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ABSTRACT 
Remote sensing relies heavily on Atmospheric Correction (AC) 

to ensure accurate estimation of land Surface Reflectance (SR) 

for various applications. Conventional AC methods, while 

effective, are computationally expensive and require extensive 

atmospheric parameters that can be challenging to estimate 

accurately. This research proposes a novel deep learning model 

for AC that eliminates the need for explicit atmospheric 

parameter estimation. Our approach utilizes a Pix2Pix 

architecture trained on a diverse dataset of Sentinel-2 images 

covering all states in India, collected via Google Earth Engine. 

The model includes four bands (red, green, blue, and visible 

near-infrared) and directly predicts SR values from Top-of-

Atmosphere (TOA) reflectance. The model demonstrated 

promising results, accurately estimating SR values across 

various scenarios. 

Evaluation metrics showed significant improvements, with 

mean Structural Similarity Index (SSIM) increasing from - 

0.0025 to 0.961 and mean Peak Signal-to-Noise Ratio (PSNR) 

rising from 11.0188 dB to 42.14 dB post-training. This 

approach not only simplifies the AC process but also achieves 

comparable or superior performance to traditional physics- 

based methods. The experimental findings underscore the 

potential of deep learning as a robust and efficient alternative for 

atmospheric correction in remote sensing applications, offering 

possibilities for faster processing of large satellite image 

datasets. This study contributes to the application of artificial 

intelligence in remote sensing, paving the way for more 

accessible and efficient atmospheric correction methods. 

Future work could explore the model's adaptability to other 

sensors, incorporation of temporal data, and integration with 

traditional physics-based models. 
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1. INTRODUCTION 
The accuracy and reliability of remote sensing data are critical 

for a wide range of applications, from environmental 

monitoring to land use classification and climate change 

analysis. However, traditional methods of satellite imagery 

often face challenges due to atmospheric effects, such as 

scattering and absorption, which can distort surface reflectance 

values and compromise the quality of the data. While physics-

based methods for atmospheric correction exist, they tend to be 

computationally expensive and rely on precise atmospheric 

parameters, which are not always of satellite imagery in various 

domains. 

As artificial intelligence continues to advance, there is 

increasing interest in applying deep learning techniques to 

atmospheric correction to overcome these challenges. By 

leveraging the power of Convolutional Neural Networks 

(CNNs) and Generative Adversarial Networks (GANs), this 

research aims to develop a novel atmospheric correction model 

that eliminates the need for explicit atmospheric parameter 

estimation. This approach directly predicts surface reflectance 

from top-of-atmosphere (TOA) reflectance, streamlining the 

correction process and improving both accuracy and efficiency. 

Unlike traditional methods that require significant 

computational resources, a deep learning- based solution is 

more scalable and can process large volumes of satellite 

imagery quickly and effectively. 

The primary objective of this research is to design and 

implement a Pix2Pix Conditional GAN (cGAN) model for 

atmospheric correction of Sentinel-2 satellite data. This 

involves training the model on a large and diverse dataset of 

paired TOA and Surface Reflectance (SR) images to ensure 

robust performance across various atmospheric conditions and 

geographic regions. The system will be evaluated based on key 

metrics such as Structural Similarity Index (SSIM), Peak 

Signal-to-Noise Ratio (PSNR), Root Mean Squared Error 

(RMSE), and Mean Absolute Error (MAE) to compare its 

performance with traditional physics-based correction 

methods. 

This project aims to advance the field of remote sensing by 

offering a more efficient and accessible method for 

atmospheric correction, thus enhancing the quality of satellite 

data used in applications such as environmental monitoring and 

land cover classification. By addressing key challenges such as 

computational cost and the need for extensive atmospheric 

data, this research contributes to the development of more 

scalable and reliable satellite image correction systems. 

Additionally, it explores the potential integration of deep 

learning-based atmospheric correction models into existing 

satellite data processing workflows, ensuring wider adoption in 

both academic and operational contexts. 

The primary goal of employing deep learning techniques in 

atmospheric correction of satellite imagery is to address and 

mitigate the longstanding challenges and limitations associated 

with traditional atmospheric correction methods while 

simultaneously enhancing the accuracy and efficiency of 

remote sensing data processing. In this context, our 

comprehensive objectives are as follows: 

1. Improving Accuracy and Efficiency: To enhance the 

precision of atmospheric correction by leveraging deep 

learning models, specifically the Pix2Pix conditional 

GAN, which can effectively predict Surface Reflectance 

(SR) without the need for complex atmospheric parameter 

estimations. 

2. Reducing Computational Costs: To lower the 

computational overhead associated with traditional 

physics- based correction methods by introducing a 
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streamlined deep learning approach that simplifies the 

process without sacrificing accuracy. 

3. Handling Diverse Atmospheric Conditions: To improve 

the model’s ability to generalize across different 

atmospheric conditions and geographical regions by 

training on a large and diverse dataset of Sentinel-2 

images. 

4. Supporting Large-Scale Data Processing: To enable 

faster processing of large volumes of satellite imagery, 

making the atmospheric correction process more scalable 

for applications requiring near-real-time data analysis. 

5. Enhancing Remote Sensing Applications: To provide a 

corrected dataset that is reliable for downstream 

applications such as land cover classification, 

environmental monitoring, and climate change analysis, 

thereby improving the overall quality of remote sensing 

data. 

6. Incorporating Cutting-Edge Techniques: To explore 

the potential of advanced deep learning architectures like 

GANs in solving complex remote sensing challenges, 

offering a more efficient and accessible alternative to 

traditional atmospheric correction. 

Our research focuses on critical issues such as ensuring high 

fidelity in corrected images, minimizing errors between 

predicted and actual reflectance values, and evaluating the 

effectiveness of the deep learning model across various metrics. 

Addressing these challenges is crucial for advancing the field 

of remote sensing and providing more reliable atmospheric 

correction solutions. 

2. LITERATURE SURVEY 
In recent years, deep learning techniques have revolutionized 

various fields, including remote sensing and atmospheric 

correction. Traditional methods of atmospheric correction, 

although effective, often involve complex physics-based 

models that are computationally expensive and require precise 

atmospheric data inputs. This section reviews relevant research 

that highlights the evolution of atmospheric correction 

approaches, from conventional techniques to recent advances 

using machine learning and deep learning. 

In [24], Vermote et al. (1997) introduced the 6S (Second 

Simulation of the Satellite Signal in the Solar Spectrum) model, 

a radiative transfer-based approach to correct satellite imagery 

by accounting for atmospheric parameters such as aerosol 

optical depth, water vapor, and ozone concentration. This 

model remains a benchmark in atmospheric correction, offering 

high accuracy when atmospheric parameters are well known. 

However, its reliance on precise parameter inputs makes it less 

suitable for regions with complex or unknown atmospheric 

conditions. 

As an alternative to physics-based methods, the Empirical Line 

Method (ELM) described by Smith and Milton (1999) relies on 

ground-based reference targets within the image to perform 

atmospheric correction [25]. While simpler and faster than the 

6S model, ELM’s dependence on reference targets limits its 

applicability to specific regions, thus reducing its 

generalizability. Similarly, Dark Object Subtraction (DOS), 

introduced by Chavez (1988), assumes that dark objects in an 

image should have near-zero reflectance, thus attributing any 

observed reflectance to atmospheric scattering [26]. DOS is 

fast and easy to implement but is less accurate in regions 

without dark objects or with complex atmospheres. 

With the advent of machine learning, several researchers began 

exploring its application to atmospheric correction. In a study 

by Xie et al. (2019), Random Forest models were used to 

predict surface reflectance for Landsat-8 imagery [27]. While 

Random Forest models demonstrated a faster correction 

process once trained, their generalization capability was 

limited, particularly when applied to unseen geographic regions 

or extreme atmospheric conditions. A similar approach was 

explored by Sola et al. (2018) using Support Vector Regression 

(SVR) for estimating aerosol optical depth and performing 

atmospheric correction on MODIS data [28]. SVR, while more 

robust with small datasets, still struggled with the large 

volumes of data generated by satellite imagery. 

The application of deep learning, particularly Convolutional 

Neural Networks (CNNs), has emerged as a promising 

approach to atmospheric correction. Zhu et al. (2017) reviewed 

the potential of CNNs for remote sensing, focusing on image 

classification and object detection [29]. This foundational work 

paved the way for the use of deep learning in image-to-image 

translation tasks, where Generative Adversarial Networks 

(GANs) have shown remarkable success. Pix2Pix GAN, 

introduced by Isola et al. (2017), has been a widely used 

architecture for transforming satellite imagery, making it a 

viable candidate for atmospheric correction tasks [30]. 

Building on this, Malmgren-Hansen et al. (2019) developed a 

CNN-based model using a U-Net architecture for atmospheric 

correction of Sentinel-2 imagery [31]. The U-Net model 

directly predicted surface reflectance from TOA reflectance, 

eliminating the need for explicit atmospheric parameter inputs. 

While this method reduced computational costs and simplified 

the correction process, the model’s performance varied across 

different atmospheric conditions. 

Further advances were made by Zhu et al. (2021), who 

proposed a physics-guided neural network that incorporated 

radiative transfer equations into the loss function of a deep 

learning model, creating a hybrid approach [32]. This model 

effectively combined data-driven learning with physics-based 

principles, showing promise in achieving better generalization 

under varied atmospheric conditions. 

The use of deep learning for atmospheric correction remains a 

growing field. As research continues, challenges such as the 

need for large, diverse datasets and the "black box" nature of 

deep learning models remain [33]. However, hybrid 

approaches that combine the strengths of deep learning and 

physics-based methods, as well as advancements in transfer 

learning and model interpretability, could help overcome these 

limitations. 

3. METHODOLOGY 
The atmospheric correction of Sentinel-2 satellite data using 

deep learning techniques involves several key stages, ensuring 

that the correction process is efficient, accurate, and scalable. 

The methodology follows a structured approach comprising 

data collection, model development, training, and evaluation. 

1. Data Collection and Preprocessing 
Data Source: The satellite imagery used for this research is 

sourced from the Google Earth Engine (GEE), a cloud-based 

platform offering vast datasets of satellite imagery. Sentinel-2 

satellite data from the European Space Agency (ESA) is 

Selected for its high spatial resolution and spectral bands 

suitable for atmospheric correction. 

Data Selection: A total of 1000 image pairs (Top-of- 

Atmosphere (TOA) and Surface Reflectance (SR)) are 
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collected from various regions across India, ensuring diversity 

in atmospheric conditions and geographic regions. Four 

spectral bands (red, green, blue, and visible near-infrared) with 

a resolution of 10 meters are chosen for this study. 

Preprocessing: After downloading the data, the images are 

resized to a uniform resolution of 256x256 pixels. The pixel 

values, ranging between 0 and 30000, are normalized by 

dividing by 10000 to ensure stable training. Additionally, the 

data is split into 80% training and 20% testing sets to assess the 

model’s performance. 

 
Figure 1: Comparison of True and False Color 

Composites 

2. Model Development 

 
Figure 2: Pix2Pix Architecture 

Architecture: The deep learning model for atmospheric 

correction is based on the Pix2Pix Conditional GAN (cGAN) 

architecture. The model consists of two primary components: 

 
Figure 3: Generator Architecture 

Generator: A modified U-Net architecture is used as the 

generator, responsible for converting TOA reflectance 

images into SR images. It uses an encoder-decoder 

structure with skip connections to retain spatial 

information. 

 
Figure 4: Discriminator Architecture 

Discriminator: The discriminator is a Patch GAN classifier that 

checks whether the generated SR image is realistic by 

evaluating small image patches. 

Loss Functions: Two loss functions are employed during 

training: 

𝐿1 𝐿𝑜𝑠𝑠 = 1/𝑁 ∑ ⃓𝐺(𝑥𝑖) − 𝑦𝑖⃓

𝑁

𝑖=0

 

 

L1 Loss (Mean Absolute Error): Ensures pixel-wise accuracy 

by minimizing the absolute difference between the predicted 

SR and ground truth images. 

Adversarial Loss: The GAN loss helps the generator create 

images that are visually indistinguishable from real SR images 

by fooling the discriminator. 

3. Model Training 
Training Configuration: The Pix2Pix model is trained for 100 

epochs using mini-batch stochastic gradient descent. A batch 

size of 2 is used to optimize memory usage during training. The 

Adam Optimizer is employed with a learning rate of 0.0002 to 

accelerate convergence. The training process is executed on a 

high-performance GPU to reduce training time. 

Early Stopping: To prevent overfitting, an early stopping 

mechanism is implemented, which halts training if the 

validation loss does not improve over 10 consecutive epochs. 

Checkpointing: The model parameters are saved periodically, 

allowing the retrieval of the best-performing model based on 

validation performance. 

4. Evaluation Metrics 

SSIM(x, y) = (((2μₓμᵧ +  c^1 )(2σₓᵧ +  c^2 )))/ ((μₓ^2
+  μᵧ^2 +  c^1 )(σₓ^2 +  σᵧ^2 +  c^2 )) 

 

Structural Similarity Index (SSIM): This metric compares 

the similarity between the predicted SR and ground truth SR 

images, considering luminance, contrast, and structure. 

PSNR(x, y) =  10 ⋅\log{10}( \frac{MAX2}{MSE}) 

Peak Signal-to-Noise Ratio (PSNR): PSNR measures the 

quality of the generated image by comparing the ratio of the 

maximum power of a signal to the power of corrupting noise. 

Higher PSNR values indicate better image quality. 

𝑅𝑀𝑆𝐸(𝑥, 𝑦) =  √{ 1\{𝑛} ∑ (𝑥𝑖 −  𝑦𝑖)2

{𝑛}

{𝑖=1}

} 
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𝑀AE(x, y) =  1\{n} ∑ | xi −  yi|

{n}

{i=1}

 

Root Mean Squared Error (RMSE) and Mean Absolute 

Error (MAE): These metrics provide a measure of the pixel- 

wise error between predicted and true images. Lower values 

indicate a closer match between the two images. 

Result Visualization and Reporting 

After the model completes training, the corrected images are 

generated and compared with the ground truth SR images for 

both visual and quantitative evaluation. The evaluation 

metrics (SSIM, PSNR, RMSE, and MAE) are computed for 

each image in the test set, and the results are presented using 

tables and graphs to highlight the improvements in image 

quality. 

The system provides visual representations of the corrected and 

uncorrected images, displaying the enhanced accuracy and 

details achieved through the Pix2Pix-based atmospheric 

correction. 

This comprehensive methodology enables the model to 

perform accurate atmospheric correction of satellite imagery, 

facilitating improved data quality for downstream applications 

like land cover classification and environmental monitoring. 

4. RESULT AND DISCUSSION 
Once the deep learning-based atmospheric correction model 

has been trained and tested, the focus shifts to analyzing and 

discussing the results. This phase involves the system’s 

performance evaluation and how it compares to traditional 

atmospheric correction methods. Below is a breakdown of how 

the results are produced, followed by a discussion of their 

significance: 

1. Result Calculation 
Model Performance Metrics: The model's performance was 

evaluated using key metrics such as Structural Similarity Index 

(SSIM) and Peak Signal-to-Noise Ratio (PSNR). These metrics 

quantify how well the predicted surface reflectance (SR) values 

match the ground truth data. 

SSIM increased significantly from -0.0025 to 0.961, indicating 

a high similarity between the generated SR images and the real 

SR images. 

PSNR values improved from 11.0188 dB to 42.14 dB, 

signifying better image quality and reduced noise after 

atmospheric correction. 

Accuracy of Predictions: The model demonstrated strong 

accuracy in predicting SR values from TOA reflectance across 

a diverse range of geographic regions and atmospheric 

conditions. The mean absolute error (MAE) and root mean 

squared error (RMSE) values were reduced post-training, 

indicating enhanced precision in the model’s outputs. 

 
Figure 5: SSIM values between ground truth and 

predicted images from test dataset 

 

Figure 6: PSNR values ground truth and predicted 

images from test dataset 

Result Presentation 
Visualization: The corrected surface reflectance images were 

visually compared with the ground truth and uncorrected TOA 

images. The corrected images successfully eliminated 

atmospheric distortions such as haze and scattering, enhancing 

the clarity of land features and vegetation. 

Performance Transparency: The results are transparent and 

open to scrutiny, as the deep learning model's outputs can be 

evaluated by overlaying predicted and ground truth images. 

This builds confidence in the accuracy of the model’s 

predictions. 

2. Discussion of Results 
Model Efficiency: The Pix2Pix model demonstrated that deep 

learning could significantly reduce the computational cost and 

complexity typically associated with traditional atmospheric 

correction methods. The end-to-end process of correcting large 

datasets was much faster compared to radiative transfer models. 

Generalization across Conditions: The model performed well 

across various atmospheric conditions and geographic regions. 

However, the discussion highlights that in extreme conditions, 

such as heavy haze or dense cloud cover, further refinements 

may be necessary to maintain accuracy. 

Comparison with Traditional Methods: While traditional 

methods like the 6S model require detailed atmospheric 

parameters, this deep learning approach bypassed such 

requirements, delivering comparable or even superior results 
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with less complexity. This points toward the growing viability 

of deep learning as a practical alternative for atmospheric 

correction in remote sensing. 

Data Insights: The corrected imagery provided valuable 

insights for various remote sensing applications, including land 

use classification and environmental monitoring. By producing 

clearer and more accurate surface reflectance data, the model 

enhances the usability of satellite imagery in these domains. 

Future Improvements: Feedback from model performance, 

especially under extreme conditions, suggests opportunities for 

further refinement. Incorporating temporal data or extending 

the model to handle more spectral bands from Sentinel-2 could 

enhance the accuracy and robustness of the corrections. 

3. Overall Implications 
Advancing Remote Sensing: The successful application of 

deep learning for atmospheric correction represents a step 

forward in remote sensing technology. This method offers a 

scalable, efficient, and accurate alternative that can benefit both 

academic research and operational uses in fields like 

environmental science, agriculture, and urban planning. 

Potential for Broader Adoption: The model’s success in 

handling large and diverse datasets indicates that it can be 

adopted for widespread use, particularly in cases where timely 

and accurate satellite data is required. Further integration with 

existing remote sensing workflows will enhance its utility. 

4. Public and Research Engagement 
Research Engagement: The results provide a basis for further 

academic discussion, inviting researchers to explore the 

integration of deep learning with traditional atmospheric 

correction methods. 

Practical Applications: Stakeholders such as environmental 

agencies and urban planners can benefit from the enhanced 

clarity and accuracy of corrected satellite imagery. The 

system’s scalability makes it a valuable tool for large-scale 

environmental monitoring projects. 

In conclusion, the results and discussion section highlights the 

model’s success in improving the efficiency and accuracy of 

atmospheric correction, while addressing key challenges in 

traditional methods. The results validate the potential of deep 

learning for future applications in satellite image processing, 

paving the way for more accessible and scalable atmospheric 

correction methods. 

5. CONCLUSION 
In conclusion, the integration of deep learning techniques into 

atmospheric correction processes offers a promising solution to 

the challenges traditionally faced in remote sensing. By 

leveraging the capabilities of deep learning models, such as the 

Pix2Pix Conditional GAN, we can significantly improve the 

accuracy and efficiency of correcting atmospheric effects on 

satellite imagery. This approach reduces the need for explicit 

atmospheric parameter estimation and delivers accurate surface 

reflectance data across a range of atmospheric conditions. 

The deep learning-based method ensures that large datasets can 

be processed quickly, making it a scalable and efficient 

alternative to conventional radiative transfer models. 

Furthermore, this method offers comparable or superior 

performance, providing a new avenue for more accessible and 

automated atmospheric correction. 

However, it is important to acknowledge that deep learning 

models also face challenges, such as maintaining performance 

in extreme atmospheric conditions and the need for extensive 

training data. Continued research is required to refine these 

models and explore their adaptability to other sensors and 

atmospheric correction tasks. 

In summary, while deep learning presents a transformative 

development in atmospheric correction, further research, 

testing, and collaboration within the remote sensing community 

are necessary to fully unlock its potential and ensure its broad 

adoption in practical applications. 
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