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ABSTRACT 

Improving classification performance when the dataset is 

imbalanced—that is, when the negative (majority) class is 

stronger than the positive (minority) class—is one of the most 

important problems in machine learning. Several researchers 

alleviated this situation by developing various data-level and 

algorithm-level techniques. However, it is important to note 

that an imbalanced dataset is not the sole factor compromising 

classification performance. It's not just the imbalanced dataset 

that makes classification harder; things like overlap, local 

instance ambiguity, intrinsic structural complexity, and so on 

also make the classification more complicated. Very few 

researchers have focused on data complexity, especially along 

with imbalanced datasets. This paper proposes a novel adaptive 

framework that measures data complexities like instance 

overlap, multiresolution overlap, structural overlap, kNN-

based complexity for minority instances, and more. This 

systematized adaptive measure selection framework sorts 

through the complexity of the data based on how imbalanced 

the datasets are and suggests preprocessing steps and the right 

models to make the classification task easier. The work 

includes a theoretical analysis, the lemma, and the corollary, as 

well as specific steps for putting the ideas into practice. This 

framework, which is aware of taxonomies and provides 

actionable insights that greatly improve the performance of 

imbalanced classification, makes it new and very useful for 

both researchers and practitioners. 
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1. INTRODUCTION 
Imbalanced learning is a tenacious problem in domains ranging 

from medical diagnostics to cybersecurity [1]. Classifiers are 

often misguided by a large number of majority classes, though 

the minority class is more significant due to rare events. An 

imbalanced dataset can further distort even classification 

results when data complexity is present [2]. Most of the time, 

researchers and practitioners don't pay attention to data 

complexity problems like feature overlap, ambiguous instance 

regions, and complex structural patterns. Instead, they focus on 

data classification and resampling methods [3]. Several experts 

says that most essential part in machine learning is data 

engineering, because the perfection of any model  hinge on data 

such that nature of data, data complexity etc. Ho and Basu 

(2002) [4] proposed a data complexity measure at first, and 

many researchers have since published modified or extended 

versions of it [5, 6, 7]. Additionally, researchers proposed four 

specific data complexity measures such as CM, wCM, dwCM, 

BI3 for imbalanced learning [8, 9, 10]. Previous research has 

looked at different aspects of these problems, but there isn't yet 

a framework that brings together different types of data 

complexity and gives usable ways to deal with them. This study 

introduces a unified framework that combines traditional 

complexity measures, including Fisher’s Discriminant Ratio 

and kNN-based metrics, with metrics that evaluate advance 

complexities like instance, multiresolution, and structural 

overlap, thereby providing a thorough assessment of data 

complexity in imbalanced classification.  The complexity is 

measured according to degree of imbalance, such as highly 

imbalanced data, moderately imbalanced data, and high 

dimensional imbalanced data. The proposed adaptive measure 

selection algorithm suggests the most relevant metrics based on 

the characteristics of the imbalanced dataset. This gives us 

direct information for preprocessing and model choice. A 

theoretical framework is presented, complete with corollaries 

and lemmas, that has the best chance of getting rid of 

classification mistakes. The framework also includes detailed 

instructions on how to implement it, good ways to display data, 

and an overview of experiments using a synthetic controlled 

imbalanced dataset, which makes it a useful tool for both 

researchers and practitioners.  

2. MOTIVATION AND RELATED 

WORK 
In a number of studies, researchers have found that an uneven 

dataset by itself is not enough to confuse the classifiers. Instead, 

combining an uneven dataset with different complexities 

increases the rate of misclassification. Barella et al. (2022) 

described existing complexity measures with imbalanced 

dataset challenges. It also draws a clear picture of how data 

complexity changes before and after applying data-level 

methods to balance the imbalanced dataset [2]. Santos et al. 

(2023) show that overlap is a bigger problem when the dataset 

isn't balanced. They also show a new way to measure the 

complexity of overlap [11]. Vuttipittayamongkol et al. 

(2021) [12] highlighted the importance of addressing overlap 

rather than focusing on class balancing strategies. Similarly, 

Fatima et al. (2021) [13] proposed a feature selection 

methodology focused on minimizing the overlap in fraud 

detection. Komorniczak et al. (2022) [14] investigated how 

oversampling methods influence data complexity and 

classification results. It also emphasizes the importance of data 

complexity measures in the case of imbalanced learning. 

Lorena et al. (2021) reviewed the gauges of complexity in 

various domains, such as feature selection, classification 

selection, and data preprocessing [7]. This study combines 

adaptive data complexity analysis with imbalanced binary 

classification to show a full method that changes how it 

classifies data based on real-time indicators of data complexity. 

This makes the model easier to understand and improves 
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performance. 

3. THEORETICAL BACKGROUND AND 

NOTATIONS USED 
Let,      

With N0 majority class and N1 minority samples  (N0  >> N1). 

The framework evaluates:  

I. Feature Overlapping Measures (F1–F4). 

II. Advanced Overlap Measures mentioned in paper [11] 

⚫   Instance Overlap (IO) 

⚫   Multiresolution Overlap (MRO) 

⚫   Structural Overlap (SO)  

III. Neighborhood Measures (N1–N4, T1) 

IV. Linear Separability Measures (L1–L3) 

V. Imbalance-Specific Metrics (CM, wCM, dwCM, BI3) 

VI. Dataset Typology: Three primary scenarios are 

considered:  

⚫    Highly Imbalanced Datasets 

⚫    Moderately Imbalanced Datasets 

⚫    High-Dimensional Datasets with High/Moderate        

Imbalance.  

4. DETAILS OF DATA COMPLEXITY 

MEASURES 

4.1 Feature Overlapping Measures 
Maximum Fisher’s Discriminant Ratio for Feature j: 

 

          

FDRj measures how far apart the classes are for feature j by 

looking at the squared difference between the class means and 

the total variance. Higher values indicate better individual 

feature discrimination. 

Maximum Fisher’s Discriminant Ratio (F1) selects the 

feature with the best discrimination among all features. It 

provides a quick indication of whether any single feature can 

effectively distinguish between the classes. 

⚫ Volume of Overlap Region (F2): 

 

F2 estimates the common volume where both class-conditional 

densities overlap. A higher F2 suggests greater inherent overlap 

in the feature space, which can limit classifier performance. 

⚫ Feature Efficiency (F3): 

 

is the mutual information between the label and feature 

j, and H(y) is the entropy of the labels. F3 reflects the 

efficiency of a single feature in conveying class information; 

higher values imply better discriminatory capability. 

⚫ Collective Feature Efficiency (F4): 

 

In contrast to F3, F4 assesses the joint discriminative power of 

all features together. It provides an overall measure of how 

informative the complete feature set is with respect to the class 

labels. 

4.2 Advanced Overlap Measures 

⚫ Instance Overlap (IO): 

  

Where  is a small threshold. 

IO quantifies the fraction of instances that are ambiguous, 

where the estimated posterior probability is near 0.5. Higher IO 

indicates a large number of borderline cases, making 

classification more challenging. 

⚫ Multiresolution Overlap (MRO): For clusters  

at  different resolutions,  

 

By clustering the data at different resolutions (indexed by r), 

MRO captures how frequently clusters contain mixed classes. 

Values closer to 1 imply that at most scales, clusters are not 

pure, signifying severe overlap. 

⚫ Structural Overlap (SO): Given a KNN graph G with 

cross-class edges Ecross and total edges Etotal, 

 

SO measures the fraction of edges in a kNN graph that connect 

instances from different classes. A high SO indicates that the 

classes are structurally intertwined, complicating the formation 

of clear decision boundaries. 

4.3 Neighborhood Measures 

⚫ Fraction of Points on the Class Boundary (N1): 

B is the set of points with at least one neighbor from the other 

class. N1 measures how many instances reside close to class 

boundary.  A higher N1 implies that a larger proportion of data 

is ambiguous, which can lead to misclassification. 

⚫ Ratio of Average Intra-/Inter-Class NN Distances 

(N2): 

 

In the same class, N2 compares the average distance to nearest 

neighbors against those in the opposite class. Under ratio, 

suggest well-separated clusters. 

⚫ Leave-one-out NN error rate (N3): 

 

N3 measure estimates the local classification error using a 1-

nearest neighbor classifier in a leave-one-out setting. Elevated 

N3 values suggest that the local neighborhood structure is noisy 

and complex. 

⚫ 1-NN nonlinearity measure (N4): 

 

N4 Illustrates the disparity in error rates between the original 

dataset and its interpolated counterpart, indicating the 

nonlinearity of the decision boundary.  

⚫ T1: Fraction of maximum covering spheres among 

minority points. 
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Here, Smax revels the maximum number of non-overlapping 

covering spheres able to cover the points of minority class. T1 

measures the minority class's distribution in the feature space; 

higher values suggest a more complicated or scattered minority 

structure. 

4.4 Linear Separability Measures 

⚫ L1: Minimized sum of error distances. 

 

L1 minimizes the sum of absolute distances of misclassified 

points from the decision border to estimate the general 

misclassification margin. Lower values mean that, generally, 

instances are more likely to be properly classified. 

⚫ L2: Training error of a linear classifier. 

The empirical error of a linear classifier is denoted by L2. 

Higher values imply that more complex models may be 

required, while lower values suggest that a linear model can 

adequately separate the classes. 

⚫ L3: Difference between errors of linear and nonlinear 

classifiers. 

 

L3 grasps the variations in error rates between a linear and 

nonlinear classifier (e.g., 1-NN classifier). A greater L3 

suggests that the real decision boundary is complicated and 

non-linear since a nonlinear model greatly outperforms a linear 

model. 

4.5 Imbalance-Specific Metrics 

⚫ CM (Complexity Measure for Imbalanced Datasets) : 

it is basically kNN-based complexity for minority 

instances. 

For each minority instance   Xi  (with yi ): 

 

CM identifies the local neighborhood composition for minority 

class instances. Large value of CM indicates most of minority 

samples are surrounded by majority instances, which suggests 

which suggests a severe imbalance at the local level.  

⚫ wCM (Weighted Complexity Metric) : It is using 

distance weighting to measure complexity. 

 

Although wCM is similar to CM, it encompasses distance 

weights to account for the proximity of neighbors. This revels 

a more nuanced perspective on the vulnerability of the minority 

class. 

⚫ dwCM(Dual Weighted Complexity Metric): It is 

integrating both distance and density weighting. 

 

where   is a local density estimate. 

dwCM further refines wCM by including a local density 

factor, ρj. This dual weighting reports for both distance and 

density, offering a robust measure of minority risk. 

⚫ BI3 (Bayes Imbalance Impact Index): it is based on the 

Bayes optimal posterior. 

 

with  denoting the posterior from the Bayes optimal 

classifier.  

BI3 assesses how far the optimal posterior probability for 

minority samples deviates from 0.5. A lower BI3 means that 

even the Bayes optimal classifier has trouble confidently 

classifying minority cases, which shows that the imbalance has 

a big effect. 

5. NOVEL ADAPTIVE FRAMEWORK 

AND DATASET TYPOLOGY 

5.1 Theoretical Inference And Guidelines 

To connect the gauge of data complexity and classification 

performance, Two key theoretical aspects are derived:  

Corollary 1: 

If   

 

Consequently, even a optimal classifier cannot fulfil an error 

rate lower than γ. This outcome indicates that significant 

feature overlap establishes a fundamental limit on accuracy.  

Lemma 1: 

Let δ∈[0,1] be a specified threshold representing a lower bound 

on the leave-one-out error rate of the 1-NN classifier. That is, 

if the observed leave-one-out error rate, denoted as N3, 

satisfies,  

then the overall misclassification risk R is bounded below by 

 

where f:[0,1]→[0,1] is a monotonically increasing function. 

where in this formula, δ is not defined as N3 itself but is a 

chosen threshold; if the gauged N3 surpasses this threshold, it 

suggests a higher lower bound on the overall risk R. So, this 

lemma entrenches a lower bound on the error based on local 

neighborhood complexity. 

Based on these results, the recommended guidelines 

prioritize: 

⚫ Feature-based measures (F1–F4) when substantial 

overlap is detected. 

⚫ Instance overlap (IO) if many samples lie in ambiguous 

regions. 

⚫ Multiresolution (MRO) and structural (SO) measures 

when clusters are mixed or the kNN graph shows 

significant cross-class connectivity. 
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⚫ Neighborhood (N1, N3) and linear separability (L2, 

L3) measures to assess the complexity of the decision 

boundary. 

⚫ Imbalance-specific metrics (CM, wCM, dwCM, BI3) 

to evaluate minority class vulnerability and inform re-

sampling or cost-sensitive strategies. 

In certain cases, such as highly imbalanced datasets with 

extreme feature overlap and ambiguous instances, robust 

resampling and specialized classifiers may be necessary; for 

moderately imbalanced or high dimensional datasets, robust 

classification techniques may be combined with dimensionality 

reduction.  

5.2 Adaptive Measure Selection Algorithm 
The proposed adaptive algorithm comprises the following 

steps: 

Algorithm: Adaptive Complexity Diagnosis and 

Recommendation 

Input: Dataset D, number of neighbors K, threshold {γ,ϵ,δ}, 

dataset type T.   

Output: Recommended preprocessing and model strategy.  

Steps: 

I. Data Preprocessing: 

⚫ Apply normalization and dimensionality reduction if 

necessary. 

II. Compute Complexity Measures: 

⚫ Compute:  

III. Determine Dataset Typology: 

⚫ Categorize the dataset into one of the following: 

A. Highly Imbalanced 

B. Moderately Imbalanced 

C. High-Dimensional Imbalanced 

IV. Adapt Based on Dataset Type T : 

A. Highly Imbalanced Datasets: 

⚫ If 𝑰𝑶 or 𝑭𝟐 is high, recommend aggressive re-sampling 

or cost-sensitive learning. 

⚫ Emphasize imbalance-specific metrics:  

B. Moderately Imbalanced Datasets: 

⚫ Balance feature engineering (F-measures) with 

neighborhood insights (N-measures). 

⚫ Recommend moderate re-sampling and model 

regularization. 

C. High-Dimensional Imbalanced Datasets: 

⚫ Prioritize dimensionality reduction for improving F1–F4 

interpretability. 

⚫ Focus on structural measures (SO) and adaptive 

clustering for MRO.  

1. Assess Classifier Complexity: 

⚫ Use  𝑵𝟏, 𝑵𝟑, 𝑳𝟏– 𝑳𝟑 to evaluate classifier complexity. 

2. Output Final Recommendation: 

⚫ Suggest preprocessing steps and the best classifier 

strategy. 

5.3 Guidelines for Selecting Data 

Complexity Measures 

Table 1. Exhibits a guideline to select complexity measures 

Data 

Complexity 

Suggested 

Complexity 

Measures 

Rationale 

 

High Feature 

Overlap 
F1, F2, F3, F4 

Measure how features 

separate classses 

singnificantly; high F2 

indicates extreme 

overlap. 

Ambiguous 

Local 

Decision 

Boundaries 

N1, N3, N4, T1 

High N1 and N3 values 

indicate many points 

near the boundary, 

suggesting complex 

local structures. 

Potential 

Linear Non-

Separability 

L1, L2, L3 Overhead L1 and L3 

values infer that linear 

classifiers may fail; 

center on L2 for 

baseline error 

measurement. 

Ambiguous 

Instances 

IO A decent IO represents 

many instances reside 

in regions of 

uncertainty. 

Multiscale 

Overlap 

Effects 

MRO Overlap that changes 

with resolution, marked 

by multiresolution 

clustering analysis. 

Intertwined 

Structural 

Patterns 

SO Surpass SO indicates 

that classes are highly 

connected in the 

intrinsic data structure. 

Imbalanced 

Datasets with 

Minority 

Vulnerability 

CM, wCM, 

dwCM, BI3 

Focus on the impact of 

imbalance; BI3 

indicates fundamental 

difficulty due to 

imbalance, while 

wCM/dwCM account 

for distance/density 

effects. 

Mixed/Uncert

ain 

Conditions 

A hybrid 

approach using 

multiple 

measures 

across 

categories 

Establishes a 

comprehensive analysis 

when dataset 

characteristics are not 

clearly defined. 

 

5.4 Adaptation Based on Dataset Typology 
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Table 2. Taxonomy of complexity measures that 

categorizes imbalanced datasets as follows: 

Dataset 

Type 
Characteristics Key 

Complexity 

Focus 

Suggested 

Strategy 

Highly 

Imbalanced 
N1≪N0; 

minority 

severely under 

represented 

High IO, 

high 

CM/wCM/d

wCM, high 

BI3; 

moderate to 

high F2 

Vigorous re-

sampling, 

cost-sensitive 

learning, and 

specialized 

minority-

oriented 

feature 

engineering. 

Moderately 

Imbalanced 
N1 is small but 

not extreme; 

moderate class 

skew 

Balanced F-

measures 

and N-

measures; 

moderate IO 

and CM 

moderate 

treatment 

with with 

attention to 

local 

boundary 

measures. 

High-

Dimensiona

l, Highly 

Imbalanced 

Large  

d; extreme 

minority 

scarcity 

Emphasis on 

F1–F4, SO, 

and MRO; 

potential 

curse of 

dimensionali

ty effects 

Dimensionalit

y reduction, 

graph-based 

methods to 

capture SO, 

and 

specialized 

high-

dimensional 

re-sampling 

techniques. 

High-

Dimensiona

l, 

Moderately 

Imbalanced 

Larged; 

moderate 

imbalance 

Focus on 

feature 

efficiency 

(F3, F4) and 

structural 

measures 

(SO) 

Dimensionalit

y reduction, 

moderate 

imbalance 

corrections. 

 

These suggestions ensure that the diagnostic procedure and 

ensuing modeling decisions are customized to the inherent 

challenges of the specific imbalanced dataset type with 

corresponding data complexities. 

6. EXPERIMENT AND SIMULATION 

RESULTS 
Although the proposed framework is primarily theoretical, the 

framework’s practical applicability is demonstrated through 

simulated case studies. Synthetic data with various imbalanced 

dataset typologies was generated: 

⚫ Highly Imbalanced: Imbalance ratio of 0.05 with low-

dimensional features. 

⚫ Moderately Imbalanced: Imbalance ratio of 0.3 with 

low-dimensional features. 

⚫ High-Dimensional Highly Imbalanced: 100 features 

with an imbalance ratio of 0.05. 

⚫ High-Dimensional Moderately Imbalanced: 100 

features with an imbalance ratio of 0.3. 

 

All complexity metrics were computed for each type and show 

the results in PCA plots, probability histograms, kNN graphs, 

MRO heatmap, and bar charts. The simulation studies show a 

correlation between higher complexity measures, such as high 

IO or SO, and increased classification error, which supports this 

adaptive recommendations for more advanced resampling, 

dimensionality reduction, or the selection of robust classifiers.  

Scenario of Highly Imbalanced (HI) datasets:  

Table 3. Complexity metrics computed for the highly 

imbalanced dataset 

Measure Value Description 

F1 0.3475 Maximum Fisher’s Discriminant 

Ratio value identify moderate 

discrimination. 

F2 0.0035 Overlap region; lower values 

indicate minimal overlap. 

IO 0.0290 Instance Overlap value indicates 

Low instance ambiguity. 

SO 0.0636 Structural Overlap denoting low 

structural overlap. 

MRO 0.9444 Multiresolution Overlap value 

indicates close to 1 means very high 

mixed clusters. 

N1 0.1440 Moderate boundary ambiguity. 

N3 0.0540 Below 0.1 indicate that local 

classification is relatively robust. 

L2 0.0530 Values near 0 indicate good 

separability for a linear model. 

CM 0.8333 Complexity Measure for minority 

instances: Values above ~0.8 imply 

a severe imbalance in local 

neighborhood composition. 

wCM 0.8155 High values (above ~0.8) confirm 

that minority points are 

predominantly influenced by 

majority instances. 

BI3 0.2037 Bayes Imbalance Impact Index: 

Values around 0.2 suggest moderate 

impact. 

 

Fig. 1 demonstrates a diverse viewpoint of the complexity 

present in the highly imbalanced dataset. The PCA estimation 

reveals significant overlap, with minority instances implanted 

within minority clusters, stipulating poor class separability. 

The KNN-predicted probability distribution demonstrates the 

majority of samples are predicted with low confidence, 

clustering near 0.0, emphasizing severe instance-level 

ambiguity. High CM and wCM scores on the complexity bar 

chart verify significant local imbalance. The kNN graph shows 

more dense inter-class connection, reflecting structural 

entanglement. The MRO heatmap, with values near 1, indicates 

mixed clustering across multiple resolution levels. 

Furthermore, the L2 error surface shows that even with class 

separability increasing, training error decreases on a small 

scale, recommending the inadequacy of linear models. Finally, 

the ROC and PR curves exhibit modest AUC values, validating 

the dataset's intrinsic difficulty and complying with the 

necessity for cost-sensitive or structure-aware learning 

methods. 
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Fig. 1. Complexity analysis visualizations for the highly 

imbalanced dataset. 

Framework-Driven Strategy Recommendations: 

⚫  Significant multiresolution overlap. Consider adaptive 

clustering-based re-sampling. 

⚫  High imbalance-specific metric (CM). Focus on 

minority-oriented re-sampling or cost-sensitive methods. 

Case study of Moderately Imbalanced (MI) dataset:  

Table 4. Complexity metric evaluated for moderately 

imbalanced dataset 

Measure Value Description 

F1 0.3929 Maximum Fisher’s Discriminant 

Ratio indicates moderate 

discrimination (low < 0.2, 

moderate 0.2–0.5, high > 0.5). 

F2 0.0039 Overlap volume surrogate; 

extremely low value indicates 

minimal overlap. 

IO 0.1520 Instance Overlap; moderate 

ambiguity (low < 0.1, moderate 

0.1–0.2, high > 0.2). 

SO 0.1742 Structural Overlap; 

moderate intermingling (low < 

0.1, moderate 0.1–0.3, high > 

0.3). 

MRO 0.9556 Multiresolution Overlap; 

very high value implies clusters 

are almost entirely mixed (values 

near 1 are worst). 

N1 0.4880 Fraction of boundary points; 

nearly half the data lies on 

boundaries (lower is better; high 

> 0.4). 

N3 0.1390 Leave-One-Out 1-NN error; 

moderate local classification 

error (low < 0.1, moderate 0.1–

0.2). 

L2 0.1520 Training error of a linear 

classifier; moderate error (lower 

values are preferable). 

CM 0.3535 Complexity for minority 

samples; moderate vulnerability 

(low < 0.2, moderate 0.2–0.4, 

high > 0.4). 

wCM 0.3423 Weighted complexity 

metric; similar to CM, indicating 

moderate risk. 

dwCM 0.3392 Dual weighted complexity 

metric; also indicates moderate 

vulnerability. 

BI3 0.2874 Bayes Imbalance Impact 

Index; moderate impact (values 

near 0.5 would be worse). 

 

Fig. 2 provides a circumstantial complexity analysis for a 

moderately imbalanced dataset. The PCA plots clearly show a 

more distinct inter-class separation than the highly imbalanced 

scenario, with reduced overlap. A wider predicted probability 

histogram indicates better confidence in classification and 

lower instance ambiguity. Reflecting moderate values across 

IO, SO, and CM, the complexity metric bar chart implies 

improved class boundary clarity. The kNN graph reveals minor 

cross-class connections, while the MRO heatmap reflects less 

frequent mixed clustering—both signifying improved 

structural purity. Correspondingly, the L2 error surface exhibits 

more consistent declines with increasing class separation, 

indicating better linear separability. ROC and PR curves 

demonstrate improved classifier performance with rising AUC 

values and affirm that moderate imbalance is more controllable 

with standard preprocessing and learning techniques. 
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Fig. 2. Complexity analysis visualizations for the 

moderately imbalanced dataset 

Framework-Driven Strategy Recommendations: 

⚫  Significant multiresolution overlap. Consider adaptive 

clustering-based re-sampling. 

High-dimensional with Highly Imbalanced dataset:  

Table 5. Complexity metrics computed for the high-

dimensional, highly imbalanced dataset 

Measure Value Description 

F1 0.2113 Moderate discrimination; (Low: 

<0.2, Moderate: 0.2–0.5, High: >0.5) 

F2 0.0021 Very low overlap; indicates 

minimal density overlap 

IO 0.0250 Low instance ambiguity; (Low: 

<0.1, Moderate: 0.1–0.2, High: >0.2) 

SO 0.0772 Low structural overlap; (Low: 

<0.1, Moderate: 0.1–0.3, High: >0.3) 

MRO 0.9333 Extremely high mixed-cluster 

fraction; values near 1 denote severe 

mixing 

N1 0.1800 Moderate boundary presence; 

(Low: <0.1, Moderate: 0.1–0.3, High: 

>0.3) 

N3 0.0760 Low leave-one-out NN error; 

(Low: <0.1, Moderate: 0.1–0.2) 

L2 0.0180 Very low linear classifier error; 

indicates excellent separability 

CM 0.9091 Very high minority risk; (Low: 

<0.2, Moderate: 0.2–0.4, High: >0.4) 

wCM 0.9077 Very high weighted minority risk; 

similar interpretation as CM 

dwCM 0.9076 Very high dual weighted risk; 

aligns with CM and wCM 

BI3 0.2345 Moderate imbalance impact; 

(Low: <0.2, Moderate: 0.2–0.4, High: 

>0.4) 

 

Fig. 3 visualizes the combined complexity, deriving both high 

dimensionality and extreme class imbalance. The PCA 

projection sounds noisy with major class overlap, indicating 

that high-dimensional space exacerbates feature confusion. 

Additionally, the predicted probability distribution, with an 

acute concentration around 0.5, reflects extreme classification 

uncertainty. The bar chart displays peak values of CM, SO, and 

MRO, signifying that minority instances are structurally 

saturated and boundary ambiguity is critical. The kNN graph 

exhibits complex inter-class connections, further confirming 

the presence of structural overlap. Consequently, the MRO 

heatmap near 1 across scales, magnifying persistent class 

mixing regardless of granularity. Notwithstanding more class 

separation, the L2 surface reveals little error decrease, 

suggesting that the decision boundaries are inherently non-

linear and in high-dimensional space. Correspondingly, the 

ROC and PR curves are lacking, emphasizing the importance 

of dimensionality reduction, adaptive clustering, and ensemble 

learning techniques. 

 

Fig. 3. Complexity analysis visualizations for the high-

dimensional highly imbalanced dataset. 

Framework-Driven Strategy Recommendations: 

⚫  Significant multiresolution overlap. Consider adaptive 

clustering-based re-sampling. 

⚫  High imbalance-specific metric (CM). Focus on 

minority-oriented re-sampling or cost-sensitive methods. 
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Scenario of High-dimensional with Moderately Imbalanced 

datasets:  

Table 6. Complexity metrics computed for the high-

dimensional, moderately imbalanced dataset. 

Measure Value Description 

F1 0.3218 Moderate discrimination. 

F2 0.0032 Minimal overlap; (Very 

Low: near 0, Low: <0.005, 

Moderate: 0.005–0.01, High: 

>0.01). 

IO 0.2990 High instance ambiguity. 

SO 0.3108 High structural overlap. 

MRO 1.0000 Extremely high mixed-

cluster fraction; values near 1 

denote severe mixing. 

N1 0.6970 Very high boundary 

ambiguity. 

N3 0.2960 High local error. 

L2 0.1320 Moderate linear classifier 

error; (Low: <0.1, Moderate: 

0.1–0.2, High: >0.2). 

CM 0.6317 Moderate minority 

vulnerability. 

wCM 0.6285 Moderate weighted risk; 

similar scale as CM. 

dwCM 0.6283 Moderate dual-weighted 

risk; consistent with wCM. 

BI3 0.1693 Low–moderate imbalance 

impact. 

 

Fig. 4 exhibits the complexity of a high-dimensional, 

moderately imbalanced dataset. The estimation of PCA reveals 

partial class separation, with residual noise still present but 

comparatively less severe than in the high-dimensional and 

high-imbalanced scenario. The distribution of probabilities in 

the histogram is more uniformly distributed, signifying less 

ambiguity at the instance level. The moderate CM and SO 

scores shown in the bar chart suggest that structural 

entanglement and minority class vulnerability are manageable. 

Correspondingly, the KNN graph exemplifies lower cross-class 

connectivity. The MRO heatmap demonstrates better cluster 

purity relative to more imbalanced settings. A significant 

decrease in the L2 error surface recommends improved 

potential for linear separation. Finally, ROC and PR curves 

with comparatively high AUC values affirm that, despite the 

high dimensionality imposing inherent complexity, the 

moderate imbalance setting permits efficient separation with 

appropriate preprocessing and model tuning. 

 

Fig. 4. Complexity analysis visualizations for the high-

dimensional moderately imbalanced dataset. 

Framework-Driven Strategy Recommendations: 

⚫  High structural overlap observed. Graph-based or 

structural regularization methods may help. 

⚫  Significant multiresolution overlap. Consider adaptive 

clustering-based re-sampling. 

⚫  High leave-one-out NN error (N3). Indicates local 

boundary complexity. 

⚫  High imbalance-specific metric (CM). Focus on 

minority-oriented re-sampling or cost-sensitive methods. 

7. RESULTS AND DISCUSSION 
To exhibit the efficacy of the proposed framework, a series of 

controlled simulations were used over four representative 

dataset scenarios: (i) Highly Imbalanced (HI), (ii) Moderately 

Imbalanced (MI), (iii) High-Dimensional Highly Imbalanced 

(HD-HI), and (iv) High-Dimensional Moderately Imbalanced 

(HD-MI). These datasets were synthetically constructed to 

imitate realistic imbalance ratios and high-dimensional 

settings. The proposed framework was systematically applied 

to each dataset to figure out data complexity measures, 

enabling comparative insights across the experimental 

conditions.Traditional metrics such as the Maximum Fisher’s 

Discriminant Ratio (F1) and its derived overlap surrogate (F2) 

indicated that, even when individual features appeared 

moderately discriminative, the joint feature space often 

exhibited substantial overlap between classes. Moreover, novel 

measures like Instance Overlap (IO), Multiresolution Overlap 

(MRO), and Structural Overlap (SO) consistently highlighted 

that a high proportion of instances lie in ambiguous regions and 

that the underlying structure (as revealed by kNN graphs) is 

highly intermingled. Neighborhood metrics (e.g., N1 and N3) 

further supported the observation that many data points reside 

close to the decision boundaries, leading to elevated leave-one-

out errors. Furthermore, linear separability measures (L2) 
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signified those basic classifiers scuffling on these imbalanced 

datasets, and imbalance-oriented metrics (CM, WCM, BI3) 

underlined the vulnerability of the minority class. These 

observations highlight the need for adaptive techniques shaped 

to the specific characteristics of the dataset, ranging from 

advanced resampling and cost-sensitive processes to advanced 

feature engineering and dimensionality reduction. 

7.1 Complexity Metrics Evaluation 
Each dataset was evaluated using the full set of complexity 

measures described in the proposed framework. Fig. 5 

visualizes the comparison of key complexity metrics over the 

four dataset scenarios (HI, MI, HD-HI, and HD-MI). This 

grouped bar chart makes it easy to read how CM, MRO, IO, 

and N1 metrics differ by dataset types. As an example, it points 

out the very high CM and MRO in HI and HD-HI cases and the 

significantly higher IO and SO in HD-MI. This diagram adds 

to Tables 3 to 6 to provide an overview of the progress of 

structural and local complexity, as well as imbalance 

complexity, across various properties of the input datasets. 

 

 

Fig. 5. Grouped bar chart comparing key complexity 

metrics across four dataset scenarios. 

These results clearly show a strong variation of data complexity 

among different dataset typologies.  

Highly Imbalanced Dataset (HI): 

In the Highly Imbalanced (HI) dataset, while feature overlap 

(F2) is very low, complexity arises from the extremely high 

class imbalance (CM = 0.8333) and substantial multiresolution 

overlap (MRO = 0.9444). These indicate that most minority 

class instances are structurally dominated and appear in mixed 

clusters, making learning difficult. 

Recommendation (Framework Output): Apply ensemble 

learning with SMOTE variants or cost-sensitive learning. To 

address class impurity and neighborhood ambiguity, consider 

graph-based structural modeling. 

Moderately Imbalanced Dataset (MI): 

Although the Moderately Imbalanced (MI) dataset exhibits 

moderate overlap and structural complexity On the basis of IO 

and SO values. The relatively high N1 (0.4880) and N3 

(0.1390) values indicate that nearly half of the instances lie near 

decision boundaries. Therefore the imbalance is lower than HI, 

boundary complexity is relatively high. 

Recommendation (Framework Output): Use neighborhood-

sensitive classifiers in combination with moderate resampling. 

Integrate margin-based regularization to enhance the boundary 

clarity and generalization ability of the classifier. 

High-Dimensional Highly Imbalanced Dataset (HD-HI): 

For High-Dimensional and Highly Imbalanced (HD-HI) 

dataset, the framework enclosed the HD-HI-persuade 

challenges. The extremely high CM (0.9091), MRO (0.9333) 

and a very low F1 (0.2113) under the fact of less feature 

overlapping indicate high complexity even though the feature 

overlap is minimum.  

Recommendation (Framework Output): Employ resampling 

followed by dimensionality reduction (such as PCA or t-SNE). 

Incorporate ensemble models designed for high-dimensional 

imbalance or structural learning models such as graph-based 

classifiers. 

High-Dimensional Moderately Imbalanced Dataset (HD-

MI):  

On the other hand, dataset High-Dimensional Moderated 

Imbalance (HD-MI) had the maximum values of IO (0.2990), 

SO (0.3108), and N1 (0.6970) which indicate that a moderate 

imbalance with high dimensionality shows the highest 

boundary.  

Recommendation (Framework Output): Apply complexity-

aware feature selection along with dimensionality reduction. 

Make use of regularized ensemble classifiers that manage 

structural overlap and prioritize margin preservation. 

7.2 Summary of Observations 

The following key observations emerge from the analysis: 

 

⚫ The Multiresolution Overlap (MRO) was consistently 

high across datasets, suggesting that class impurity is 

scale-enabled and must be accounted for within 

imbalanced learning. 

⚫ In datasets HI and HD-HI, Imbalance-Specific Metrics 

(CM, wCM, BI3) outperformed others, revealing the 

weakness of minority classes.  

 

⚫ The Local Neighborhood Complexity (N1, N3) was more 

pronounced in MI and HD-MI datasets indicating that 

boundary ambiguity seems to play a greater role in MI 

and HD-MI. 

⚫ High-Dimensional Datasets provided more noise and 

overlap of structure, and the need for reducing 

dimensions. 

⚫ The recommendations of the framework — ranging from 

aggressive re-sampling to graph-based structural 

learning-match with the complexity profile found in 

each case.  

 

This shows validate the utility of the proposed framework in 

diagnosing sources of complexity, which if triggered, the 

appropriate preprocessing or model selection strategy can be 

guided to follow for imbalanced learning. 

8. CONCLUSION AND FUTURE WORK 
This study proposes an adaptive framework for analyzing data 

complexity in imbalanced binary classification problems. 

Derived indepth from conventional as well as advanced 

complexity measures — specifically feature overlap (F1–F4), 

instance ambiguity (IO), multiresolution overlap (MRO), 

structural overlap (SO) and minority vulnerability (CM, wCM, 

BI3) — the framework offers a multi-dimensional way to 

characterize classification difficulty. The framework 

recognizes the specific complexity features associated with 

specific dataset scenarios (i.e. high degree imbalanced or 

moderate level imbalanced or high dimension etc.) and thereby 

accordingly adapts its  recommendations to guide suitable 

preprocessing techniques and model selection according to the 

data.  

Theoretical contributions such as Lemma 1 and Corollary 1 
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constitute a formal relationship between local complexity 

measures and classification error bounds, contributing a solid 

mathematical foundation. The adaptive measure selection 

algorithm provides additional robustness to the applicability of 

this framework, assuring that model development need not be 

one-size-fits-all but rather driven by immediate complexity 

diagnostics. Controlled simulation results confirm that datasets 

with comparable imbalance ratios may actually possess diverse 

underlying complexities, and thus different learning strategies 

are required to achieve optimally performant models — a 

nuance often missed in conventional imbalance treatment 

approaches. 

Future Scope: 

Even though this study only looked at binary classification on 

datasets that were artificially controlled, there are many other 

areas that could be studied in the future: 

Real-world validation: Applying the framework to real-world 

datasets from different domains, such as healthcare, fraud 

detection, cybersecurity, and text classification, will compute 

its effectiveness and robustness in practical scenarios. 

Multi-Class Extension: Add multi-class imbalanced learning 

to the framework so that problems can happen between more 

than two minority and majority classes.  

Integration into AutoML Pipelines: Incorporating 

complexity computation and a recommendation engine into 

automated machine learning pipelines (AutoML) may afford 

dynamic model selection and preprocessing during training. 

Dynamic Learning Systems: Evolving real-time adaptive 

learning systems capable of modifying sampling strategies and 

classifier parameters on-the-fly based on evolving complexity 

metrics during data stream learning. 

Graph-based Complexity Modeling: Looking into how graph 

neural networks and topological data analysis can be used to 

make structural complexity modeling better than typical kNN-

based methods. 
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