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ABSTRACT
In today’s data-driven field, ensuring high data quality is essential
for accurate analysis and informed decision-making. Traditional
data quality management methods are often labor-intensive, diffi-
cult to scale, and struggle to handle the vast and complex datasets
prevalent in modern organizations. This paper proposes a novel
framework that integrates Generative AI within the Databricks plat-
form to enhance data quality management across critical dimen-
sions, including accuracy, consistency, completeness, and time-
liness. Leveraging the scalable infrastructure of Databricks, our
solution employs Generative AI to automatically detect and cor-
rect data anomalies, impute missing values, and generate vali-
dation rules based on natural language commands, significantly
reducing the need for manual intervention. Extensive experi-
ments were conducted to compare the proposed approach with
industry-standard data quality tools, including Ataccama ONE,
Informatica Data Quality, IBM InfoSphere QualityStage, Talend
Data Quality, and Soda SQL. Results demonstrate substantial im-
provements in data quality metrics, with our framework achiev-
ing up to 9.41% higher accuracy, 9.09% better timeliness, and a
7.78% increase in completeness over baseline scores. Addition-
ally, our system’s ability to operate in real-time, coupled with
seamless integration in Databricks, makes it a powerful, adap-
tive, and cost-effective solution for large-scale, dynamic data en-
vironments. This research provides valuable insights into the ca-
pabilities of Generative AI in data quality management, setting the
stage for future advancements in automated data integrity solutions.
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1. INTRODUCTION
In today’s digital field, data has become an essential asset driving
decision-making, operational efficiency, and strategic development
across industries. As organizations increasingly rely on data analyt-

ics. The quality of data becomes critical to producing reliable and
actionable insights. High-quality data enables businesses to make
informed decisions and engage in accurate predictive analysis. This
fosters a competitive edge by allowing organizations to act on pre-
cise forecasts. However, when data quality is compromised, the im-
pact is substantial. It often resulting in flawed conclusions, financial
losses, and inefficiencies [8]. The need for rigorous data integrity
measures has become even more pressing in large-scale data en-
vironments. The errors in data can multiply and cause widespread
disruptions. Addressing these challenges requires an approach that
can manage data integrity dynamically and efficiently, especially as
data continues to expand in volume, variety, and complexity [13].
Traditional data quality assurance methods typically involve man-
ual data cleaning, static validation checks, and rule-based monitor-
ing systems. While these approaches have been effective in smaller,
controlled environments, they are often labor-intensive, costly, and
prone toS error. As data continues to grow exponentially, these
methods fall short in terms of scalability and adaptability [22]. The
expansion of Big Data introduces new challenges, making tradi-
tional approaches to data quality insufficient for real-time applica-
tions and large data volumes. Databricks, designed to handle exten-
sive datasets with speed and flexibility, offers a promising founda-
tion for integrating advanced AI-driven approaches. Which could
revolutionize data quality management by reducing manual inter-
vention and improving scalability and accuracy [26].
This research focuses on the limitations of conventional data qual-
ity methods in maintaining reliable data within increasingly com-
plex environments. Traditional approaches largely rely on static
rules and manual interventions to ensure data accuracy, consis-
tency, and completeness [21]. However, these methods lack the
flexibility and adaptability necessary to respond to real-time data
inconsistencies in dynamic pipelines. As real-time analytics and
complex data workflows become standard in data-driven organi-
zations, traditional data quality practices risk falling short of orga-
nizational demands. This creates a critical need for solutions that
not only streamline data quality processes but also adapt to chang-
ing data characteristics in real time. This presents an opportunity
to integrate Generative AI into Databricks workflows, enabling en-
hanced data quality by addressing anomalies and inconsistencies
more effectively than traditional approaches alone [9].
Many organizations today utilize Databricks for its ability to pro-
cess and analyze large datasets quickly and efficiently. While some
advanced tools incorporate automation to manage data quality,
these tools often lack the adaptability needed for continuous, real-
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time quality assurance. Current solutions cannot dynamically ad-
just to detect and resolve data anomalies as they arise [17]. By em-
bedding Generative AI within Databricks workflows, data quality
processes can evolve to meet the demands of modern data environ-
ments. Generative AI offers capabilities for data synthesis, valida-
tion, and correction that traditional methods lack. This integration
provides a significant advancement in data quality management,
enabling organizations to manage data quality with greater preci-
sion, scalability, and efficiency, and allowing teams to handle data
complexities with minimal human intervention [4].
This study proposes a novel framework that uses Generative AI
within Databricks to augment traditional data quality methods. Un-
like static validation checks, the proposed framework utilizes Gen-
erative AI’s capacity to generate, validate, and correct data dy-
namically within Databricks environments. This enables continu-
ous data monitoring and real-time anomaly detection, offering a
level of adaptability that static methods cannot achieve. The inte-
gration of Generative AI into Databricks workflows enhances tra-
ditional data quality processes by enabling data engineers, solution
architects, and data scientists to monitor and correct data quality
issues seamlessly. By incorporating Generative AI into a scalable
platform like Databricks, our approach aims to improve the accu-
racy, consistency, and completeness of data while minimizing the
need for manual quality checks.
The aim of this research is to investigate the role of Generative AI
within Databricks as a complement to traditional data quality man-
agement methods. The study examines its potential to transform
data integrity practices in large-scale data environments.
The research objectives are as follows:

(1) To examine how Generative AI within Databricks enhances
data quality dimensions such as accuracy, consistency, com-
pleteness, and uniqueness.

(2) To assess the impact of integrating Generative AI with
Databricks on organizational workflows, particularly focusing
on roles like data engineers, solution architects, and data sci-
entists.

(3) To identify emerging trends in Generative AI applications
within Databricks, particularly through the use of LLMs for
data quality management.

This research is significant because it addresses an underexplored
intersection between AI and data quality within the Databricks
platform. By examining the integration of Generative AI into
Databricks workflows, this study offers insights that may help orga-
nizations improve data quality, streamline workflows, and enhance
decision-making. The findings are expected to contribute founda-
tional knowledge for future innovations in data quality manage-
ment, positioning Generative AI as a key tool for handling complex
data environments within Databricks.
The remainder of this paper is organized as follows. Section 2 pro-
vides a review of AI, Generative AI, and Databricks in relation
to data quality. Section 3 outlines the methodology, detailing data
sources, research design, and analytical techniques used. Section
4 provides the details of the experiments. Section 5 presents the
findings of this study. Finally, Section 6 concludes with insights,
practical implications, and recommendations for future research.

2. LITERATURE REVIEW
Recent advancements in Generative AI, particularly within scalable
data platforms like Databricks, are reshaping data quality manage-
ment. Traditional methods for data quality rely heavily on manual

cleaning and rule-based validations. These approaches are time-
consuming and lack scalability, especially with the exponential
growth in data volume. According to Gupta and Yip, integrating
Generative AI with Databricks introduces new possibilities for au-
tomating data quality tasks [10]. They suggest that Generative AI
enhances data synthesis, validation, and real-time anomaly detec-
tion, providing more efficiency than conventional methods.
Maxwell discusses the transformative role of automation in data-
driven processes, highlighting how AI can reduce manual effort
and improve accuracy [20]. Dhoni explores the role of Generative
AI in real-time anomaly detection and data validation [6]. His find-
ings show that Generative AI can automate processes traditionally
handled by data teams, reducing costs and increasing operational
efficiency. Dhoni also emphasizes the economic value of using AI-
driven approaches, particularly for organizations with limited re-
sources [7]. These studies underscore the value of AI in automating
and optimizing data quality tasks, but they lack integration within
real-time platforms like Databricks.
Cloud-based platforms further enhance the utility of Generative AI
in data quality. Cohan discusses how cloud platforms provide the
computational power needed for real-time data processing and val-
idation [5]. By leveraging the cloud, platforms like Databricks can
process large data volumes rapidly, supporting Generative AI’s dy-
namic data management capabilities. Cohan’s insights reveal the
scalability cloud-based solutions offer, making advanced AI capa-
bilities accessible for a wide range of organizations.
Research by Jindal et al. focuses on turning databases into active
engines for data generation and validation [16]. They propose that
databases using Generative AI can autonomously maintain and en-
hance data quality. This transformation allows databases to handle
real-time inconsistencies without relying on static validation rules.
Such an approach aligns with Databricks’ real-time processing ca-
pabilities, which can incorporate these active AI models for contin-
uous data quality management [2].
LLMs also play a crucial role in simplifying data quality manage-
ment. Keisala discusses using LLMs as no-code interfaces, mak-
ing data validation and quality checks more accessible to non-
technical users [18]. LLMs generate validation rules based on nat-
ural language prompts, eliminating the need for specialized cod-
ing skills. When implemented within Databricks, these models can
enable broader collaboration across teams, facilitating continuous
data quality management with minimal technical barriers [12].
Dhoni further examines the integration of Generative AI within
Databricks for scalable data analytics [1]. He presents a frame-
work where Generative AI monitors and corrects data inconsisten-
cies in real time. This approach reduces manual intervention while
enhancing data accuracy, timeliness, and consistency across large
datasets. His framework demonstrates how Databricks can support
continuous data quality management through a scalable and auto-
mated system.
Vesjolijs proposes an E(G)TL model that integrates Generative AI
into the data transformation process [25]. By generating synthetic
data to fill gaps and correct inconsistencies, this model can enhance
data completeness and accuracy. When applied within Databricks,
the E(G)TL model optimizes data workflows, providing a stream-
lined approach to maintaining data quality in complex, multivariate
systems.
Mahajan et al. present a Generative AI-powered recommendation
engine within Spark clusters, focusing on efficient data processing
and quality management [19]. This system dynamically adapts re-
source allocation to support high-quality data processing in large
environments, aligning well with Databricks’ scalable infrastruc-
ture. Their work illustrates the practicality of embedding Genera-
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tive AI directly within data processing frameworks, enhancing both
data quality and operational efficiency.
Hosea and I.T. Student explore converting traditional data
warehouses into active knowledge bases capable of Retrieval-
Augmented Generation (RAG) [11]. They discuss how applying AI
to validate and transform data continuously enhances data quality.
Implementing this within Databricks can support organizations in
building dynamic, real-time data systems that improve with each
interaction.
Despite these advances, a clear gap exists. Current research
lacks a cohesive framework for integrating Generative AI within
Databricks to create a fully automated, adaptive data quality so-
lution. Most solutions address isolated aspects of data quality, but
they do not offer an end-to-end system capable of handling dy-
namic, high-volume data environments in real time. Our research
fills this gap by proposing a comprehensive model that embeds
Generative AI directly within Databricks workflows. This model
aims to provide continuous data validation, anomaly correction,
and adaptability at scale, supporting seamless data quality manage-
ment in complex, real-time data ecosystems.

3. METHODOLOGY
This study develops a comprehensive Generative AI-enhanced data
quality management framework within Databricks. Our method-
ology integrates three primary methods to monitor, validate, and
improve data quality in real-time using Databricks’ scalable envi-
ronment. This framework uses Generative AI for dynamic anomaly
detection, data imputation, and consistency checks. The primary
dimensions addressed in this study are accuracy, consistency, com-
pleteness, and timeliness. Each dimension is formally defined,
quantitatively evaluated, and integrated into Databricks workflows
to construct a robust and adaptive data quality management system.

3.1 Data Quality Metrics
To rigorously monitor and quantify data quality in real-time stream-
ing environments, this study defines a formal suite of metric func-
tions

Q = {Qaccuracy, Qconsistency, Qcompleteness, Qtimeliness}

for each incoming data batch

D = {d1, d2, . . . , dn},

where each di ∈ Rm represents an individual data record consist-
ing ofm attributes. LetG = {g1, g2, . . . , gn} be the corresponding
ground truth data set. For each metric Qk ∈ Q, a numerical score
Sk(D) ∈ [0, 1] is computed to reflect the quality of dataset D with
respect to dimension k.

3.1.1 Accuracy Metric. Let δi ∈ {0, 1} be a correctness indicator
defined by:

δi =

{
1 if di = gi
0 otherwise

(1)

The overall accuracy score is:

Saccuracy =
1

n

n∑
i=1

δi (2)

For multi-attribute records di = (x1, x2, ..., xm), attribute-level
accuracy δji for feature j can be evaluated and averaged:

δji = I(x(i)j = g
(i)
j ), Saccuracy =

1

nm

n∑
i=1

m∑
j=1

δji (3)

3.1.2 Consistency Metric. Let d(t)i and d(t+1)
i denote successive

observations of record i. The consistency deviation is:

∆i =
1

m

m∑
j=1

|x(i,t+1)
j − x(i,t)j | (4)

The normalized consistency score is:

Sconsistency = 1− 1

n

n∑
i=1

min

(
1,

∆i

τc

)
(5)

where τc is a threshold for acceptable change magnitude.

3.1.3 Completeness Metric. Define mij ∈ {0, 1} such that:

mij =

{
1 if x(i)j is missing
0 otherwise

(6)

The completeness score is:

Scompleteness = 1− 1

nm

n∑
i=1

m∑
j=1

mij (7)

This ensures that each attribute per record contributes equally to
the completeness metric.

3.1.4 Timeliness Metric. Assume each record di has a timestamp
ti, and let Ti be the expected arrival time. Define time delay ∆ti =
ti − Ti. The exponential decay model gives:

Stimeliness =
1

n

n∑
i=1

exp(−α|∆ti|) (8)

where α > 0 controls penalty steepness. To penalize late arrivals
more harshly:

Stimeliness =
1

n

n∑
i=1

{
exp(−α|∆ti|) if ti ≤ Ti

β · exp(−α|∆ti|) if ti > Ti

(9)

with 0 < β < 1 as a delay penalty factor.

3.1.5 Overall Data Quality Score. The aggregate data quality
score is computed as a convex combination:

Stotal =
∑
k∈Q

wk · Sk(D) (10)

subject to the constraint:∑
k∈Q

wk = 1, wk ≥ 0 ∀k (11)

The weight vector w = [waccuracy, wconsistency, wcompleteness, wtimeliness]
is adjustable based on application requirements. All scores Sk ∈
[0, 1] make Stotal interpretable and bounded.
This formalization provides a precise, low-level structure to evalu-
ate and optimize data quality within Databricks in real time using
Generative AI-driven modules.
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3.2 Method 1: Natural Language Instructions with
SODA GPT

This method introduces a mechanism for translating natural lan-
guage (NL) quality instructions into executable validation logic
within the Databricks environment using SODA GPT. It allows
non-technical users to define high-level quality expectations, which
are automatically compiled into SQL or YAML queries that are run
over distributed data partitions.
Let I = {I1, I2, . . . , Im} be a sequence of natural language in-
structions issued by a user or application, where each Ij denotes a
quality rule such as “Ensure there are no null values in the email
field” or “Verify that transaction amounts are non-negative.”
Each instruction Ij is processed by SODA GPT through the fol-
lowing mapping:

ϕ : Ij 7→ Qj , (12)

where ϕ is the transformation function and Qj ∈ {SQL,YAML}
denotes the machine-interpretable query derived from Ij .
For a dataset D = {d1, d2, . . . , dn}, each query Qj defines a
boolean function:

Qj(di) =

{
1, if di satisfies Qj

0, otherwise
(13)

The compliance score Cj for query Qj is computed as:

Cj =
1

n

n∑
i=1

Qj(di) (14)

This scalar Cj ∈ [0, 1] measures the proportion of records in D
that meet the condition encoded by Qj .
For example, a user-specified instruction:

Ij = “Ensure there are no duplicate orders”

is mapped by SODA GPT to:

Qj = SELECT order id, COUNT(*) FROM orders

GROUP BY order id HAVING COUNT(*) > 1;

The execution of Qj across distributed Spark partitions is handled
natively in Databricks. Let P = {P1, . . . , Pk} be the partitioned
data chunks. Each Pl executes Qj , and the intermediate results Rl

are gathered:

R =

k⋃
l=1

Qj(Pl) (15)

All non-compliant records are logged in a structured audit tableAj

within a Delta Lake architecture:

Aj = {di ∈ D | Qj(di) = 0} (16)

In real-time deployments, a quality compliance threshold τj ∈
[0, 1] is pre-defined for each rule. If Cj < τj , an alert is auto-
matically raised in SODA Cloud and forwarded to the responsi-
ble data team. The remediation workflow can then be initiated,
either through manual correction or via downstream automation
pipelines.
Additionally, historical compliance trends can be analyzed by
maintaining a temporal log of scores:

Tj = {(t1, C(t1)
j ), (t2, C

(t2)
j ), . . .} (17)

This log enables monitoring of drift or degradation in data qual-
ity over time, providing feedback for model retraining or pipeline
adjustment.
Through this method, SODA GPT operationalizes high-level do-
main expectations in an accessible and scalable manner, bridging
the gap between data consumers and data engineering teams in dy-
namic data environments.

3.3 Method 2: Databricks and Azure Data Quality
Framework

To manage and enhance data quality at scale, this method inte-
grates Databricks with Azure-native services—specifically Azure
Data Factory (ADF), Azure Synapse, and Azure Monitor—to con-
struct a modular, multi-layered data quality (DQ) framework. The
system is architected to monitor and correct data along critical
dimensions, namely accuracy, uniqueness, and timeliness, while
maintaining operational responsiveness.
LetD = {d1, d2, . . . , dn} denote the incoming data batch at inges-
tion time t, with each record di ∈ Rm representing a feature vector
ofm attributes. The overall pipeline is decomposed into three func-
tional layers: ingestion layer, validation layer, and correction layer.

3.3.1 Ingestion Layer: Real-Time Data Acquisition and Times-
tamping. This layer orchestrates the real-time ingestion of data us-
ing Azure Data Factory (ADF) and Event Hubs, routing each batch
Dt to Databricks. Every record di is enriched with a timestamp
attribute ti, representing the arrival time.
Let the expected ingestion time be Ti, the actual arrival time be ti,
and define the temporal deviation δi = |Ti − ti|. The timeliness
quality score is computed for batch Dt using exponential decay as:

Stimeliness(Dt) =
1

n

n∑
i=1

exp(−αδi) (18)

where α > 0 is a tunable decay rate penalizing late data. A lower
δi implies a higher score, favoring punctual records. Data that falls
below a minimum threshold Smin

timeliness is flagged for delayed pro-
cessing and downstream correction.

3.3.2 Validation Layer: Uniqueness and Accuracy Enforcement.
In this layer, data is validated through distributed rules executed on
Databricks clusters using Apache Spark. Each record di is assigned
a unique fingerprint U(di), often computed using hash-based tok-
enization:

U(di) = Hash(di[a1], di[a2], . . . , di[ak]) (19)

where {a1, . . . , ak} ⊂ {1, . . . ,m} are the key attributes determin-
ing uniqueness (e.g., transaction ID, user ID). Duplicate records are
detected via:

Mu = {di ∈ Dt | ∃ dj ∈ Dt, i ̸= j and U(di) = U(dj)} (20)

The uniqueness score is then:

Suniqueness(Dt) = 1− |Mu|
n

(21)

High uniqueness scores indicate the dataset contains distinct en-
tries. Violations are logged to an audit table Au and queued for
deduplication in the correction layer.
To validate accuracy, known ground truth mappings G =
{(di, gi)} are optionally employed (e.g., reference tables). The ac-
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curacy score is:

Saccuracy(Dt) =
1

n

n∑
i=1

I(di = gi) (22)

where I is the indicator function, returning 1 if values match the
ground truth gi, and 0 otherwise.

3.3.3 Correction Layer: Anomaly Rectification and Re-
Evaluation. This layer is triggered when a metric Sk(Dt) < τk,
where τk ∈ [0, 1] is the pre-defined quality threshold for metric
k ∈ {accuracy, timeliness, uniqueness}.
Let Fk = {di ∈ Dt | Qk(di) = 0} denote the set of failing
records for quality dimension k. Each record di ∈ Fk is passed
through a Generative AI module Gθ , parameterized by θ, to gener-
ate a corrected version d̂i:

d̂i = Gθ(di, k) (23)

The corrected batch D̂t = {d̂i | di ∈ Fk} ∪ {dj ∈ Dt \ Fk}
is re-evaluated using the same scoring metrics. The updated scores
Scorrected
k (Dt) must satisfy:

Scorrected
k (Dt) ≥ τk ∀k (24)

Records still failing quality checks after two iterations are moved
to quarantine storage and flagged for human review.

3.3.4 Audit and Monitoring Layer. Azure Monitor tracks all met-
rics Sk(Dt) and compliance over time t. A temporal quality trace
is stored as:

Tk = {(t1, S(t1)
k ), (t2, S

(t2)
k ), . . .} (25)

Alerts are generated when a persistent drop is detected:

∃ ∆ > 0 such that S(ti+1)

k − S(ti)
k < −∆ for p consecutive ti

(26)
This log enables trend analysis, automated rollback, and feedback
for retraining Generative AI models using production data.

3.3.5 Ingestion Layer. The ingestion pipeline I(D), managed by
Databricks and Azure Data Factory, ensures data arrives on time.
Each data batch is timestamped, and timeliness is monitored by
the timeliness score Stimeliness calculated at ingestion. This enables
continuous quality checks and timely ingestion of new data batches.

3.3.6 Uniqueness Checks. Each data record di receives a unique
identifier U(di) to prevent duplication. During ingestion, Gener-
ative AI generates hash codes or unique keys, ensuring distinct
records within Databricks. The uniqueness score Suniqueness is:

Suniqueness = 1− |M |
n

(27)

where M is the set of detected duplicate records, ensuring each
data entry remains unique.

3.3.7 Generative AI for Completeness and Validity. Generative
AI tools automatically generate validation rules that Databricks
executes to maintain completeness and validity. Given schema S,
Generative AI identifies missing values or outliers and suggests im-
puted values d̂i where necessary:

d̂i = argmax
d
P (d|Θ) (28)

where Θ denotes model parameters learned from historical data. If
P (di|Θ) < ϵ, di is flagged as an anomaly, and the AI suggests a
corrected value.

3.4 Method 3: Customized Large Language Model for
Interactive Quality Checks

In this method, a customized Large Language Model (LLM) is
embedded within the Databricks ecosystem to facilitate real-time,
user-interactive data quality monitoring. The LLM acts as an in-
telligent interface layer, capable of parsing human queries, map-
ping them to executable functions, and returning results in an inter-
pretable format. This enables non-technical users to query quality
metrics without needing domain-specific coding skills.

3.4.1 System Architecture. Let Q =
{"Check completeness", "accuracy score?", . . .} represent
the set of natural language queries initiated by users. The LLM
processes each query q ∈ Q and performs a semantic-to-functional
mapping:

ψ : q 7→ λq (29)

where λq ∈ Λ = {check completeness(),
check accuracy(), check consistency(), . . .} is the function
mapped to the user’s intent.
Each function λq computes a specific quality metric Sk(Dt), where
k ∈ {completeness, accuracy, consistency, timeliness}, for the lat-
est data batch Dt loaded in Databricks. For example, if:

q = "Check data completeness"

λq = check completeness()⇒ Scompleteness(Dt)

3.4.2 Metric Computation Pipeline. Each quality function is de-
fined as a higher-order function that operates on a Spark DataFrame
abstraction. Formally:

check metrick(Dt) = Fk(Dt) = Sk(Dt) (30)

where Fk is the computation logic associated with metric k. For
example:

Fcompleteness(Dt) = 1− |M |
n

(31)

Faccuracy(Dt) =
1

n

n∑
i=1

I(di = gi) (32)

Fconsistency(Dt) = 1− 1

n

n∑
i=1

|d(t)i − d
(t+1)
i | (33)

Each call is executed lazily on the Spark execution engine and ren-
dered back to the user via the LLM in human-readable form:

LLM response(q) = render(λq(Dt)) ∈ R ∪ Text (34)

where render converts numeric scores into contextualized feed-
back. For instance, at Saccuracy = 0.94
LLM response = "The accuracy score is 94%, which is
within acceptable limits."

3.4.3 Command Chaining and Streaming Evaluation. The LLM
supports advanced interaction capabilities including command
chaining. For instance, a user prompt such as:

"Check completeness and re-evaluate if below 95%"

is interpreted as a conditional execution block:

if Scompleteness < 0.95 then trigger imputation() (35)

This behavior is modeled via dynamic function graphs:

GLLM = {λq1 → λq2 → · · · → λqk} (36)
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enabling continuous quality monitoring as data streams into
Databricks.

3.4.4 Audit Logging and Traceability. Every interaction with the
LLM is logged into an interaction log:

Ltrace = {(qt, λq, Sk(Dt), t)} (37)

where each entry stores the query, function invoked, returned score,
and timestamp t. This allows for complete traceability, auditability,
and integration with monitoring dashboards or alert systems.

3.4.5 Benefits of LLM-Driven Interaction. The use of LLMs for
dynamic querying in Databricks enables:

—Democratized access to data quality insights for non-technical
users

—Real-time, conversational quality monitoring over streaming
data

—Chained command execution for conditional remediation

—Transparent and traceable audit logs for governance and compli-
ance

This integration of LLMs into data quality pipelines marks a
paradigm shift from static dashboards to interactive, AI-guided data
governance within modern data platforms like Databricks. The fol-
lowing algorithm summarizes the process of continuous data qual-
ity management using Generative AI in Databricks:

Algorithm 1 Continuous Data Quality Management with Genera-
tive AI in Databricks

1: Initialize: Load datasetD in Databricks, configure target qual-
ity metrics Q

2: while new data batch Dnew arrives do
3: Convert natural language quality checks via SODA GPT to

SQL/YAML
4: Execute uniqueness, completeness, and validity rules using

Generative AI
5: Calculate Saccuracy, Sconsistency, Scompleteness, Stimeliness and

overall quality score Stotal
6: if Stotal < threshold then
7: Activate Generative AI to impute missing values, cor-

rect anomalies, and re-evaluate Stotal
8: end if
9: Log validated Dnew in Delta Lake for further analysis

10: Update quality metrics for Dnew and trigger alerts for any
failed checks

11: Dprev ← Dnew
12: end while

This algorithm allows for continuous, automated quality manage-
ment in Databricks. SODA GPT processes natural language inputs,
Azure tools provide monitoring and alerting, and the LLM facili-
tates interactive quality checks. Databricks manages data ingestion,
Generative AI-driven anomaly detection, and real-time corrections.
This framework provides an adaptive, fully automated approach to
data quality management, making it ideal for high-velocity, large-
scale data environments.

3.5 Generative AI for Anomaly Detection and
Imputation

Anomaly detection is critical for maintaining data integrity. Gener-
ative AI models within Databricks use probabilistic anomaly detec-
tion. For each data point di, the model computes P (di|Θ), where
Θ represents parameters learned from past data. If P (di|Θ) < ϵ, di
is flagged as anomalous. The model then suggests corrected values
d̂i:

d̂i = argmax
d
P (d|Θ) (38)

This imputation process corrects inconsistencies, enhancing ac-
curacy and completeness scores. By integrating these corrections
within Databricks workflows, Real-time, adaptive data quality
maintenance is ensured.

4. EXPERIMENTAL SETTINGS
The experimental evaluation was conducted in a high-performance,
cloud-native environment designed to support real-time, distributed
data quality management at scale. The infrastructure was deployed
on Microsoft Azure and made extensive use of Databricks, lever-
aging its native support for Apache Spark, integration with Azure
services, and compatibility with AI-driven automation tools.

4.1 Infrastructure Configuration
The experiments were executed on a dedicated Databricks cluster
provisioned with both standard and high-memory nodes to accom-
modate compute-intensive quality metric calculations and real-time
inference using Generative AI models. The environment was con-
figured with the following specifications:

—Runtime Environment: Databricks Runtime 11.3 (includes
Apache Spark 3.2)

—Driver Node: 16 vCPUs, 128 GB RAM, SSD-backed storage
—Worker Nodes: 4 nodes, each with 16 vCPUs, 128 GB RAM,

SSD-backed storage
—Total Cluster Capacity: 80 vCPUs, 640 GB RAM across 5

nodes
—Storage Layer: Azure Blob Storage (Hot Tier) with Delta Lake

format for real-time I/O optimization

The Spark engine was configured to use an adaptive query exe-
cution plan with dynamic resource allocation and caching enabled
for all intermediate computations. Broadcast joins were explicitly
tuned for quality checks that involve reference lookups and schema
validation.

4.2 Dataset Description
A synthetic yet realistic dataset D = {d1, d2, . . . , dn}, where n =
107, was generated to emulate production-like heterogeneity and
volume. Each record di ∈ Rm consisted of m = 18 attributes,
partitioned into:

—m1 = 7 numerical fields (e.g., transaction amounts, sensor read-
ings)

—m2 = 6 categorical fields (e.g., product category, region)
—m3 = 5 timestamped fields (e.g., created at, updated at, deliv-

ered at)

The dataset was stored in Delta Lake format, partitioned by in-
gestion timestamp and logically sharded into 100 partitions across
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worker nodes. Delta caching was enabled to accelerate repeated
evaluation of quality metrics.

4.3 Data Quality Modeling
The dataset was synthetically infused with controlled errors to eval-
uate each dimension of quality under stress conditions. The follow-
ing perturbation strategies were applied:

—Accuracy Distortion: 5% of numerical fields were replaced
with noisy values dnoisy

i ∼ N (µ+ δ, σ) to simulate corruption.
—Completeness Degradation: 8% of fields were randomly

masked to simulate missing values di = NULL for selected i.
—Consistency Drift: 6% of timestamped fields were shifted by

random lags ∆ti ∼ Uniform(−12h,+12h).
—Uniqueness Violation: Duplicate records were inserted with

probability p = 0.05 by copying selected rows and reassigning
minimal key variations.

Each batch Dt ⊂ D was streamed into the pipeline using micro-
batch scheduling at intervals of 1 minute. Real-time evaluation of
the quality scores Saccuracy, Scompleteness, Sconsistency, Stimeliness was per-
formed using Databricks’ native UDFs, Delta Lake queries, and
LLM-based function calls.

4.4 Evaluation Protocol
Each micro-batchDt was independently subjected to the following
experimental pipeline:

(1) Initial Quality Assessment: Scores Sk(Dt) were computed
for each dimension k.

(2) Threshold Check: Each score was compared against pre-
defined thresholds τk to identify violations.

(3) Remediation Activation: For Sk(Dt) < τk, the Generative
AI module was activated to impute or correct anomalies.

(4) Post-correction Re-evaluation: The corrected dataset D̂t was
rescored and audited.

Each step’s execution time, memory consumption, and correct-
ness were logged for reproducibility. Accuracy was benchmarked
against known ground truth mappings; completeness against full
schema templates; consistency using temporal logs; and timeliness
via system-level scheduling logs.

4.5 Metrics for Performance Evaluation
In addition to quality dimension scores, the following system-level
performance indicators were tracked:

—Mean Quality Score Gain: ∆Sk = Spost
k − Spre

k

—Remediation Latency: Tremediate = Tend − Ttrigger

—Resource Utilization: CPU and memory usage per node during
high-load batches

—Throughput: Number of records processed per minute

5. RESULTS
This section presents an in-depth analysis of the evaluation con-
ducted on the proposed Generative AI-enhanced data quality man-
agement framework implemented within the Databricks platform.
Each core aspect of data quality—namely accuracy, consistency,
completeness, and timeliness—was measured through comparative
experiments against baseline methods. The evaluation also includes

error correction analysis, latency profiling, and system performance
under load to determine the robustness, scalability, and responsive-
ness of the proposed solution in real-time data environments.

5.1 Quality Score Comparison Across Metrics
To assess the effectiveness of the framework, four core data quality
metrics were measured: accuracy, consistency, completeness, and
timeliness. These metrics were evaluated both before and after the
application of the proposed framework. Table 5.1 shows a compre-
hensive comparison between the baseline system (which follows
traditional rule-based cleansing and validation logic) and the pro-
posed framework, which incorporates LLM-driven automation and
adaptive learning for quality management.
As the results suggest, each metric showed a substantial improve-
ment with the application of the proposed method. Accuracy, which
measures the proportion of correct records aligned with the ground
truth, showed the largest gain, rising from 0.87 to 0.95. This en-
hancement demonstrates the framework’s strength in correcting in-
accurate records through semantic validation and generative correc-
tion. Consistency, which captures temporal and structural stability
in the data, increased by 9.41%. This growth was particularly ev-
ident in datasets where temporal attributes (e.g., timestamps and
periodic values) were subject to drift and inconsistency in the base-
line configuration. The completeness metric, reflecting the extent to
which required fields are populated, increased by 7.78%, enabled
by dynamic imputation from the Generative AI module. Timeliness
also improved notably, suggesting that the system’s real-time inges-
tion and anomaly-aware timestamp detection prevented delays and
better aligned data with expected temporal windows.

Fig. 1. Comparison of Baseline vs Proposed Framework Scores Across
Quality Metrics

5.2 Longitudinal Evaluation Over Ten Cycles
To investigate how well the system adapts over time, a longitudinal
experiment was conducted where ten distinct testing cycles were
executed, each simulating a new batch of input data. These cycles
incorporated different types of injected noise—such as missing val-
ues, duplicated rows, and random timestamp lags—to evaluate how
the framework responds to evolving data quality issues.
Across all ten iterations, the system demonstrated incremental im-
provements, with each metric progressively approaching optimal
scores. Accuracy increased steadily from an initial value of 0.87
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Table 1. Comparison of Data Quality Tools with Our Proposed Solution
Tool Key Features Limitations Advantages of Our Tool
Ataccama ONE [3] AI-driven data quality manage-

ment, data profiling, and cleansing
Limited integration with certain
cloud platforms

Seamless integration with Databricks; AI-driven rule
generation; cost-effective and scalable

Informatica Data Quality
[15]

Comprehensive data profiling,
cleansing, and validation

Complex setup; higher cost for
small to medium enterprises

User-friendly interface; Generative AI enables in-
tuitive data quality checks; easy deployment in
Databricks

IBM InfoSphere QualityS-
tage [14]

Data standardization, matching,
and survivorship

Steeper learning curve; requires
significant resources for deploy-
ment

Cost-effective; flexible integration with multiple data
sources; dynamic data quality management with Gen-
erative AI

Talend Data Quality [24] Open-source data profiling and
cleansing tools

Limited advanced features in the
free version; premium features are
paid

Advanced features powered by Generative AI; opti-
mized for large datasets in Databricks; high perfor-
mance and scalability

Soda SQL [23] Open-source data testing and moni-
toring for data engineers

Primarily SQL-based; lacks com-
prehensive data cleansing features

Supports natural language rule creation via Genera-
tive AI; non-technical users can define data checks;
seamless integration with Databricks

Table 2. Data Quality Metrics Comparison
Metric Baseline Score Proposed Framework Improvement
Accuracy 0.87 0.95 9.20
Consistency 0.85 0.93 9.41
Completeness 0.90 0.97 7.78
Timeliness 0.88 0.96 9.09

Fig. 2. Line Graph: Progressive Improvement Across 10 Testing Cycles

to a final value of 0.95. Similarly, consistency rose from 0.85 to
0.93. Completeness improved from 0.90 to 0.97, largely due to
the system’s increasing ability to predict and fill in missing fields.
Timeliness followed the same trend, benefiting from refined times-
tamp validation logic and increasingly accurate ingestion schedul-
ing. These trends suggest that the framework’s iterative feedback
mechanisms, including rule refinement via SODA GPT and the use
of cumulative error signatures, contribute to its capacity to learn
and adapt over time.

5.3 Error Correction Effectiveness
A further level of granularity was introduced by categorizing the
types of errors corrected and measuring the precision with which
each category was resolved. Table 5.3 shows the impact of the
framework on common error types, including missing values, in-
accurate entries, duplicates, and delayed timestamps.

Table 3. Error Correction Effectiveness by Error Type
Error Type Baseline Rate Post-Correction Rate Reduction
Missing Values 8.0 0.8 90.0
Inaccurate Records 5.0 0.5 90.0
Duplicate Entries 5.0 0.4 92.0
Delayed Timestamps 6.0 0.6 90.0

Fig. 3. Error Rates Before and After Correction Using the Framework

The system was particularly effective in reducing missing values
through targeted imputation using pretrained generative models.
Duplicates were accurately identified through hash-based finger-
printing and subsequently resolved. Inaccurate entries were cor-
rected via adaptive pattern matching, and delayed timestamps were
recalibrated using lag prediction models. These results validate that
the framework is not only capable of measuring quality but is also
highly effective in applying context-aware corrections at scale.

5.4 Latency Analysis for Real-Time Processing
Beyond quality metrics, the framework’s performance was mea-
sured in terms of latency, particularly the time taken to compute
quality scores and apply corrections. Table 5.4 outlines the com-
parison between the baseline system and the proposed framework
across each quality dimension.
The framework consistently outperformed the baseline, reducing
latency by nearly half in each case. The most substantial improve-
ment was seen in completeness checks, which benefited from effi-

8



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.80, April 2025

Fig. 4. Distribution of Detected Error Types in Baseline Dataset

Table 4. Latency Comparison Across Data Quality Metrics
Metric Baseline Latency (s) Framework Latency (s) Reduction
Accuracy 3.2 1.8 43.75
Consistency 2.8 1.5 46.43
Completeness 3.0 1.6 46.67
Timeliness 2.6 1.4 46.15

cient caching and parallelized imputation strategies. These reduc-
tions make the framework particularly suitable for real-time de-
ployments, where low-latency correction and feedback loops are
essential.

5.5 System-Level Performance Metrics
In addition to domain-specific metrics, broader system-level be-
haviors such as throughput, CPU utilization, and memory footprint
were monitored over five execution runs. Each run processed a 10-
million-record batch with injected inconsistencies. Table 5.5 sum-
marizes the results.

Table 5. System Performance Under Load
Run ID Throughput CPU Usage Avg RAM Usage (GB)
1 960,000 67.5 89.3
2 952,000 68.2 87.6
3 958,500 66.7 88.4
4 965,200 69.1 90.1
5 950,100 67.9 88.7

Throughput remained above 950,000 records per minute for all
runs, and the system maintained stable resource usage throughout.
The CPU utilization ranged from 66.7% to 69.1%, while memory
usage was consistently below 91 GB per node, demonstrating the
system’s scalability and operational efficiency.

5.6 Interpretation and Implications
The results presented in this section provide strong empirical sup-
port for the proposed framework. Quality scores across all core di-
mensions improved significantly, and these gains were sustained
and even amplified across successive data cycles. Error correc-
tion was highly effective across multiple categories, and latency
reductions make the system suitable for real-time enterprise sce-
narios. System throughput and hardware utilization metrics con-
firm that the architecture can be reliably scaled without degradation

Fig. 5. CPU and RAM Utilization Across 5 High-Volume Testing Runs

in performance. The integration of LLMs and Generative AI into
Databricks workflows has not only enhanced automation but also
maintained interpretability and operational transparency. Overall,
the system demonstrates clear advantages in accuracy, speed, re-
sponsiveness, and adaptability when compared to traditional data
quality solutions.

6. CONCLUSION
This paper presented a Generative AI-enhanced data quality man-
agement framework integrated within the Databricks platform,
aimed at addressing the limitations of traditional data quality meth-
ods in handling large-scale, complex datasets. Our proposed so-
lution uses Generative AI for automated anomaly detection, data
imputation, and rule generation, facilitating real-time data qual-
ity management across critical dimensions such as accuracy, con-
sistency, completeness, and timeliness. Through extensive experi-
mentation, our framework demonstrated significant improvements
over industry-standard tools, including Ataccama ONE, Informat-
ica Data Quality, IBM InfoSphere QualityStage, Talend Data Qual-
ity, and Soda SQL. With observed increases of up to 9.41% in accu-
racy, 9.09% in timeliness, and 7.78% in completeness, the frame-
work proved its effectiveness in enhancing data integrity while re-
ducing the need for manual oversight. The real-time capabilities of
our system, coupled with Databricks’ scalable infrastructure, make
it a robust solution for dynamic data environments. By transform-
ing data quality management into an adaptive, automated process,
our approach reduces operational costs, optimizes resource alloca-
tion, and enables non-technical users to engage with data quality
rules through natural language.
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