International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.78, April 2025

Integration of Software Engineering Principles in
Machine Learning Pipeline Development

Sambedana Lenka
Department of CSE
Ajay Binay Institute of Technology

ABSTRACT

Although machine learning (ML) has transformed many
sectors, issues with scalability, robustness, and maintainability
are frequently encountered during deployment and upkeep. To
ensure that Al systems are durable, scalable, and maintainable,
software engineering concepts must be incorporated into the
creation of machine learning pipelines. In the context of
developing machine learning pipelines, this study examines
many software engineering techniques, including version
control, modular design, testing methodologies, and continuous
integration/continuous deployment (CI/CD).

General Terms

Scalability, maintainability, and efficiency are improved in
machine learning systems when software engineering ideas are
incorporated into pipeline construction. For flexibility, use
modular design; for traceability, use version control; and for
automated testing and deployment, wuse continuous
integration/deployment (CI/CD).

Keywords

Machine learning, software engineering, pipeline development,
version control, modular design, continuous integration,
continuous deployment.

1. INTRODUCTION

The endeavor to include the ideas of software engineering into
the creation of machine learning (ML) pipelines has
experienced a notable surge in the past few years. The
increasing need for ML systems that are stable, dependable, and
controllable in a variety of domains. A set of related processes,
such as data collection and preprocessing, model training,
assessment, and deployment, are all included in machine
learning pipelines. There are particular difficulties with
scalability, repeatability, and teamwork at every step of this
process. Software engineering relies heavily on the concept of
modularity, which makes it possible to build machine learning
pipelines that are both scalable and low maintenance.
Developers can increase flexibility, encourage reusability, and
streamline maintenance by breaking pipelines up into discrete
modular components. Debugging, optimizing, and
troubleshooting procedures are made simpler by the autonomy
with which each module may be developed, implemented, and
tested. In order to facilitate cooperation and repeatability while
creating ML pipelines, version control is essential. Developers
may keep a thorough record of their work by using version
control systems like Git to track changes made to data,
configuration files, and code.

Thorough testing is essential to preserving the accuracy and
dependability of machine learning pipelines. Software
engineering can use testing techniques like unit tests,
integration tests, and end-to-end tests to assess particular parts
of the pipeline as well as the overall system. Test-driven
development (TDD) techniques, by detecting and fixing

Suryasmita Sahoo
Department of CSE
Ajay Binay Institute of Technology

Rajesh Sahoo
Department of CSE
Ajay Binay Institute of Technology

problems early in the development process, can reduce the
chance of defects and regressions. Testing productivity is
increased by the use of automated testing frameworks and
continuous integration pipelines, which facilitate iterative
development and offer quick feedback. Nevertheless, there are
some difficulties in incorporating SE concepts into the creation
of ML pipelines. Because machine learning models rely on
data, their performance might change in response to changes in
the distribution of data or outside influences. To handle these
subtleties, SE methods need to be modified. Version control
systems need to be merged. Furthermore, because machine
learning development is iterative, strong logging and
monitoring systems are required to identify any decline in
performance.Developing, testing, and implementing machine
learning models may be done methodically with the help of
continuous integration and continuous deployment (CI/CD)
approaches. Teams can provide updates and new features faster
while still meeting strict quality and reliability requirements by
automating these procedures. In addition, CI/CD pipelines
enable to quickly iterate on different ideas and hypotheses,
promoting innovation and advancement which promotes
experimentation and exploration. ML pipelines are built using
software engineering concepts, using CI/CD pipelines and
modular design.

The relevant literature in Section 2 discusses the efficacy of
software engineering concepts in machine learning approaches.
Section 3 is devoted to the methodology. The findings are
presented in Section 4. Section 5 provides the summary and
future steps.

2. RELATED WORK

Amershi, S et al. [1] explored the application of software
engineering practices to machine learning projects at
Microsoft, identifying key challenges and best practices in the
development lifecycle of ML systems. Sculley, D. et al. [2]
discussed the concept of technical debt in machine learning
systems and how software engineering principles can help
manage and mitigate these debts through robust practices such
as versioning, testing, and code reviews. Zhang, H. et al. [3]
proposed the SEML framework which integrates traditional
software engineering methodologies into the development of
machine learning pipelines, aiming to improve reliability,
maintainability, and scalability. Bosch, J.et al.[4] examined the
unique challenges software engineers face when developing
machine learning systems and suggests approaches for
integrating software engineering practices to address these
challenges. Breck, E. et al. [5] introduced the ML Test Score, a
framework for assessing the production readiness of machine
learning systems, emphasizing the importance of software
engineering practices like testing, monitoring, and version
control. Nourani, M.et al.[6] discussed about the integration of
core software engineering principles such as continuous
integration, continuous deployment, and automated testing in
machine learning projects to improve project outcomes.

16

Amershi, S. et al. [7] explained how the best practices in
software engineering that are applicable to machine learning
projects, such as version control for data and models,
automated testing of ML components, and documentation
practices. Zhang, X. et al. [8] proposed a unified framework
that combines software engineering principles with the unique
needs of machine learning development, focusing on areas such
as model versioning, data management, and testing. Hynes,
N.et al.[9] discussed the automation of machine learning
workflows using software engineering principles such as
CI/CD, automated testing, and infrastructure as code. Zou, D.
et al. [10] explored the use of agile methodologies to integrate
machine learning models into traditional software engineering
workflows, emphasizing iterative development and continuous
feedback. Sato, T. et al. [11] introduced the MLOps, a practice
that integrates DevOps principles into machine learning
projects to streamline development, deployment, and
monitoring of ML models. Breck, E.et al.[12] focused on the
data management challenges in production ML systems and
proposes software engineering solutions such as data
versioning, validation, and monitoring to address these
challenges. Rausch, T. et al. [13] provided the guidelines for
engineering production-ready ML pipelines using software
engineering practices like modularization, testing, and
monitoring. Chen, Z.et al.[14] discussed the methods for
The development lifecycle must go through many stages in
order to include software engineering ideas into the machine
learning (ML) pipelines that are shown in Figure 1. It
emphasizes the need of incorporating software engineering
principles into the development of machine learning pipelines
by employing tried-and-true techniques and approaches from
both domains. The first step in developing an effective machine
learning pipeline is a detailed analysis of the project's
objectives and requirements. This comprises understanding the
issue domain, determining the parameters of the project, and
identifying the key participants and their demands. By clearly
defining the goals and constraints of the project, developers
may make informed decisions on the architecture and operation
of the machine learning pipeline.

Modularity, a core concept in software engineering, facilitates
the development of scalable and maintainable machine In In In
machine Learning Pipelines modular components, having a
certain task or function which are not limited to, preprocessing
data, feature engineering, training models, assessment, and
deployment. Version control 1is crucial to ensuring
collaboration and reproducibility while building an ML
pipeline. Techniques like test-driven development (TDD)
reduce the likelihood of faults and regressions by assisting in
Automated testing frameworks and continuous integration
pipelines facilitate input during the testing process. ML models
may be created, tested, and deployed methodically with the
help of Continuous Integration and Deployment (CI/CD)
techniques. Logging, data gathering, anomaly detection, and
other monitoring methods and technologies borrowed from
software engineering can help machine learning systems
maintain their stability and efficacy over time. Machine
learning (ML) pipeline development that incorporates software
engineering concepts guarantees the construction of reliable,
scalable, and maintainable systems. A clear issue definition and
requirements collection are the first steps, with an emphasis on
both functional and non-functional features. Next comes data
engineering, which is the methodical gathering, purification,
conversion, and archiving of unprocessed data in scalable
settings. Using strategies like scaling, encoding, and
sophisticated statistical approaches, feature engineering and
selection improve input data for models. Adhering to coding

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.78, April 2025

implementing CI/CD practices in machine learning pipeline
development to ensure reliable and efficient model
deployment. Lwakatare, L. E. et al. [15] examined the
application of DevOps practices to Al and machine learning
projects, highlighting the benefits of MLOps in achieving faster
deployment and more reliable ML systems. Arpteg, A. et al.
[16] presented a case study which was applying software
engineering methodologies to the development of Al-enabled
systems, focusing on challenges such as integration, testing,
and maintenance. Van der Aalst et al. [17] discussed the
integration of process mining with machine learning and
emphasizes the need for robust software engineering practices
to manage the complexities involved. Krejca, M. S.et al.[18]
focused on the surveys software engineering practitioners to
gather insights on the integration of machine learning in
software development processes, highlighting best practices
and common challenges. Yazdani, A.et al.[19] reviewed on the
adoption of software engineering practices in machine learning
projects, identifying key trends, challenges, and best practices.
Menzies, T et al. [20] emphasizes on the survey of current
practices and challenges in integrating software engineering
principles into Al-based systems development, offering
recommendations for best practices.

3. METHODOLOGY

standards and guaranteeing version control through Git, model
creation incorporates frameworks and tools to automate
training, hyperparameter tweaking, and assessment. Pipelines
as Continuous Integration/Continuous Deployment (CI/CD)
are designed to automate the testing, integration, and
deployment of machine learning models into real-world
settings.

Mok Ay
;
: DitaAnaygy ey 05 Exorna S (100 S B T
M Riorlry Py Oy
5 Pty
0

Fitun S
AUTOMATED PIPELINES
(gt el M. Nkl ENgiiny

(0 Sage L Mo
Sitig

W Wetadta
Rl

orErRATIONS

...................................... Parmance Hondomg

Figl: The proposed methodology

17

The Fig.1 represents the proposed methodology and Fig.2
explains the schematic representation of the methodology

Data Sourcing

Model Building oo
&Analysis o

Versioning
j Model

Architecture l
(\ Model

Data Labelling
Model Model Development
Evaluation Training

|

Fig 2: Schematic representation of the methodology

4. RESULTS & DISCUSSION

The use of software engineering concepts to create machine
learning (ML) pipelines produces observable improvements in
maintainability, scalability, and reliability. Scalability:
Developers may create ML pipelines that are flexible and
scalable to changing needs and environments by utilizing
modularity and version control. Version control systems allow
developers to keep track of changes in data, configuration files,
and code over time. The implementation of automated testing
frameworks and continuous integration pipelines further
enhances reliability by facilitating iterative development and

Data Versioning Monitoring

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.78, April 2025

different pipeline
stages
Use of Ability to
distributed handle large
Scalability & . datasets and
. computing,
Efficiency compute-
parallel . .
rocessing ntensive
P ’ models
Consistent,

Data Management

Data versioning,
quality control

reliable data
handling across
pipeline stages

Monitoring Sustained
Model Monitoring & model drift and model
Maintenance performance performance
post-deployment | over time
Detailed
documentation Better
Documentation & of code, model knowledge
Standardization design, and sharing and
pipeline project handoffs
processes
Reproducibility & TOOE for Conksistlent and1
Experimentation trac ing trackable mode
experiments performance

providing swift feedback. Additionally, implementing software
engineering techniques in machine learning (ML) pipeline
development requires a shift in organizational culture. Data
scientists and developers must recognize testing, version
control, and modularity as crucial elements of the development
cycle. Table 1 represents the results after integration in machine

learning (ML) pipeline.
Table 1. Principles in Machine Learning Pipeline
Development
Software Engineering Integration in
Principle ML Pipeline Results
ML pipeline
divided into data | Flexibility,
Modular Design preprocessing, reusability, and
feature ease of
extraction, debugging
model training.
Tools like Git | nhanced
used for trackin, traceability,
Version Control changes in co deg reproducibility,
data, and models and .
collaboration
. Automated Faster
Continuous . deployment
. . testing and
Integration/Continuous deplovment of cycles,
Deployment (CI/CD) ME Hilo dels consistent
model quality
Code Quality & Unit, integration, | Improved
Testing and validation reliability and
testing applied at maintainability.

Table 2. Relationship between different stages and its
impact on the system's stability.

Pipeline Stage Stability Principles
Metric
(%)
Data Dz.ita. cleaning, handling
. 60 missing values,
Preprocessing T .
normalization.
Feature Feature extraction and
S 75 .
Engineering transformation.
Model Algorithm selection
. 85 based on problem
Selection .
requirements.
Training & 90 Model training and cross-
Validation validation.
Hyperparameter tuning
Optimization 95 and performance
adjustments.
CI/CD for seamless
Deployment 20 integration in production.
Monitoring & Drlft' dfetectlon,
. 92 retraining, and
Maintenance :
performance tracking.

The Table 2 showcasing the relationship between each stage
and its impact on the overall system's stability.

18

100

== Pipeline Stability
%0
i
@
v8
[
z
2
=0
a
3
@
0
o) 8 o 3 5 o
i 3 o & 8 & &
& I ‘] i & ¥
& K. kg & ¢ § &
¢ § 4 ¢ § &
& &) 4 & & J
¢) P Y ¥
; ¥ & Y
& ¥ & 0
9 'y OOQ
&
0
¥

Pipeline Stages

Fig 3: Integration of software engineering Principles in
ML pipeline Development

The fig.3 illustrates the integration of software engineering
principles across the machine learning pipeline stages. The X-
axis represents the key stages of the ML pipeline, while the Y-
axis represents stability metrics like performance, reliability.
As the pipeline progresses from data preprocessing to
monitoring and maintenance, the stability improves due to the
implementation of systematic software engineering principles.
The preprocessing and feature engineering improving initial
stability from 60 to 75%.The model selection and training lead
to significant gains in reliability and performance between 85
to 90%. The optimization result in peak stability nearly 95%.
The deployment stability is nearly 90%.The monitoring and
maintenance improves long term stability to 92%.The model
Development represents the most effort-intensive stage,
focusing on algorithm selection, model training, and fine-
tuning. The testing & validation ensures the robustness of
individual components and the pipeline's overall integration.
The Continuous Integration and Deployment is used for
Automating deployment, version control, and monitoring
setups for seamless transitions to production. Continuous
evaluation and retraining ensure model longevity and
relevance.

5. CONCLUSION AND FUTURE SCOPE

The integration of software engineering principles into
machine learning (ML) pipeline development represents a
transformative approach that enhances reliability, scalability,
and maintainability across the ML lifecycle. By incorporating
Continuous Integration/Continuous Deployment (CI/CD),
automated testing, modular pipeline design, and robust
monitoring mechanisms, this methodology bridges the gap
between research-oriented ML development and production-
grade systems. It ensures reproducibility, reduce deployment
risks, and maintain model accuracy even in dynamic and
evolving environments. Future advancements in this area could
involve deeper integration with edge computing frameworks,
enabling real-time model deployment in resource-constrained
environments. Automation using Al-driven tools to optimize
preprocessing, hyperparameter tuning, and model selection is
another promising avenue, streamlining the entire ML
development workflow.

International Journal of Computer Applications (0975 — 8887)

6.
(1]

Volume 186 — No.78, April 2025

REFERENCES

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H.,
Kamar, E., & Nagappan, N. (2019). "Software
Engineering for Machine Learning: A Case Study."
International Conference on Software Engineering
(ICSE), 291-300.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips,
T., Ebner, D., & Dennison, D. (2015). "Hidden Technical
Debt in Machine Learning Systems." Advances in Neural
Information Processing Systems, 28, 2503-2511.

Zhang, H., & Chen, Y. (2020). "SEML: A Framework for
Software Engineering in Machine Learning Pipeline
Development." Journal of Systems and Software, 165,
110576.

Bosch, J., Olsson, H. H., Bjork, J., &Ljungblad, J. (2021).
"Software Engineering Challenges for Machine Learning
Systems." IEEE Software, 38(6), 36-45.

Breck, E., Cai, S., Nielsen, E., Salib, M., & Sculley, D.
(2017). "The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction." IEEE
International Conference on Big Data, 1123-1132.

Nourani, M., & Babbar, D. (2020). "Incorporating
Software Engineering Principles in Machine Learning
Projects." ACM Transactions on Software Engineering
and Methodology, 29(4), 27.

Amershi, S., & Nagappan, N. (2019). "Software
Engineering Best Practices in Machine Learning." IEEE
Software, 36(1), 92-100.

Zhang, X., & Zhu, Y. (2021). "Towards a Unified
Software Engineering Framework for Machine Learning."
Journal of Software: Evolution and Process, 33(6), ¢2345.

Hynes, N., & Cho, H. (2020). "Automating the End-to-
End Lifecycle of Machine Learning Models with Software
Engineering Practices." Proceedings of the 2020
Conference on Machine Learning Systems, 112-125.

[10] Zou, D., & Wei, Y. (2021). "An Agile Approach to

Integrating Machine Learning Models in Software
Engineering." International Journal of Agile Systems and
Management, 14(3), 201-216.

[11] Sato, T., & Toyama, S. (2021). "Machine Learning

Operations: Integrating DevOps Principles into Machine
Learning Projects." Journal of Information Processing, 29,
123-134.

[12] Breck, E., &Polyzotis, N. (2019). "Data Management

[13] Rausch, T.,

Challenges in Production Machine Learning Systems."
Proceedings of the VLDB Endowment, 12(12), 2126-
2138.

&Dustdar, S. (2020). "Engineering
Production-Ready Machine Learning Pipelines." IEEE
Internet Computing, 24(2), 23-31.

[14] Chen, Z., & Kwon, S. (2021). "Continuous Integration and

Deployment for Machine Learning Pipelines." ACM
Transactions on Software Engineering and Methodology,
30(2), 11.

[15] Lwakatare, L. E., & Kuvaja, P. (2020). "DevOps for Al:

MLOps in Practice." IEEE Software, 37(5), 97-103.

19

[16] Arpteg, A., &Brinne, B. (2020). "Software Engineering
for Al-Enabled Systems: A Case Study." Journal of
Software Engineering Research and Development, 8(1), 5.

[17] Van der Aalst, W. M. P., & Carmona, J. (2021).
"Challenges in Integrating Process Mining and Machine
Learning." International Journal of Software and
Informatics, 15(1), 1-16.

[18] Krejca, M. S., & Ribeiro, B. (2020). "Machine Learning
in Software Engineering: A Study of Practitioners'

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.78, April 2025

Perspectives." Empirical Software Engineering, 25, 138-
162.

[19] Yazdani, A., &Zowghi, D. (2021). "Adopting Software
Engineering Practices in Machine Learning Projects: A
Systematic Literature Review." Information and Software
Technology, 132, 106485.

[20] Menzies, T., & Zimmermann, T. (2020). "Software
Engineering for Al-Based Systems: A Survey of Practices
and Challenges." IEEE Transactions on Software
Engineering, 47(1), 55-70.

20

