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ABSTRACT
The rise of cloud computing, remote work, and IoT has heightened
the risk of cyberattacks, exposing sensitive data to advanced threats.
Traditional security measures, such as cryptography and intrusion
detection systems, often fail against zero-day exploits. This pa-
per proposes a proactive approach to network security by identify-
ing scanning tools and targeted services during the reconnaissance
phase of an attack. By analyzing network scanning activities, it be-
comes possible to detect the tools, techniques, and targeted services
used by attackers, enabling preemptive defense. The methodology
involves capturing network traffic during scans, extracting key fea-
tures, and using decision tree-based machine learning models to
classify scanning tools, techniques, and services. Experiments con-
ducted with the Weka tool demonstrate high accuracy in identifying
scanning techniques (96.8%) and targeted services (98%). This ap-
proach provides critical insights into attackers’ intentions, allowing
for tailored defensive measures before an attack escalates. The re-
sults underscore the effectiveness of machine learning in enhancing
network security by preemptively identifying and mitigating poten-
tial threats.
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1. INTRODUCTION
In recent decades, the rapid evolution of cloud computing, remote
work, e-commerce, social networks, and the Internet of Things

(IoT) has transformed how organizations operate and store sensitive
information. The COVID-19 pandemic further accelerated these
trends, pushing businesses to rely heavily on cloud-based services
and remote infrastructures. While this shift offers significant advan-
tages, it also exposes critical data—such as trade secrets, medical
records, and financial information—to heightened risks, including
human error, technical failures, fraud, espionage, and malicious at-
tacks [5]. The cloud, in particular, has become a prime target for
attackers, as breaches can originate from any direction and at any
time, making robust security measures more critical than ever.
Traditional security mechanisms, such as cryptography, firewalls,
antivirus software, and intrusion detection/prevention systems
(IDS/IPS), play a vital role in protecting systems. However, these
measures are often insufficient against advanced threats, particu-
larly zero-day attacks, which exploit unknown vulnerabilities and
can bypass conventional defenses [4]. As network technologies ad-
vance, attackers have developed increasingly sophisticated meth-
ods to conceal their activities, making it challenging to achieve
comprehensive protection. This underscores the need for innova-
tive strategies that can defend systems even after an attacker has
gained access.
Cyber Deception is an advanced cybersecurity strategy that in-
volves deploying honeypots and simulating fake systems, services,
or information to attract, trap, and mislead attackers. By concealing
critical assets behind carefully designed decoys, this approach not
only protects infrastructures but also provides a unique opportunity
to gather in-depth intelligence on the tactics, techniques, and pro-
cedures (TTP) used by cybercriminals [24? , 19]. This information
enables defenders to better understand malicious intentions, antici-
pate attack patterns, and strengthen overall security posture [11].
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However, the effectiveness of this approach relies on meticulous
execution and a deep understanding of attackers’ profiles. Poorly
designed cyber deception, such as placing decoys on irrelevant or
easily identifiable targets, can significantly reduce its impact and
raise adversaries’ suspicion, prompting them to adapt their strate-
gies or avoid the traps [23]. Conversely, a well-orchestrated decep-
tion not only diverts attackers from critical systems but also pro-
longs their engagement, increasing the chances of identifying their
motivations, command-and-control infrastructures, and even their
affiliations with malicious groups [26, 27].
It is therefore essential to integrate cyber deception into a proactive,
intelligence-driven security approach. The collection and analysis
of actionable intelligence before an attack occurs allow defenders
to tailor decoys to specific threats and maximize their effective-
ness [9]. By combining this strategy with other mechanisms, such
as early identification of attack objectives, it becomes possible to
transform the digital environment into an unfavorable terrain for
attackers, thus enhancing the resilience and robustness of systems
against emerging cyber threats [22]. Since system scanning is the
preliminary phase of attacks, it is advisable to perform this identi-
fication during this phase [21].
Port scanning is a common reconnaissance activity used in both de-
fensive and offensive security. Network administrators frequently
perform port scanning to identify and fix system vulnerabilities,
enhancing security. However, attackers also use port scanning for
the same reasons, but with the intent to exploit system weaknesses.
Various scanning tools exist, each designed for specific objectives,
whether assessing database security, analyzing web applications,
evaluating network protocols, or auditing system infrastructure. At-
tackers select tools based on their intended targets, making it cru-
cial to identify the scanning tool in use to anticipate the attacker’s
objectives and deploy effective countermeasures.
For example, an attacker aiming to exploit SQL injection vulnera-
bilities might use SQLMap, a tool designed to automate SQL in-
jection testing on various database management systems (MySQL,
PostgreSQL, etc.). Identifying SQLMap in use can alert defenders
to potential database exploitation, allowing them to strengthen pro-
tections accordingly. Security-focused operating systems like Kali
Linux and Parrot OS categorize scanning tools based on their func-
tionalities, further highlighting their strategic importance in both
attack and defense.
Based on their functions, scanning tools can be categorized as fol-
lows:

—Database security assessment: Identifies vulnerabilities in
databases that could lead to data leaks, compliance violations,
and major security breaches. Tools include SQLMap (automated
SQL injection analysis), DbDat (database configuration audit-
ing), NoSQLMap (NoSQL database security assessment), and
AppSpider (web application database vulnerability detection).

—Web application analysis: Detects vulnerabilities in web ap-
plications, such as cross-site scripting (XSS) and misconfigu-
rations. Tools include Unicorn (information collection and cor-
relation), Nikto (weak configuration detection), and Burp Suite
(comprehensive web application security analysis).

—Network and protocol analysis: Identifies vulnerabilities, ana-
lyzes data flows, and detects anomalies indicating security risks.
Tools include Ike-scan, Ettercap, and RouterSploit.

—Network auditing: Evaluates IT infrastructure security, iden-
tifying misconfigurations and vulnerabilities. Popular tools in-
clude Nmap, Masscan, PortSpider, and Angry IP Scanner. While
general-purpose, these tools can be tailored for specific tasks,

such as analyzing network services (e.g., HTTP/HTTPS, Mon-
goDB, MySQL, printer discovery).

—IoT system analysis and exploitation: Assesses security risks
in IoT environments. Tools include Shodan, Thingful, and IoT-
Seeker.

Attackers select their scanning tools based on their attack objec-
tives, and identifying the tool used can provide crucial intelli-
gence about the attack’s intent. This information allows defenders
to proactively secure targeted systems before an exploit occurs.
A key phase in cyberattacks is reconnaissance, where attackers an-
alyze and gather information about a system. During this phase,
attackers identify potential targets, open ports, vulnerabilities, and
other compromising information about the system. Analyzing the
tools and techniques used in this phase can help infer the attacker’s
goals and prepare tailored countermeasures. While previous studies
have focused on analyzing attacker behavior during active attacks
[20, 13], this reactive approach often allows attackers to achieve
their objectives before any intervention. In contrast, this research
proposes identifying the attackers’ intentions during the reconnais-
sance phase by identifying the scanning tool, scanning technique,
and target service during scanning from the scan traffic, enabling
proactive defense and significantly reducing potential damage. This
paper addresses this critical gap by making the following contribu-
tions:

—A comparative study of scanning tools and techniques, demon-
strating the feasibility of identifying them from network traffic.

—A decision tree-based classification model to identify scanning
tools from network traffic.

—A decision tree-based model to identify targeted network ser-
vices during scanning activities.

The remainder of this paper is structured as follows: Section 2 pro-
vides a review of related studies on attack intent recognition. Sec-
tion 3 outlines the methodology used for identifying scanning tools,
techniques, and targeted services. Section 4 presents the experi-
mental results, while Section 5 concludes the paper by discussing
future research directions.

2. RELATED WORKS
The intent of an attack represents the primary objective that an
attacker seeks to achieve by implementing various attack meth-
ods or techniques. However, predicting these intentions remains
a complex task, even for cybersecurity experts [5]. Indeed, an at-
tacker typically follows a sequence of steps while adopting con-
cealment and stealth strategies to avoid detection. Understanding
these intentions would allow security administrators to anticipate
malicious activities and respond more effectively. In this regard,
several research studies have been conducted to recognize attack
intent, adopting various detection approaches.
One widely studied approach is based on causal or Bayesian net-
works, which model dependency relationships between different
variables in the form of a directed acyclic graph. Several studies,
such as [16], have explored the use of these networks to correlate
and analyze attack scenarios, thus seeking to identify the tactics
employed by attackers and predict their potential intentions. [17]
combine Dempster-Shafer evidence theory with a probabilistic ap-
proach based on a causal network, allowing for the selection and
prediction of real attack intentions while assessing the best possi-
ble responses.
Another extensively studied approach is that of graphical meth-
ods, which rely on representation in the form of directed graphs
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G = (S,E, SI , SF ) , where S denotes the set of states, E the
transition relationships, SI the initial state, and SF the final state
after a successful intrusion [15]. Several studies, such as those by
[15], have used these graphs to model attack intentions, considering
that the nodes represent system and attacker states, while the edges
translate state transitions under the effect of malicious actions. [8]
proposed an attack intent analysis method based on an attack path
graph, integrating critical asset assessment to generate attack intent
hypotheses aligned with the system’s protection requirements. This
approach thus facilitates the analysis of complex attack behaviors
occurring in multiple stages.
The methodology based on path analysis aims to identify the at-
tack plan from observations made by defense systems. The correla-
tion of alerts and malicious actions is essential here to anticipate
potential attacks and minimize their impact [5]. In this context,
attackers can follow multiple possible paths represented in graph
form, and these paths can be analyzed using attack trees to as-
sess a system’s vulnerability based on the attacker’s objectives [5].
Among notable contributions in this field, [4] proposed an inves-
tigative approach based on attack intent recognition through a sim-
ilarity analysis of attack characteristics with those in a recognition
database. Their model relies on creating attack patterns as refer-
ences and recognizing attack intentions in real-time by comparing
detected attack signatures with those of pre-established models.
Although these approaches vary in their implementation, they all
share a common point: attack intent identification generally occurs
during the execution of the attack. This characteristic somewhat
limits their relevance, as knowing the attack intent during the attack
helps mitigate damage, but earlier anticipation would be even more
beneficial in strengthening system resilience against cyber threats.

3. DATA AND METHODOLOGY
3.1 Data gathering
Collecting information about the attacker’s intent before they take
action proves crucial for defense, as such information could reveal
the target, making it easier to develop an adequate and tailored de-
fense strategy against the attack in preparation. Training a machine
learning model capable of classifying scan traffic to identify the
scanning tool and target service becomes just as important. How-
ever, there is no publicly available dataset for training such a model.
Hence, the creation of a synthetic dataset becomes essential.
For the creation of the dataset, three physical computers were used
to collect data in order to build the dataset. The first machine had
the following specifications: i7 Core processor, 10th generation,
2.6 GHz frequency, 4 cores, 8 logical processors; 4 GB of dedi-
cated memory; 32 GB of RAM; and a 1 TB SSD hard drive. On
this first machine, three virtual machines were deployed (two with
Ubuntu versions 18.04 and 20.04, and the last one with a Win-
dows 10 operating system). The second machine had the follow-
ing specifications: i5 processor from the 8th generation with a 2.2
GHz frequency, 2 cores, 4 logical processors, 2 GB of dedicated
graphics memory, 8 GB of RAM, and a 128 GB SSD hard drive.
On this machine, two virtual machines were deployed: one with
Linux Mint and the other with Windows 10. The third machine had
the following specifications: i5 processor from the 11th generation
with a frequency of 2.44 GHz, 4 cores, 8 logical processors, 512
MB of dedicated graphics memory, 16 GB of RAM, and a 256 GB
SSD hard drive. On this machine, a single operating system was
installed: Kali Linux, to perform audits across the network. After
deploying these virtual machines, they were connected to the net-
work using the GNS3 network simulator. The architecture of the

network is represented in Figure 1. Once the machines were net-
worked, different analyses were performed, using one machine as
the source (Kali Linux) and the others as targets. The process was
repeated several times, changing the scanning strategy each time.
Several analysis tools were studied, with the most popular being
Nmap (Network Mapper), Nessus, Masscan, AngryIpScanner, Uni-
corn, PortSpider, and others like IkeScan, SqlMap, and NiktoScan.
Some of these tools, such as Nmap, Unicorn, and PortSpider, use
several network analysis techniques that work in more or less dif-
ferent ways and achieve varying goals. A Python script using the
T-shark library was written to intercept traffic passing through the
source machine’s network card. Several network analyses were
then performed on the target virtual machines at different time in-
tervals using each of the scanning tools considered, of course, tak-
ing into account their different scanning techniques for tools that
implement more than one. This data collection also includes the 20
most commonly used services on computer networks, and analy-
ses were performed on each of these services across the network.
Among these services are:

—DHCP: Used for automatically assigning IP addresses to devices
on a network.

—FTP: Used for transferring files between a client and a server
over a network.

—IMAP: Allows retrieving and managing emails from a mail
server.

—HTTP/HTTPS: Used to transfer web pages, images, and other
content on the web.

—DNS: Enables domain name resolution.
—MySQL: Open-source relational database management system.
—SSH: A cryptographic network protocol used to securely access

remote machines.
—SMTP: Used for sending emails from a client to a mail server or

between servers.

Once the scans were completed, the captured traffic was saved in
JSON format. This approach facilitates efficient analysis and pro-
cessing of network data, as JSON is a widely used format for rep-
resenting structured information. For instance, tools like Wireshark
allow users to export packet dissections in JSON format, enabling
detailed examination of network traffic.

Fig. 1. Network architecture deployed on GNS3.

A comparative study of packets captured during scans performed
with various scanning tools and techniques was conducted to de-
termine which information encapsulated in the packets identifies
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the scanning tool, the technique used, and the target services. Fig-
ures 2, 3, and 4 show how the values of a frame’s attributes can vary
from one scanning tool to another. Following this data analysis, the
JSON files were consolidated into a single folder according to a
specific naming convention. A Python script was then developed to
analyze all the JSON files in the folder. Within each file, the script
traverses each frame to extract the values of the aforementioned
properties, to which a class is assigned based on the scanning tool,
scanning technique, or target service, in order to construct a CSV
file. The pseudocode for this script is described in Algorithm 1. It
is important to note that two separate files were created: one for the
identification model of scanning tools and techniques, and the other
for the identification of target services. In this collection, only the
frames sent by the source were considered, not the response frames,
because it is assumed that in the network monitoring module, the
interest lies solely in the incoming flow and not the outgoing flow of
the network; therefore, the response frames are not relevant. These
response frames cannot help identify the port scanning tool used,
the scanning technique employed, or the target service. After exe-
cuting the first script, the CSV file is passed to a second script that
processes it line by line to remove duplicates. Since the first script
processes file by file, and since the files come from the same tool
and the same technique, or scan data from the same network ser-
vice, samples of the same class are grouped based on their names.
The CSV file is then passed to a third script to randomize its con-
tent. After this stage, the Weka data mining tool was used to trans-
form the CSV file into ARFF format, thus allowing the machine
learning models to be directly stored in Weka.

Algorithm 1 Extraction of frame characteristics
1: Define the list of fields to extract (FIELDS)
2: Add the JSON files to a list json files
3: Open the CSV file in write mode
4: for each JSON file in json files do
5: Open the JSON file in read mode
6: Load the packets from the JSON file into packets
7: for each packet in packets do
8: Initialize an empty dictionary to store the extracted fea-

tures
9: for each field in FIELDS do

10: Split the field into a list of keys (in case of nested
fields)

11: Initialize a variable to store the value
12: if the packet contains the key corresponding to the

first key of the field then
13: Extract the value by following the nested keys
14: if the value is a number (int or float) then
15: Assign the value to the corresponding fea-

ture
16: else
17: Set the feature to 0
18: end if
19: else
20: Set the feature to 0
21: end if
22: end for
23: Write the extracted features to the CSV file
24: end for
25: end for

3.2 Fields description
After analyzing the various files captured within the network, sev-
eral frame properties have been identified that, when combined, al-
low for the determination of the scanning tools used, as illustrated
in Figures 2, 3, and 4. These properties have enabled the establish-
ment of multiple characteristics for the dataset, described as fol-
lows:

—Protocol: Lists the transport protocol used, which is valuable be-
cause, depending on the analysis tools and techniques, the proto-
col may vary more or less between UDP, TCP, ICMP, and many
others. These values are made of characters and are heavier to
handle than numeric values, each protocol was replaced with its
number. For example, if the protocol is ICMP, the field will have
the value 1 (6 for the TCP protocol and 25).

—IP.len: Denotes the size of the IP layer within the frame. Based
on the comparative study, this value varies between tools and
scanning techniques. Contrary to common assumptions, this size
does not necessarily depend on the IP address itself.

—IP.flags: Identification, flags, and fragment displacement are
fields that allow the fragmentation of datagrams. This field con-
tains three different properties; This field contains three different
properties; the two most commonly used are: DF (don’t frag-
ment), which indicates whether the datagram can be fragmented
or not. If a datagram has this bit set to one and the router can-
not route it without fragmenting it, then the datagram is rejected
with an error message; MF (More Fragments) indicates whether
the datagram is a data fragment or not depending on whether this
bit is set or not. If the indicator is zero, it indicates that the frag-
ment is the last one (ie. the router should have all the previous
fragments) or that the datagram has not been fragmented.

—TCP.flag: Represents the TCP flag that the frame carries. It is
valid only for TCP frames, specifies the type of frame (syn-
chronization frame, urgent frame, etc.), and can also identify
the TCP scanning technique used. There are about different TCP
flags, each with a different meaning: SYN, to request synchro-
nization; ACK, which indicates that the connection request has
been accepted; RST, which is the breaking or denial of the con-
nection; FIN, which requests the end of the connection; URG,
which specifies the urgency of the frame; NS, which signals the
presence of congestion; CWR, which indicates that the conges-
tion has been dealt with; and PSH, which indicates that the data
should be sent immediately. Because all these values are strings,
to facilitate manipulation, they were transformed into numerical
values by representing them as 8 different features that take the
value 0 if it is not the flag of the frame and 1 otherwise. For
transport protocol frames other than TCP, all these fields have
the value 0.

—DST.port: A destination port, which represents the target port
in the network and allows the identification of the target service.
This attribute is important because some tools, like PortSider,
implement modules that scan the network on a particular port to
identify weaknesses in a given service.

—UDP.length: The size of the information block associated with
the transport layer for a UDP frame. This is only for UDP frames;
for TCP, this value will be 0.

—FRAME.encap.type: There are three types of encapsulation,
(namely, member variable encapsulation, function encapsula-
tion) and class encapsulation, each of which has its meaning con-
cerning the member variables of a class. Some scanning tools
among those considered can be uniquely identified from their
encapsulation type, like Unicorn.
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—TCP option: The TCP provides optional header fields. The op-
tions are taken into account by the checksum. This field has sev-
eral properties (no operation, sack permitted, MSS (maximum
segment size), etc.). This field is not only optional but also only
for the TCP; therefore the values of the different fields related to
the TCP options for packets that do not have them have the value
0.

Fig. 2. Comparison of port scanning techniques across different tools. *
N: Nmap, U: Unicorn, PS: PortSpider. Variable values indicate dynamic or
context-dependent parameters.

Fig. 3. Comparison of port scanning techniques across different tools. *
PS: PortSpider, N: Nmap, U: Unicorn. Variable values indicate dynamic or
context-dependent parameters.

Fig. 4. Comparison of port scanning techniques across different tools.*
PS: PortSpider, N: Nmap, U: Unicorn. Variable values indicate dynamic or
context-dependent parameters.

In figures. 2, 3, 4, N refers to Nmap, U to Unicorn, PS to PortSpider,
and Ike to IkeScanner.

3.3 Architecture and methodologie
There are many different types of attacks, each differing in tech-
nique, target, propagation method, and objective. However, a com-
mon stage among all these attacks is the system reconnaissance
phase. During this phase, attackers gather information about the
system, identify targets, and detect potential vulnerabilities. This
stage is referred to as the reconnaissance phase [6, 14]. Depending
on the type and objective of the attack, as well as its target, specific
scanning tools and techniques may be employed. Identifying the
tools and techniques used in network port scanning can help infer
the attacker’s intent or at least narrow down the list of possible at-
tacks, as some scanning methods are tailored for particular tasks.
Anomaly detection and intrusion detection and prevention systems
for port scanning have been extensively studied in the literature
[12, 10]. This work focuses solely on port scanning detection. The
proposed architecture considers only external attackers and is lim-
ited to analyzing incoming network traffic from external sources
(Internet).
Since all communication with the external environment passes
through a gateway—acting as the interface through which data en-
ters and exits the network—the proposed architecture assumes the
presence of a reliable port scanning detection module (IDS/IPS) at
this critical point. This module continuously monitors and filters
incoming traffic, effectively identifying any network scanning ac-
tivity. Normal traffic flows uninterrupted through the network, en-
suring minimal disruption to legitimate communications. Upon de-
tecting scanning activity, malicious traffic is redirected to an iden-
tification module for further analysis. This identification module
is composed of two specialized detection components: one dedi-
cated to recognizing the scanning tools and techniques used in the
traffic, and another focused on identifying the targeted network ser-
vice (if an attack on a specific service is detected), as illustrated in
Fig. 5. Both sub-modules within the identification module lever-
age machine learning to classify scanning tools and techniques, as
well as to identify targeted services. Given the imbalanced nature
of the dataset, undersampling was applied to the majority classes.
Decision trees were selected for model training, as they are known
to be less sensitive to class imbalance, as highlighted in [? ]. Be-
fore the learning phase, data normalization was performed to en-
sure all variables were on a similar scale, preventing certain fea-
tures from disproportionately influencing the model. The chosen
machine learning algorithm for this model is J48, a decision tree-
based classifier. This choice was motivated by its demonstrated ef-
fectiveness in network packet classification, as supported by mul-
tiple studies [7, 3]. To validate the model, cross-validation with
k=100 was employed. Stratified cross-validation was used to miti-
gate the impact of class imbalance, as it preserves the original class
proportions within each validation fold, ensuring fair representation
of both majority and minority classes during training and evaluation
[18].

4. EXPERIMENTS AND RESULTS
4.1 Weka
The experiments were conducted using Weka, a machine learning
software developed in Java at the University of Waikato in New
Zealand. This data mining environment provides a comprehensive
suite of visualization tools and machine learning algorithms for
data analysis and predictive modeling. Additionally, its graphical
user interface facilitates ease of use, making it accessible for var-
ious applications. Initially developed in 1997, Weka has since be-
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Fig. 5. Proposed system architecture

come widely adopted in multiple domains, particularly in education
and research, due to its versatility and extensive functionalities.
The experimentation process followed the scheme illustrated in
Fig.10. The final module in Fig.10 pertains to the experimental
results, which will be detailed in the subsequent sections of this
document.

4.2 Port scan tool and technique identification
4.2.1 True positive and False positive rate. In classification, a
dataset can be categorized into four distinct outcomes. Given two
classes, A and B, the classification results are as follows: instances
of class A correctly classified as A are termed true positives (TP),
while instances of class A incorrectly classified as B are called false
negatives (FN). Conversely, instances of class B correctly classified
as B are true negatives (TN), and those misclassified as A are false
positives (FP). True positives (TP) and true negatives (TN) repre-
sent correct classifications, whereas false positives (FP) and false
negatives (FN) represent misclassifications. Two commonly used
evaluation metrics in classification models are the true positive rate
(TPR) and the false positive rate (FPR). The TPR is calculated as
the number of true positives divided by the total number of actual
positives (TP + FN), while the FPR is the number of false positives
divided by the total number of actual negatives (FP + TN) [25].

Figures Fig. 7, Fig. 8, and Fig. 9 illustrate the TP-rate and FP-rate
curves for each scanning technique analyzed in this study.
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Fig. 6. Path of experimentations

Fig. 7. The true positive rate for port scanning technique 1.

Fig. 8. The true positive rate for port scanning technique 2.

Fig. 9. Comparison of detection rates for all port scanning techniques.

4.2.2 Precision and ROC cuve. Precision and ROC are measures
of the relevance of pattern recognition models, automatic classifica-
tion models, and many others. Precision represents the proportion
of relevant items among all proposed items. It is calculated using
the formula (1).

Precision =
TP

(TP + FP )
. (1)

The curves in Fig. 10, Fig. 11, and Fig. 12 represent the preci-
sion and ROC curve of each scanning technique considered in the
dataset. A ROC curve represents the TVP and TFP values for differ-
ent classification thresholds. Decreasing the classification thresh-
old results in more items being classified as positive, increasing
the number of false positives and true positives. The details of the
model results are shown in table. 1. The confusion matrix of our
experiments is available on a GitHub repository of [2]

4.3 Targeted services identification
The target service identification module, similar to the scanning
technique identification module, employs a decision tree-based ma-
chine learning algorithm. The model was trained on the second
dataset using the J48 algorithm. Figure 13 presents a diagram il-
lustrating the average values of various evaluation metrics for the
model, while Table 2 provides a detailed breakdown of the classifi-
cation results.
After training and cross-validation, the model’s hyperparameters
are exported and tested in a Python script for identifying scanning
tools and target services in the previously mentioned GNS3 net-
work. In each scan, the scanning tool used was correctly identified.
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Port scan Techniques True positive Rate False positive Rate Precision Recall F-Measure MCC ROC Area PRC Area
niktoScan 0.988 0.003 0.984 0.988 0.986 0.984 1.000 0.998

nessus 0.988 0.002 0.979 0.988 0.983 0.982 0.999 0.995
portSpider-gameserve 0.866 0.006 0.908 0.866 0.887 0.880 0.991 0.940

nmap-tcp-null 0.995 0.000 0.992 0.995 0.994 0.994 0.999 0.997
portSpider-ssh 0.854 0.003 0.843 0.854 0.848 0.845 0.990 0.892

masscan 0.997 0.000 0.999 0.997 0.998 0.998 1.000 1.000
portSpider-http 0.972 0.013 0.939 0.972 0.955 0.946 0.996 0.982

portSpider-mongodb 0.919 0.003 0.883 0.919 0.900 0.898 0.994 0.956
nmap-tcp-ack 0.804 0.001 0.945 0.804 0.869 0.870 0.998 0.954

sqlmap 0.452 0.001 0.644 0.452 0.531 0.538 0.995 0.617
nmap-udp-scan 0.993 0.000 0.992 0.993 0.993 0.993 0.998 0.995
nmap-tcp-fin 0.997 0.000 0.999 0.997 0.998 0.998 0.999 0.998
nmap-x-scan 0.995 0.000 0.998 0.995 0.997 0.996 0.998 0.996

angry-ip 0.863 0.000 0.963 0.863 0.910 0.910 0.979 0.881
nmap-v-scan 0.994 0.000 0.971 0.994 0.982 0.982 0.998 0.983
nmap-ip-scan 0.979 0.000 0.992 0.979 0.986 0.986 0.994 0.967

portSpider-printer 1.000 0.000 0.996 1.000 0.998 0.998 1.000 0.998
nmap-w-scan 0.954 0.003 0.830 0.954 0.887 0.888 0.998 0.933

nmap-scan-flag 0.994 0.000 0.997 0.994 0.995 0.995 0.998 0.997
nmap-tcp-syn 0.957 0.000 0.991 0.957 0.974 0.973 0.993 0.974

nmap-tcp-connect 0.848 0.000 0.972 0.848 0.906 0.906 0.990 0.921
nmap-m-scan 0.997 0.000 0.998 0.997 0.997 0.997 0.998 0.996

portSpider-mysql 1.000 0.000 0.999 1.000 1.000 1.000 1.000 0.998
unicorn-tcp-ack 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
unicorn-os-scan 0.750 0.001 0.672 0.750 0.709 0.709 0.999 0.84
unicorn-x-scan 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
unicorn-tcp-fin 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

ike-scan 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
unicorn-tcp-connect 0.630 0.001 0.716 0.630 0.670 0.671 0.999 0.848

unicorn-tcp-null 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
unicorn-udp-scan 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
Weighted Average 0.966 0.003 0.966 0.966 0.966 0.963 0.997 0.982

Table 1.
Detailed accuracy for different scanning techniques

Service True positive Rate False positive Rate Precision Recall F-Measure MCC ROC Area PRC Area
m-SQL 0.997 0.001 0.992 0.997 0.995 0.994 1.000 1.000
Auth 0.990 0.005 0.979 0.990 0.984 0.981 1.000 1.000

DHCP 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
Netbios 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
LDAP 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

MySQL 0.972 0.001 0.992 0.972 0.982 0.980 1.000 0.999
FTP 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

QMTP 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
IPP 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
ssh 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

Shell 0.868 0.003 0.833 0.868 0.850 0.847 0.999 0.948
DNS 0.997 0.000 0.999 0.997 0.998 0.998 1.000 1.000

HTTP 0.545 0.002 0.507 0.545 0.525 0.524 0.998 0.697
login 0.545 0.001 0.733 0.545 0.625 0.631 0.999 0.769
IMAP 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

PostgreSQL 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
POP 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
Exec 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

Printer 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
SMTP 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2.
Detailed accuracy for different services
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Fig. 10. Precision and ROC curve for each port scan technique

Fig. 11. Precision and ROC curve for each port scan technique

Fig. 12. Precision and ROC curve for each port scan technique

Fig. 13. Diagram of the mean values of the different evaluation criteria

The dataset we designed for this work, as well as the scripts for
cleaning the raw data, are available on our GitHub repository [1].

5. CONCLUSION
This article presents an approach based on supervised learning to
identify port scanning techniques, the tools used, and the targeted
services during a network attack. The data was collected from a
real network to build the dataset, leveraging the essential proper-
ties of the extracted packets. The experiments were carried out on
Weka using the J48 decision algorithm, which proved to be partic-
ularly suitable for identifying scanning techniques with good accu-
racy (96.8%) and targeted services with an accuracy of 98%. This
method is especially effective for gathering information on attacks
involving tools specialized in well-defined actions, such as Port-
Spider or SqlMap, but it shows limitations when dealing with more
generic blind scans.
Several improvement perspectives can be considered, such as inte-
grating other advanced learning algorithms, including neural net-
works or deep learning models, to enhance accuracy and the
model’s generalization capability. Expanding theSeveral improve-
ment perspectives can be considered, such as integrating other
advanced learning algorithms, including neural networks or deep
learning models, to enhance accuracy and the model’s generaliza-
tion capability. Expanding the dataset by incorporating more di-
verse scenarios and recent tools would help better cover the evolu-
tion of attack techniques. Generalizing the analyses to collect in-
formation on attacks involving versatile scanning tools like Nmap
would also be beneficial. dataset by incorporating more diverse sce-
narios and recent tools would help better cover the evolution of at-
tack techniques. Generalizing the analyses to collect information
on attacks involving versatile scanning tools like Nmap would also
be beneficial.
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