comparatively rare "Fall" frames. The LSTM model, with its

temporal learning capabilities, is better equipped to capture the

sequential patterns associated with fall events, enabling

improved detection of these short, transient actions.

In terms of computational efficiency, however, KNN holds a

substantial advantage. The KNN algorithm operates at an

average frame rate of approximately 24 frames per second

(FPS), making it highly suitable for real-time deployment. In

contrast, the LSTM model achieves a lower processing speed

of about 12 FPS, which may pose limitations in latency-

sensitive applications. This notable difference highlights

KNN’s suitability for resource-constrained or performance-

critical environments, especially when additional features or

sensors are to be integrated without significantly impacting

responsiveness.

In summary, while the LSTM model provides better accuracy,

particularly in identifying fall events, its higher computational

cost makes it less ideal for real-time applications. KNN, on the

other hand, offers a balanced trade-off between speed and

accuracy, positioning it as a more pragmatic choice in scenarios

where rapid decision-making and low-latency processing are

critical.

5. CONCLUSION
An advantage of this method is that it is designed to be a real-

time interface and easy to access. The keypoint extraction

model effectively extracts critical information for action

classification based on human pose, while the proposed

combination of techniques ensures faster making it suitable for

real-world applications. Implementing the LSTM network and

KNN algorithm increases the option for Fall detection and

proposes an interface that can reduce the risk of Fall, especially

for elderly people. The challenge is enhancing the method's

accuracy. Unlike other approaches, it achieves superior speed,

which is crucial in real-time fall detection scenarios.

The system's accuracy remains a challenge to improve, but the

solution can be embedded in a compact, convenient device,

ensuring accessibility and practicality. This project's potential

is vast, with many possibilities for future enhancements. For

example, the dataset could be expanded to include different

backgrounds and fall poses, while model adjustments could

fine-tune performance. The input image frame size could also

be standardized to match the training dataset for improved

results.

Looking ahead, the developed method can be adapted for

specific embedded computers such as Raspberry Pi or Jetson

Nano, optimizing device performance. Furthermore, it holds

great promise for expansion into mobile or web applications,

increasing accessibility to a wide range of users.

6. REFERENCES
[1] World Health Organization (WHO) 2021. Fact-sheets:

Falls

[2] Rihana, S. and Mondalak, J. 2016. Wearable Fall

Detection System. Middle East Conf. Biomed. Eng. (Nov.

2016), 84-87.

[3] Saha, B., Islam, M. S., Riad, A. K. I., Tahora S., Shahriar

H. and Sneha S., 2023. BlockTheFall: Wearable Device-

based Fall Detection Framework Powered by Machine

Learning and Blockchain for Elderly Care. IEEE 47th

Annual Computers, Software, and Applications

Conference (Jun. 2023), 1412-1417.

[4] Amir, N. I. M., Dziyauddin, R. A., Mohamed, N., Ismail,

N. S. A., Zulkifli, N. S., Din, N. M. 2022. Real-time

Threshold-Based Fall Detection System Using Wearable

IoT. 4th International Conference on Smart Sensors and

Application (Jul. 2022), 173-178.

[5] Serpa, Y. R., Noqueira, M. B., Neto, P. P. M. and

Rodrigues, M. A. F. 2020. Evaluating Pose Estimation as

a Solution to the Fall Detection Problem. IEEE 8th

International Conference on Serious Games and

Applications for Health (Aug. 2020),1-7.

[6] Ziwei, C., Yiye, W. and Wankou, Y. 2021. Video Based

Fall Detection Using Human Poses.

[7] Kang, Y., Kang, H. and Kim, J. 2021. Fall Detection

Method Based on Pose Estimation Using GRU. Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (Feb 2021), 169-179.

[8] Bugarin, C. A. Q., Lopez, J. M. M., Sambrano, M. F. C.

and Loresco, P. J. M. 2022. Machine Vision-Based Fall

Detection System using MediaPipe Pose with IoT

Monitoring and Alarm. IEEE 10th Region 10

Humanitarian Technology Conference (Sep. 2022), 269-

274

[9] Yuan, C., Zhang, P., Yang, Q. and Wang, J. 2022. Fall

detection and Direction Judgement Based on Posture

Estimation. Discrete Dynamics in Nature and Society

(June 2022), 1-12.

[10] Guerrero, J. C. E., Espana, E. M., Anasco, M. M. and

Lopera, J. E. P. 2022. Dataset for human fall recognition

in an uncontrolled environment.

[11] Valentin, B. and Ivan, G. 2020. On-device, Real-time

Body Pose Tracking with MediaPipe BlazePose.

[12] Asha, G. K., Jayaram, M. A. and Manjunath, A. S. 2010.

Combining Akaike’s Information Criterion (AIC) and the

Golden-Section Search Technique to find Optimal

Numbers of K-Nearest Neighbors. International Journal

of Computer Applications (May. 2010), 80-87.

[13] Min, W., Zou, S. and Li, J. 2018. Human fall detection

using normalized shape aspect ratio. Multimedia Tools

and Applications (Nov. 2018), 14331-143

IJCATM : www.ijcaonline.org

