
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

19

Scalability Management in a Microservice System: A

Case Study of Cameroon Banking System - An

Experimental Approach

Djam Xaveria Youh
University of Yaounde 1,

Cameroon

Tapamo Kenfack
Hyppolyte Michel

University of Yaounde 1,
Cameroon

Aminou Halidou
University of Yaounde 1,

Cameroon

Atsa Roger Etoundi
University of Yaounde 1,

Cameroon

ABSTRACT
The advent of microservice architecture has brought

unprecedented success in the banking sector. In this present era, it

is imperative for banking sector to possess adequate preparedness

to effectively manage fluctuations in transaction volumes during

peak periods due to scalability changes. This paper presents a

methodological approach to solving the problem of scalability in

banking operations using Cameroon context. Microservice

architectures, with their modularity and scalability, have proven to

be a relevant answer to these challenges. This research explores

common problems encountered in microservices, proposes a

systematic methodology to address them, and illustrates these

concepts through the development of a banking platform

integrating modern technologies such as Docker, Docker

Compose, and Kubernetes. Furthermore, load balancing

techniques were examined, which were essential to optimize the

performance of the banking application, and their impact on the

efficiency of microservices.

Crossover and mutation operators of the Adaptive Genetic

Algorithm(AGA) were adopted to avoid premature convergence

and to minimize plateau, which enhanced the diversity of

population evolution and effectively reduced data transmission

time between banking services.

The development environment was properly set up to support the

research goals. This includes ensuring the availability of essential

tools such as Visual Studio Code, Eclipse, Java Development

Kit(JDK), Apache Maven, Docker Desktop, Rester, Hey,

RabbitMQ, Spring Boot, Actuator, Spring Cloud Gateway, Spring

Cloud Config, Eureka, H2, MariaDB. The Hey tool was used for

request tracing among microservices.

To deploy this solution, modern technologies such as Docker,

Docker Compose, and Kubernetes were employed which allowed

efficient container management and service orchestration. Finally,

performance and scalability tests were performed using the Hey

tool, in order to evaluate the efficiency of our architecture and

interpret the results for possible improvements.

For performance testing analysis, four metrics were used that

indicated satisfactory performance. The total response time

averaged 0.6156 seconds, with the fastest response at 0.0056

seconds and the slowest at 0.2388 seconds. The average response

time was 0.0545 seconds, achieving a throughput of 1624.5330

requests per second. A histogram analysis indicated that the

majority of requests (406) fell within a response time of 0.052 to

0.076 seconds, confirming the system's overall efficiency. Latency

distribution analysis showed that 50% of requests had latency

under 0.0499 seconds, while 90% were below 0.0999 seconds, and

99% 0.1999 in seconds. No significant bottlenecks were identified

in the various process steps, including Domain Name System

(DNS) resolution and response handling.

General Terms
Software Engineering, Search-based Software Engineering

Keywords
Scalability, Optimization, Orchestration, Microservice

architecture, Event-Driven-Controller, Adaptive Genetic

Algorithm

1. INTRODUCTION
Microservice architecture has become a standard in modern

application development, especially in critical industries like

banking. This architecture breaks applications into independent

services, enabling unprecedented flexibility and scalability.

However, this approach also presents unique challenges, including

communication between services, data management, deployment,

and performance monitoring. In the era of digitalization, financial

institutions must quickly adapt to the growing expectations of

customers for secure, efficient, and flexible solutions by adopting

modern microservice approach.

In today’s digitalization landscape, financial institutions are facing

increased pressure to deliver solutions that meet their customers’

growing expectations. These expectations include not only the

speed and security of transactions, but also the ability to quickly

adapt to a constantly changing environment. Microservice

architectures are emerging as an effective response to these

challenges, enabling modularity that fosters innovation while

ensuring enhanced security.

In the current context of digitalization of Cameroon banking

system, financial institutions must quickly adapt to their

customers' growing expectations for secure, efficient and flexible

solutions. Microservice architecture emerges as a relevant

response to these challenges, enabling unprecedented modularity

and scalability in the development of modern banking platforms.

This article aims to design a banking platform that not only

facilitates financial transactions but also meets scalability and

security challenges requirements. Customers will be able to make

deposits and withdrawals seamlessly, while having the ability to

transfer funds between different operators, such as UBA BANK

and NFC BANK in Cameroon context. To ensure an optimal user

experience, real-time notifications will inform customers of the

status of their transactions.

This paper proposes a systematic methodology to identify and

solve common problems associated with microservice

architectures, focusing on a case study of a banking operations

platform. This research examines functional and non-functional

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

20

requir, modeling techniques, as well as modern technologies such

as Docker and Kubernetes, which play a crucial role in

implementing and managing these architectures. By integrating

concepts such as event-driven architecture and asynchronous

communication, this research demonstrates how these approaches

can improve the resilience, performance, and maintainability of

banking systems.

A crucial aspect of this platform is the validation of account

creation requests by bank staff, thus ensuring the security of

operations. In addition, an Event-Driven Architecture (EDA) will

be implemented to facilitate communication between the different

microservices, thus strengthening the responsiveness and

resilience of the system.

2. RESEARCH BACKGROUND

2.1 Common Problems of Microservices
The challenges encountered in microservice architectures are

varied and can have a significant impact on system performance

and reliability:

– Communication between Services : Microservices

often need to communicate, which can lead to latency

and reliability issues. Solutions include using

lightweight protocols like HTTP/REST or gRPC, and

integrating message brokers for asynchronous

communication.

– Data Management : Decentralization of data makes it

difficult to ensure consistency and integrity. Using

appropriate data models and synchronization strategies

is essential.

– Deployment and Orchestration : Managing frequent

updates and deployments can become complex. Using

tools like Kubernetes makes container orchestration and

management easier.

– Performance Monitoring : System-wide visibility is

crucial to detect issues early. Integrating monitoring

tools like Prometheus or Grafana is recommended.

2.2 Load Balancing Mechanism in

Microservice Applications

In recent years, there has been a lot of researches into modern

microservice technologies. Many organizations are adopting these

technologies to keep up with modern software development

demands. This has led to a growing interest in understanding the

challenges, best practices, and emerging trends in this area. This

section aims to provide an overview of existing literature and

research studies on microservice load balancing mechanism.

Load balancing is essential to optimize the performance of

microservice-based applications. According to Sharma et al. [3],

several load balancing techniques can be applied to efficiently

manage workloads.

Alexander Sundberg [7] addresses load balancing algorithms for

networked systems in a microservice application. He concluded

that there is a lack of proposed load balancing algorithms for

microservices, and it is not obvious how to adapt such algorithms

to the architecture under consideration.

Also Shitole and Abishek Sanjay [6] proposed a technique that

uses service-mesh to inject sidecar proxies into every microservice

and dynamically balances the load among services by applying

service-specific routing. The experimental results proved that the

proposed design outperforms the traditional approach by

maintaining stability and consistency in response rate and

consumes fewer resources.

Microservice architecture aims to decompose a monolithic

application into a set of independent services which communicate

with each other through open APIs or highly scalable messaging

[8] - [14].

The above mentioned researches did not explicitly explained how

scalability can be effectively manage in a microservice application

to reduce overload with effective authentication and monitoring.

3. PROPOSED APPROACH FOR

MICROSERVICE BANKING

APPLICATION

3.1 Design Solutions
Designing solutions for a microservice architecture must take into

account several concepts and tools to ensure resilience,

performance, and maintainability. The main features in a

microservice application is to produce a scalable highly cohesive

and loosely coupled distributed services. In view of the above, in

this research, a three-phased approach was used to manage the

problems of scalability in a banking application. The phases are:

Phase one: This phase consists of identifying the different

services used in the banking application. Domain Driven Design

(DDD) method was used to identify all the various services.

Phase two: This phase consists of representing the microservice

architectural framework elements from user’s view point. This

architecture is presented in Figure 3.1 to Figure 3.6

Phase three: This phase consists of designing the architectural

solution using the template in phase two. This architecture is

presented in Figure 3.7

The architecture is presented in Figure 3.7 and comprises of the

following services

3.1.1 Domain Driven Design
In this article a domain driven approach was used to identify the

services in the microservice banking system. This approach to

software development was initially explained in 2003 by Eric

Evans in his book titled “Domain-Driven Design: Tackling

Complexity in the Heart of Software,” [11] centering the

structuring and design of the system around the domain of

knowledge and activity of the system. Its aim is to create a detailed

domain model that represents the problem space the software must

address, ensuring that the final software product is suitable for

solving the problems of the business domain. This technique has

two main components:

− The Omnipresent Language: This refers to

establishing a common language between stakeholders

and developers for domain description and solution

design. It aims to ensure a shared understanding of the

system among stakeholders.

− Bounded Context: A central element of Domain-Driven

Design (DDD), where the "context" defines the

boundary within which a model applies. This approach

corresponds to the model defined according to the

knowledge of experts and is essential for defining the

structure of all models or sub-models, as well as for

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

21

limiting complexity. Given that the size of the

microservice is relative, the domain is divided into

subdomains, and each subdomain will be used to

determine the microservices.

3.1.2 System Architecture
The system architecture of this research comprises of two main

system services which includes functional system services and

non-functional system services as depicted in Figure 3.1. The

architecture shows the overall idea of the process of scheduling

and load balancing of services in the banking system. The

scheduler and load balancer are the components that use the load

balancing optimization algorithm known as adaptive genetic

algorithm (AGA) to distribute the loads to resources with low

waited response time. The API Gateway (Bank_Proxy_Service) is

a component that helps in deciding the appropriate Visual Machine

(VM) to which an arrived task should be allocated. It ensures that

the task is assigned to a VM that takes less time to complete the

task by considering the amount of load in that specific VM and the

total time needed to complete the entire load.

Representing the microservice architectural framework elements

from user’s view

Figure 3.1: Microservice Architectural Framework elements from user’s view

In this article, the microservice banking system is designed

according to two types of services functional and non-functional

services Figure 3.1:

− Functional Services: These are services from the user's

perspective. These were obtained after applying

Domain-Driven Design (DDD) as seen in Figure 3.2.

− Non-Functional Services: These are services from the

developer's perspective. These services are essential for

implementing the microservice architecture and are

generally reused across microservice software systems.

In the revolutionary context, this part defines a

foundational model within a microservice architecture.

3.1.3 Functional Services
Applying Domain-Driven Design (DDD), the domain and

subdomains of the microservice bank management system were

derived such as: customer management which include User

Service and Company Service, transaction management, account

management, and notification management, which are then

considered as the core microservices in the research.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

22

Figure 3.2: Context Domain Driven Design of a banking system

3.1.4 Non-Functional Services

There are three core non-functional services of the microservice

banking application : services that manage system security,

services that manage communication, and the service for

managing transactional data (Figure 3.1).

Security Services: The security service manages authentication

and authorization within the system.

Communication Services: Communication services ensure

communication and maintain interactions between the system's

services (functional and non-functional services). These services

include: (Bank_configuration Service, Bank_Registry Service,

Event-Driven Controller)

Configuration Service: Centralize configuration management for

all services. Service configuration is about managing the

configuration of services. In a microservice architecture, it is

essential to manage configurations centrally to avoid

inconsistencies. This pattern uses configuration servers, such as

Spring Cloud configuration, which allow service configuration to

be stored and distributed centrally, allowing updates without

restarting services.

Registry Service : Implement a registry service to facilitate

service discovery. The service registry is a component that

maintains a list of available services in a microservice system.

With service registry in place, each service registers itself with the

registry when it starts and de-registers itself when it stops. This

allows other services to dynamically discover available service

instances, facilitating communication between them. Eureka

server was used to implement this pattern.

Event Bus Handler:This module integrates a service called

‘message broker’ acting as an event bus. Its main objective is to

ensure asynchronous communication between the system's

services. This service operates on the basis of an Event Driven

Controller (EDC) implementing the Publish And Subscribe

(PUBSUB) model (Figure3.3).

EDC: It is an architectural style that solves communication

problems in the microservice banking system. EDC on producing,

detecting, and reacting to events.

Event: An event is a notification that a state change has occurred

in a system. This can be a user action, a data update, or a service

state change. In this model, system components communicate

primarily through events, which allows for asynchronous and

decentralized interaction. The main components in the event-

driven architecture designed in this work are:

Event Producers (Producers in functional services): The

services or applications that generate events.

Event Consumers (Consumers in functional services): Services

or applications that react to events by performing specific actions.

Event mediators: Message Brokers (RabbitMQ) was used to

handle the transmission of events between producers and

consumers.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

23

Figure 3.3: Event-driven Controller for Asynchronous Communication:PUBSUB Model

API Gateway :

It is a single entry point to handle client requests. It handles

requests, redirects them to the appropriate services, and can also

perform tasks such as authentication, rate limiting, and error

handling. This concept simplifies the architecture for customers

and improves security. Spring cloud Gateway was used to

established API gateway. This service integrates two concepts: the

load balancer implementing the Parallel Genetic Algorithm (PGA)

for scalability in bank applications and the circuit breaker.

3.1.5 Adaptive Genetic Algorithm (AGA) for Microservice

Banking System

This algorithm takes two inputs: a set of BankInstanceService I

and a set of Requests R for an initial population. It initializes the

variable CurrentIndex (the index specifying the position of the

service instance that must process the request) to 0 and the

Population with the set of incoming Requests R. If the

BankServiceInstance set is empty, the algorithm returns null.

Then, the algorithm calls the FitnessController function, which

evaluates the quality of each request in the Population and creates

a NewPopulation (a new set of requests), generated using genetic

operations such as selection, crossover, and mutation. For each

request in the NewPopulation, the algorithm selects the service

instance from the BankServiceInstances array using the value of

CurrentIndex, sends the request to the selected service instance,

and then updates CurrentIndex (resetting it to 0 if it is equal to the

length of the BankServiceInstances array, otherwise incrementing

it by 1) for the service instance to execute the next request. Finally,

the algorithm returns to Step 8 unless a stopping criterion is met.

The flowchart of this algorithm is shown in Figure 3.4.

Stopping conditions: BankInstanceService is empty, the

FitnessController function returns null or an empty array.

 Adaptive Genetic Algorithm

Step1: Step1: Begin:

Step2: Input: Set of BankInstanceService I, Set of Requests R

Step3: Initialize CurrentIndex=0;

Step4: Initial Population R,

Step5: If BankServiceInstances.length =0

Step6: return null

Step7: End If

Step8: NewPopulation=FitnessController(R)

Step9: genetic operations (selection, crossover and mutation)

Step10: For each request r to NewPopulation do

Step11: Select the service instance

SI=BankServiceInstances[CurrentIndex]

Step12: Send request r to SI

Step13: If CurrentIndex=BankServiceInstances.length

Step14: CurrentIndex=0;

Step15: Else

Step16: Update CurrentIndex=CurrentIndex+1

Step17: End If

Step18: End For

Step19: Return to Step 8 unless a termination criterion is satisfied.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

24

Figure 3.4: Flow diagram for Adaptive Genetic Algorithm (AGA) for Microservice Banking System

3.2 Circuit Breaker in Microservices

The Circuit Breaker pattern is essential for handling failures in

microservices. It helps detect failures in service calls and prevents

repeated calls to a service that is likely to fail. This reduces latency

and improves system resilience. When a service fails multiple

times, the circuit breaker "opens", preventing new requests for a

set period of time. This allows the service to recover without being

overwhelmed by requests. The circuit breaker pattern is a design

technique used in the microservice system to handle failures. It

consists of three main states:

- HALF OPEN : This state indicates that the circuit breaker has

been triggered due to a failure, but is trying to retry a connection.

During this phase, requests are allowed to pass with a delay.

- OPEN : When the failure threshold is exceeded, the circuit

breaker goes into OPEN state. In this state, all requests are rejected

without being sent to the failing service, in order to avoid the

propagation of errors.

- CLOSED : When the circuit breaker detects that the service is

available again, it goes into CLOSED state, allowing normal

traffic again.

This pattern is presented in Figure3.4

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

25

Figure 3.5: Circuit Breaker Pattern

3.3 Data Transactional Management Service
This service primarily aims to manage the history of banking

operations. To achieve this, it integrates two concepts: Event

Sourcing and Command Query Responsibility

Segregation(CQRS). These are concepts that provide patterns for

storing data in the form of events.

Event Sourcing: Event Sourcing enables full auditability and the

ability to roll back to a previous state by replaying events. This is

particularly useful in the banking sector to ensure regulatory

compliance.

CQRS:The separation of responsibilities between command

operations (writes) and query operations (reads) is an architectural

pattern known as CQRS. In the context of the banking

microservice application, this approach improves data consistency

and performance. Write operations, such as account updates or

transactions, are managed by one set of services and databases

(Bank Event Store), while read operations, such as balance

inquiries or transaction histories, are handled by another set,

potentially using different data models or replication strategies.

This banking microservice platform utilizes CQRS to differentiate

between the management of transactions (commands) and the

retrieval of account information (queries). This allows the system

to optimize each type of operation independently, thereby

improving performance and scalability. Figure 3.6 illustrates the

workings of Event Sourcing and CQRS.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

26

Figure 3.6: Event Sourcing and CQRS

Order handler , which is responsible for receiving all order

requests was incorporated. The section dedicated to order

processing takes care of handling these orders and generating the

corresponding events. Before saving these events in the event

store, validations and business rules are applied. Once the events

are created, they are published to a message queue.

These queues can be managed by brokers such as RabbitMQ or

Kafka. The query processing application monitors these events. It

typically extracts the payload from the event and saves the data to

the query store, based on the required read patterns. The query

handler section is responsible for processing incoming read

requests, retrieving data from the query store to serve to users.

3.4 Design the architectural solution using

the template from phrase two and

implement the solution

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

27

Figure 3.7: Microservice Banking architecture: Cameroon Context

In this microservice banking architecture with respect to

Cameroon context, each service initiates a configuration request

to the configuration server before starting. Once up and running,

the service sends its name, address, and port to the registration

server, and unregistered itself when it stops. The registration

server therefore plays a crucial role in maintaining information

about the various services available.

When a request is received by the API Gateway, it consults the

registration server to determine the appropriate destination based

on the information of the service concerned. Thus, the

communication between a client and a microservice is not direct,

which strengthens the architecture.

To facilitate communication between two microservices, an event

bus is typically employed. While communication can also be done

via REST APIs, this method is synchronous and can introduce

latencies, resulting in a slowdown in overall system performance.

By opting for an event bus, asynchronous communication was

established that allows for efficient decoupling between

microservices.

RabbitMQ, which uses the AMQP protocol, was used for

asynchronous messaging, providing a robust solution for handling

event exchanges between services.

3.5 Case Studies: Design of a Microservice

Banking System platform - Cameroon

Perceptive
3.5.1 Account Management Service
When implementing a microservice architecture for a banking

platform, it is essential to define a set of interconnected services

that meet the functional and non-functional needs of the

institution.

An account management service was set up, allowing not only the

creation of accounts, but also the validation of requests by bank

staff. This service facilitates the consultation of account details,

thus ensuring a smooth user experience. At the same time, a

transaction processing service will be set up, offering features such

as deposits and withdrawals of money, as well as transfers between

accounts, whether within the same operator or between different

operators. This service equally included a transaction history to

ensure complete traceability.

To improve customer interaction, a notification service was

integrated (see Figure 3.1). This will allow real-time notifications

about deposits and withdrawals, as well as security alerts in case

of suspicious login attempts. In addition, a security service was

implemented to manage user authentication, access authorizations,

and monitor suspicious activities.

Customer information management was handled by a dedicated

service called Customer Management Service (see Figure 3.2),

which can track customer interactions with the bank and ensure

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

28

effective customer support. In addition, an audit department is

essential to track account and transaction changes, logging

activities for compliance purposes and producing reports for

regulators.

The system incorporates an API Gateway, which acts as a single

entry point for all client requests. This gateway will be responsible

for routing requests to the appropriate services and handling

responses. A registration service was be implemented to maintain

information about the various services available, allowing each

service to register with a configuration server before starting. Once

up and running, each service will communicate its name, address,

and port to the registration server, and will unregistered when it

stops.

To facilitate communication between bank microservices, an event

bus was used. While communication can also be done via REST

APIs, this mode of communication can introduce latencies and

slow down the overall performance of the system. By opting for

an event bus, asynchronous communication was established, thus

promoting efficient decoupling between microservices while

encouraging high cohesion. RabbitMQ, which uses the AMQP

protocol, was employed for asynchronous messaging, offering a

robust solution to manage event exchanges between bank services.

Example of Communication for the Creation of an Account

Below are the following elements used to create an account

through API Gateway in the research (see Figure 3.7).

1. Port Configuration:

– Account Management Service : Port 8081
– API Gateway : Port 8080
– Client Application : Port 3000

2. Scenario:

The client application wants to create a new bank account using

the controller called /createAccount API of the Account

Management Service .

3. Communication Steps:

Step 1: Sending the Request by the Client

– The user fills out a form in the client application (port

3000) to create a new account.

– The client application sends an HTTP POST request to

the API Gateway at the following URL:

POST http://localhost:8080/ACCOUNT-

MANAGEMENT/createAccount

– The body of the request contains the client's information

(e.g. name, email, account type, etc.):

{
"name": "DJAM Xaveria",
"email": "xaviera.kimbi@facsciences-uy1.cm",
"accountType": "savings"
}

Step 2: Processing by API Gateway

– The API Gateway receives the request on port 8080.

– It consults the registration server to obtain information

about the Account Management Service , including its

address and port (port 8081).
– The API Gateway redirects the request to the Account

Management Service using the following URL:

POST http://localhost:8081/createAccount

Step 3: Processing by the Account Management Service

– The Account Management Service receives the request

on port 8081 and processes the account creation.
– It validates the information provided and saves the new

account in its database.

– Once the account is successfully created, the Account

Management Service returns a response in JSON

format to the API Gateway, for example:
{
"status": "success",
"message": "Account created successfully",
"accountId": "123456789"
}

Step 4: API Gateway Response to Client

– The API Gateway receives the response from the

Account Management Service and sends it back to the

client application on port 3000.

– The client application can then display a success

message to the user, for example: "Account created

successfully with ID: 123456789"

In this example, the communication between the client and the

Account Management Service is done indirectly via the API

Gateway. This allows for centralized management of requests and

responses, thus promoting scalability and decoupling of services.

The architecture also facilitates the management of the various

interactions between components, while ensuring the security and

reliability of operations.

Example of Communication with Events

Below are the following elements used in message broker for the

communication with Events:

(A) Port configuration:

– Account Management Service : Port 8081
– API Gateway : Port 8080
– Customer Management Service : Port 8082
– Message Broker : Port 5672

(B) Scenario:

After a bank account is created, the Account Management

Service publishes an event to a message broker, and the Customer

Management Service consumes it to record the customer's

information.

(C) Communication Steps:

Step 1: Account Creation

– As before, the user fills out a form in the client

application and sends a request to create an account.

– The Account Management Service processes the

request and creates the account.

Step 2: Publish the Event

– Once the account is successfully created, the Account

Management Service publishes an event to the broker

message with the client's information:

{
"eventType": "AccountCreated",
"data": {
"name": "DJAM Xaveria",
"email": "xaviera.kimbi@facsciences-uy1.cm",

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

29

"accountId": "123456789"
}
}

– The event is sent to a specific queue or topic on the

message broker (e.g. account-events).
Step 3: Consumption of the Event by the Customer Management

Service

– The Customer Management Service is configurationd

to listen for events on the message broker.
– AccountCreated event , it extracts the customer data.
– The service processes the customer's registration in its

database, using the information received.

Step 4: Confirmation of Registration

– Once the customer is successfully registered, the

Customer Management Service can publish a

confirmation event (optional) on the message broker:

{
"eventType": "CustomerRegistered",
"data": {
"name": "DJAM Xaveria",
"email": "xaviera.kimbi@facsciences-uy1.cm",
"customerId": "987654321"
}
}

In this process, after the account is created, the Account

Management Service uses a message broker to publish an event.

The Customer Management Service consumes this event to

register the customer, which enables a reactive and decoupled

architecture. This also promotes scalability, as each service can

evolve independently while staying synchronized via events.

Figure3.8: Communication with Events

3.5.2 Scalability in Microservice Architecture

Scalability is the ability of a system to handle an increase in

workload by adding resources, without compromising

performance. In this microservice architecture, scalability is

essential to meet increasing user demand while maintaining

optimal performance (see Figure 3.9): .

Horizontal Scalability: This involves adding more instances of a

microservice. For example, if a microservice is under heavy load,

deploy multiple instances of that service can be deployed to

distribute the load (see Figure 3.9).

Vertical Scalability: This involves increasing the resources of a

single instance (e.g. adding more CPU or RAM). However, this

method has its limitations and is often less flexible than horizontal

scaling.

Scalability Scenario with example from the Banking System:

Given a microservice called User Service that needs to handle an

increase in the number of requests due to the growth of the

application. These service instances register after their startup in

the registration service as shown in the Figure 3.9

Multiple instances of the User Service are deployed, for example,

with referenced to two instances of User Service , each running

on different ports or in separate containers (see Figure3.9):
– Instance 1: http://localhost:8084
– Instance 2: http://localhost:8084

Load Balancing to Show Scalability:

– To handle incoming traffic, a load balancing system is

used. This system distributes client requests between

different User Service instances .
– The API Gateway acts as a load balancer, redirecting

requests to any of the available instances.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

30

Sample request formats such as POST, GET, DELETE or PUT

were used for request control API (Application Programming

Interface) as seen in the following example:

Step 1: Customer Request

When a client sends a request to the API Gateway (for

example, to add a user), the API Gateway receives the

request on a specific port (for example, port 8084).

POST http://localhost:8084/USER-SERVICE/addUser

Step 2: Distribute Requests

– API Gateway uses the load balancing AGA to determine

which User Service instance should handle the request.
– It can choose, for example, the first available instance

(8081) for the first request, then move to the second

(8082) for the next.

Step 3: Processing the Request

– The selected instance of the User Service processes the

request and returns the response to the API Gateway.
– The API Gateway then forwards the response to the

client.

Figure 3.9: Scalability in Microservices Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

31

Figure 3.10: Deployment architecture of the banking system and orchestration in Cameroon context

Figure 3.10 illustrates the architecture of the banking system

deployed on the Kubernetes Cluster. It shows the different

components and their interactions via Rest and Advanced Message

Queuing Protocol(AMQP) connection.

The key components are:

− Web Client: The web user of bank interface that interacts

with the banking system.

− GitHub: Contains the services configuration files,

accessible via a Rest service

− Kubernetes Cluster: The containerization infrastructure

that host the various banking services.

− Bank_Pod: The different banking microservices

deployed in the Kubernetes Cluster, communication via

Rest APIs

− Banknode1 and Banknode2: The main nodes of the

banking system,hosting Bank account management

service ,Bank transaction service ,Bank customer

service and Bank notification service.

− Bk_Trans_BD and Bk_Account_BD: The databases for

bank transactions and bank account respectively

− Message broker service: The asynchronous messaging

service used for communication between the different

system components

− Bank_registry_service: A central service for registering

and discovering other services

− Mobile App: The mobile application that interacts with

the banking system via REST APIs.

4. RESULTS AND DISCUSSIONS

4.1. Environment Setup and Configuration
The development environment was properly set up to support the

research objectives. This includes ensuring the availability of

essential tools such as Visual Studio Code, Eclipse, Java

Development Kit(JDK), Apache Maven , Docker Desktop, Rester,

Hey, RabbitMQ, Spring Boot, Actuator, Spring Cloud Gateway,

Spring Cloud Config, Eureka, H2, and MariaDB. The Hey tool

was used for request tracing among microservices.

For the setup of the microservice banking system, the following

parameter were set for AGA and the corresponding configurations

were made (see Table 4.1):

Table 4.1: Parameter Setting for AGA

Parameter Value

Size of population 20000

Selection operator 20

Crossover operator Single-point

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

32

Crossover probability 1

Mutation operator Bit-wise

Mutation probability 1/95

Configuration Folder: The microservice design for the banking

system was configured in the following git hub address:

“https://github.com/KIMBIXY/cloud-conf”

Bank Configuration Service:

Figure4.1 shows the Kubernetes deployment YAML configuration

for the configuration service, responsible for centralizing the

micro services configuration. The name space in which the service

is deployed is "micro services". The deployment is named

"service-configuration" and uses the Docker image

"paulzk/seminar-service-configuration:latest". It exposes port

8080 of the container and defines two environment variables:

"SPRING_APPLICATION_NAME" with the value "service-

configuration" and

"SPRING_CLOUD_CONFIG_SERVER_GIT_URI" with the

value "https://github.com/KIMBIXY/cloud-conf", which points to

the Git repository containing the micro services configuration. A

"Load Balancer" type service is also defined to expose the micro

services configuration service on port 8080, with a selector

targeting pods with the "app: service-configuration" label

Figure 4.1: Kubernetes configuration for the bank configuration service

Bank Registry Service

The Kubernetes configuration for the bank registry service

deploys a deployment in the "microservices" name space named

"service-register", using the Docker image "paulzk/seminar-bank-

registry:latest" and exposing port 8761; it defines three important

environment variables to identify the Spring application, point to

the centralized configuration service, and import the configuration

from the configuration server, and a "Load Balancer" type service

is also defined to expose the bank registry service on port 8761 by

targeting pods with the "app: service-register" label, thus enabling

the deployment and integration of the bank registry service into

the microservice architecture by connecting it to the centralized

configuration service.

https://github.com/KIMBIXY/cloud-conf
https://github.com/KIMBIXY/cloud-conf

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

33

Figure4.2: Kubernetes configuration for the registry service

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

34

Bank User Service

In Figure 4.3, the Kubernetes configuration for the bank user

service deploys a deployment in the "microservices" name space

named "service-user", using the Docker image "paulzk/seminar-

service-user:latest" and exposing port 8084; it defines three

important environment variables to identify the Spring

application, point to the centralized configuration service, and

import the configuration from the configuration server, and a

"Load Balancer" type service is also defined to expose the bank

user service on port 8181 by targeting pods with the "app: service-

user" label, thus enabling the deployment and integration of the

bank user service into the microservice architecture by connecting

it to the centralized configuration service. The initial number of

replicas is set to 1, and Kubernetes can be configured to scale the

number of replicas up or down based on the traffic.

Figure4.3: Kubernetes Configuration for the user service

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

35

Figure4.4: Kubernetes configuration for the another instances of user service

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

36

Figure4.5: Kubernetes configuration for the another instances of user service

Bank Proxy Service The Kubernetes configuration for the service proxy deploys a

deployment in the "microservices" name space named "service-

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

37

proxy", using the Docker image "paulzk/seminar-service-

proxy:latest" and exposing port 8079; it defines three important

environment variables to identify the Spring application, point to

the centralized configuration service, and import the configuration

from the configuration server, and a "Load Balancer" type service

is also defined to expose the service proxy on port 8060 by

targeting pods with the "app: service-proxy" label, thus enabling

the deployment and integration of the service proxy into the

microservice architecture by connecting it to the centralized

configuration service(See Figure 4.6)

Figure4.6: Kubernetes Configuration for the Another Instances of User Service

Message Broker Service

Figure 4.7 shows the configuration of the RabbitMQ message

broker service in the Kubernetes cluster. It comprises two main

resources: a Deployment and a Service.

The RabbitMQ Deployment creates a pod with a single container.

This container uses the "rabbitmq:management" image, which

provides both the RabbitMQ server and the management interface.

The container exposes two ports: port 5672 for standard

RabbitMQ traffic and port 15672 for the management interface.

The Load Balancer Service exposes these two ports to the outside

world, allowing clients to access the RabbitMQ broker and its

management interface. This configuration enables the simple and

standardized deployment and exposure of the message broker

service within the Kubernetes cluster.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

38

Figure4.7: Kubernetes configuration for the message broker service

Automatic Scalability of Bank Service User

Figure 4.8 shows the Kubernetes configuration of the Deployment

for the banking user service with auto scaling parameters. The

Deployment creates a pod with a single container using the

"paulzk/seminar-service-user:latest" image. The container

exposes port 8084 for the service traffic. The "resources" section

defines the CPU and memory resource limits for the container,

with a request of 20m CPU and 512Mi memory, and limits of 50m

CPU and 300Mi memory. This configuration enables automatic

scalability of the user service based on the workload, dynamically

adjusting the number of replicas and allocated resources to ensure

optimal performance and high availability of the banking user

service.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

39

Figure4.8: Kubernetes configuration for the automatic scalability of user service

4.2 Results of Microservices Deployed on Kubernetes Cluster

4.2.1 Synchronization between Instances of the Same

Microservice

Given that each instance of a microservice is running and has its

own database, replication between database was done through

Message broker to solve the synchronization problem (See Figure

3.8)
RabbitMQ is a messaging system that uses the publish/subscribe

(pubsub) model to enable asynchronous communication between

microservices.

Orchestration and Containerization

Docker, Docker-Compose and Kubernetes were used for the

management of containerization and orchestration of

microservices.

Containerization

With Docker, services were put in an isolated environment that

operates independently of other services. The use of Docker

Compose allowed orchestration in development mode, but it is not

suitable for production mode. All configurations are present in the

reserach GitHub repository:

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

40

https://github.com/KIMBIXY/MicroserviceBankingSystem/blob/

main/docker-compose.yml

Orchestration

Orchestration with Kubernetes has allowed us to manage all

services in production. It enables scalability of the user service to

seven instances. The number of replicas of a service can increase

in the case of increased network traffic or decrease in the case of

reduced network traffic. The following Figures show the

deployments and services launched on Kubernetes used on Docker

Desktop. All configurations are present in the research GitHub

repository:

https://github.com/KIMBIXY/MicroserviceBankingSystem/blob/

main/kubernetes.yaml

Figure4.9: Services launched on Kubernetes used on Docker Desktop

Figure4.10 depicts all the running microservices created and

deployed on Kubernetes Cluster for the banking application. All

the functional and non-functional services in Figure3.1 were

deployed on Kubernetes Cluster on the research github address:

https://github.com/KIMBIXY/MicroserviceBankingSystem

Figure 4.10 shows the Kubernetes cluster deploying the

application composed of all the interconnected microservices,

with pods, services, deployments, replica sets and nodes

configured to ensure the operation of the application. It also shows

the scalability of the user service to 8 instances, and the company

service configuration for automatic horizontal scalability. The

automatic scalability of the "service-company" service is

configured. This can be seen in the "REFERENCE" section where

it is indicated "horizontalpodautoscaler.autoscaling/service-

company" (See Figure4.11). This means that the Kubernetes

Horizontal Pod Autoscaler (HPA) is used to automatically adjust

the number of replicas of the "service-company" service based on

the workload metrics. The HPA monitors metrics such as CPU or

memory utilization, and adjusts the number of pods accordingly to

maintain the desired performance.

https://github.com/KIMBIXY/MicroserviceBankingSystem/blob/main/docker-compose.yml
https://github.com/KIMBIXY/MicroserviceBankingSystem/blob/main/docker-compose.yml
https://github.com/KIMBIXY/MicroserviceBankingSystem/blob/main/kubernetes.yaml
https://github.com/KIMBIXY/MicroserviceBankingSystem/blob/main/kubernetes.yaml
https://github.com/KIMBIXY/MicroserviceBankingSystem

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

41

Figure4.10: Microservices Created and Deployed on Kubernetes Cluster

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

42

Figure 4.11: Results of Kubernetes Cluster Deployment with Automatic Scalability

4.2.2 Results of Implementing Event Sourcing and

CQRS for Transaction Service Management
The Command Query Responsibility Segregation (CQRS) model

has been implemented in the transaction service to improve the

separation of responsibilities between read and write operations.

This allows for optimized performance and better scalability in the

management of banking transactions. The implementation of

event sourcing gave the possibility to store all transactions in the

form of events in order to keep track of the changes in the state of

a bank account. An experimental approach was taken on the

transaction service to highlight these concepts with some key

results.

The key results are:

- Separation of read and write operations through CQRS improved

performance and scalability of the transaction service.

- Event Sourcing provided a complete audit trail of all

transactions, enabling better tracking of account state changes.

- The experimental implementation demonstrated the benefits of

these architectural patterns for the transaction management use

case.

Overall, the adoption of event sourcing and CQRS has been a

successful strategy for enhancing the capabilities of the transaction

service. These patterns have enabled the better manage the

complexities of banking transaction processing at a scale. (see

Figure 4.12 to Figure 4.18)

See git hub link for the corresponding results.

https://github.com/KIMBIXY/MicroserviceBankingSystem/tree/

main/transactionserviceapplication

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

43

Figure 4.12: Transaction Recording in the Registration Service

When sending a request to make a deposit to a customer's account, the following result is obtained (Figure 4:13).

Figure 4.13 Depositing Money to an Account from the Proxy Service

Money is withdrawn from an account according to the transaction presented in Figure 4.14.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

44

Figure 4.14 Withdrawing Money from an Account through the Proxy Service

The sequence of events performed on an account is captured according to Figure 4.15.

Figure 4.15 Retrieving All Events for an Account

The results of retrieving the transactional events performed in the

system are presented (see Figure 4.15 and 4.16). However, the

current account balance is not yet known. The events are stored,

and to get the state of an account at a given time, preceding events

was reconstituted up to that time. This concept allows banks to

have the state of each account at any given moment.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

45

Figure 4.16 Result of Retrieving All Events for the Account

Figure 4.17 Result of Retrieving All Events for the Account

To know the balance of an account, reconstitution of the events was done (see Figure 4.17)

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

46

Figure 4.18: Obtaining the Account Balance by Reconstituting the Previous Events
4.3 Performance Testing Analysis

Performance testing of the microservice design was performed

with Hey tool for tracing traffic management of user request

across multiple microservices where the use case being tested

is the retrieval of the list of users. The test involves sending

2,000 requests in two batches of 1,000 requests each and

distributing them among 7 instances of the bank user service.

Each 1,000 requests were distributed in batches of 100, the

traffic was rapidly increased and the performance is as shown

in Figure 4.19.

To evaluate the effectiveness of the developed load balancing

algorithm, several performance evaluation criteria were taken

into consideration:

Response Time : The amount of time it takes to process a

request. A lower response time indicates better performance. In

response time criterion the following results were established:

Total response time: 0.6156 seconds

Slowest response time: 0.2388 seconds

Fastest response time: 0.0056 seconds

Average response time: 0.0545 seconds

Throughput : Number of requests processed per unit of time.

High throughput is crucial for applications that require high

processing capacity. The performance test the banking system

executed 1624.5330 requests per second

Resource Utilization : A measure of how efficiently resources

are used. A good balance between resource utilization and

performance is essential. The results indicate generally

satisfactory performance,with a relatively short average

response time and high throughput. However, the slowest

response time raises areas for improvement.

Latency distribution: The histogram shows that the majority

of requests 406 have a low response time between 0.052 and

0.076 seconds. This confirms the good overall performance of

the system.

The latency distribution indicates that 50% of requests have

latency less than 0.0499 seconds, 90% have latency less than

0.0999 seconds, and 99% have latency less than 0.1999

seconds. This latency distribution is consistent with the

observed response times.

Scalability : The ability of the algorithm to handle an increase

in workload without compromising performance. Analysis of

the various steps of the process (DNS resolution, writing the

query, waiting for the response, reading the response) did not

reveal any major bottlenecks.

These performance results are very encouraging for this

research. They demonstrate that the tested system is capable of

handling a significant workload while maintaining acceptable

response times.

Overall, these performance test results provide valuable

information for further research. They allow us to better

understand the system's capabilities and to direct improvement

efforts in a more targeted manner.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

47

Figure 4.19: Performance Testing Analysis of the Microservice Design

5. CONCLUSION AND PERSPECTIVES
Microservice architecture represents a significant step forward in

the development of modern banking solutions, meeting the

increasing demands for scalability, security, efficiency and

flexibility in a rapidly digitalizing environment. This paper

presented a robust methodological approach to design a banking

services platform, integrating essential elements such as account

management, transaction processing, real-time notification.

The challenges associated with microservice architectures,

including service communication, data management, and

scalability were experimented. The use of modern technologies

such as Docker, Docker Compose, Kubernetes, and RabbitMQ

were employed to facilitate deployment, orchestration, and

asynchronous communication between banking services.

Implementing an event-driven architecture improved system

responsiveness and resilience, while ensuring an optimal user

experience.

The case studies presented demonstrate how a well-designed

architecture can efficiently handle user requests, while ensuring

regulatory compliance and secure operations. The service-to-

service communication examples also illustrate the importance of

a single point of entry via an API Gateway, as well as the use of

load balancing mechanisms to ensure optimal performance.

In conclusion, this research highlights the importance of a

systematic and integrated approach to developing micro services-

based banking platforms. As the banking industry continues to

evolve, adopting these innovative architectures will enable

financial institutions to quickly adapt to customer needs and

remain competitive in an ever-changing digital landscape.

As future work, it is worth researching further in to more advanced

load balancing and optimization algorithms in Artificial

Intelligence in order to manage the problems of scalability.

6. REFERENCES

[1] Sharma, S., et al. (2023). “Designing Scalable Microservices

for Banking Applications.” Journal of Banking Technology ,

12(3), 45-67.

[2] Lewis, J., & Fowler, M. (2014). “Microservices: A Definition

of This New Architectural Term.” MartinFowler.com .

[3] Sharma, S., Bhavisha, Rupinder Singh, & Jaskaran Singh.

(2023). “Analyzing Load Balancing Techniques for Cloud

Computing: Pros, Cons, and Emerging Trends.” 5th

International Conference on Communication and

Information Processing (ICCIP-2023) . Available on: SSRN.

(SSRN is an open-access online preprint community, owned

by Elsevier).

[4] Maestro, A., & Surantha, N. (2024). “Scalability Evaluation

of Microservices Architecture for Banking Systems in Public

Cloud.” In Proceedings of the International Conference on

P2P, Parallel, Grid, Cloud and Internet Computing .

[5] Devi, D. and Uthariaraj, V. R. (2016). “Load balancing in

cloud computing environment using improved weighted

round robin algorithm for nonpreemptive dependent tasks,”

in The Scientific World Journal), vol. 6, pp. 214–229.

[6] Abishek S. S.(2022) “Dynamic Load Balancing of

Microservices in Kubernetes Clusters using Service Mesh”.

MA thesis. Dublin, National College of Ireland.

[7] Alexander S. (2019). “A study on load balancing within

microservices architecture”. MA thesis. Halmstad University.

[8] Espejo, R. and Reyes, A. 2019. Organizational Systems:

Managing Complexity with the Viable System Model.

Springer Berlin Heidelberg.

https://martinfowler.com/articles/microservices.html

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.79, April 2025

48

[9] Gucer, V., Narain, S. and others. 2022. Creating Applications

in Bluemix Using the Microservices Approach. IBM

Redbooks.

[10] Gysel, M., Kölbener, L., Giersche, W. and Zimmermann, O.

2024. Service Cutter: A Systematic Approach to Service

Decomposition. European Conference on Service-Oriented

and Cloud Computing, p. 185–200.

[11] Levcovitz, A., Terra, R. and Valente, M. T. 2016. Towards a

Technique for Extracting Microservices from Monolithic

Enterprise Systems.

[12] Malavalli, D. and Sathappan, S., "Scalable Microservice-

based Architecture for Enabling DMTF Profiles," in 2015

11th International Conference on Network and Service

Management (CNSM), 2015, pp. 428-432: IEEE.

[13] Palihawadana, S., Wijeweera, C., Sanjitha, M., Liyanage, V.,

Perera, I., and Meedeniya, D., "Tool Support for Traceability

Management of Software Artefacts with DevOps practices,"

in 2017 Moratuwa Engineering Research Conference

(MERCon), 2017, pp. 129-134: IEEE.

[14] Sun, Y., Nanda, S., and Jaeger, T., "Security-as-a-Service for

Microservices-based Cloud Applications," in 2015 IEEE 7th

International Conference on Cloud Computing Technology

and Science (CloudCom), 2015, pp. 50-57: IEEE.

IJCATM : www.ijcaonline.org

