International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.76, March 2025

Design and Implementation of Wyltl: An Imperative,
Embeddable and Portable Programming Language

Dineth Mallawarachchi
School of Computer Science and Technology,
University of Bedfordshire,
Luton, LU1 3JU, UK

ABSTRACT

Wyltl is a programming language with a strong focus on
simplicity, portability and functionality. It supports core
imperative programming features such as variables,
conditionals, loops, functions, and closures. Additionally,
Wyltl provides a rich standard library with support for
mathematical, date / time, JavaScript Interoperability, i /o, type
conversion and more! Its implementation allows Wyltl code to
be executed on a variety of platforms such as Windows, Linux,
Web (via Web Assembly), and allows Wyltl to be used as an
embedded programming language for applications written
using the Go programming language. Wyltl offers two
reference implementations, a tree walking interpreter, and a
stack based virtual machine. The primary distinction between
the two is execution speed. Executing compiled Wyltl code
through the virtual machine is 1.5x - 4x faster depending on the
Wyltl code that is executed. However, developers who wish to
extend Wyltl with new language features will find the
Interpreter easier to modify. Wyltl includes a compilation
format named ‘wyltlc’ which allows developers to compile
their existing code to an intermediate format which can be
executed with the Wyltl stack based virtual machine. This
paper provides a breakdown of the design of the Wyltl language
and the implementation of its interpreter, compiler and virtual
machine.

General Terms
Programming Languages, Interpreter, Virtual Machines,
Compilers, Imperative Programming

Keywords

Embeddable Programming Language, Portable Programming
Language, Stack based Virtual Machine, Tree Walking
Interpreter, Web Assembly, Go.

1. INTRODUCTION

Simplicity and portability in programming languages should
not be ensured at the expense of functionality. Striking a
balance between the three is a classical problem in
programming language design. While there are several
programming languages that claim to maintain this balance,
none has managed to properly stay within the sub
consciousness of the developer community. Taking inspiration
from venerable languages such as Lua, Wyltl was created with
the belief that by ensuring that the three characteristics of
programming design are given an equal priority in the design
and implementation of the language, it will in turn ensure that
its usefulness to developers. That is, the goal of Wyltl is to
provide all developers the ability to create applications and
programs with ease, as a standalone language or embedded
language in complex Go projects.

1.1 Motivation
In implementing a project in Go, a mandate was given that the

Yasas Jayaweera
Dean of Academic Affairs
SLIIT City University
Colombo 3, Colombo, SL

end user be given the ability to program using a simple yet fully
functional programming language. Additionally, it must not
harm the project’s deployment. Within the Go ecosystem and
beyond, no language implementation could meet all the
requirements. It was this that led to the conceptual idea of Wyltl
as a programming language.

1.2 Key Features of Wyltl Implementations
The key features of the Wyltl Language and its
implementations are based on ensuring that simplicity,
portability, functionality and embed-ability are all considered
in the design and implementation of the language

The Wyltl language is simple and familiar. It is easy for a new
programmer to learn, and experienced programmers can start
using the language within the timespan of an afternoon. Its
simple syntax was also designed with the goal of ensuring that
the language is readable, akin to traditional pseudocode.
Wyltl’s functionality is ensured with the implementation of all
common imperative programming concepts. Pseudocode or
code written in another language can easily be re-written in
Wyltl. As such, Wyltl can also be used as an introductory
programming language.

Wyltl offers an interpreter and compiler. The implementation
of the WyItl compiler is unique as it has been implemented with
easy modification in mind. These implementations are portable
and can be run on all major desktop operating systems and Web
Browsers. This ensures that users can execute their Wyltl
applications on any modern platform. For experienced
developers, the Wyltl implementations are easily embeddable
within a Go application. Additionally, it is also possible to
execute JavaScript code through Wyltl in the web version of
the Wyltl implementations.

1.3 Development Approach

Some overlap was present in the development of the Wyiltl
Interpreter and Compiler, as two core components required for
each (the parser and the tokenizer) were shared. This
significantly assisted in maintaining functional parity between
the two implementations, as using the same parser ensures that
both implementations handle Wyltl parsing properly, proper
logic is ensured by using unit tests and running complex Wyltl
code in both implementations and comparing the results. When
combined with user acceptance tests, it was possible to
minimize undefined behavior to a minimum. No external
dependencies were used in implementing the project, this
greatly assisted in ensuring portability, and ensuring Wyiltl
could be used as a scripting language [1].

2. DESIGN OF THE WYLTL

LANGUAGE

Out of simplicity, portability, embed-ability and functionality.
The core language design of the Wyltl language is responsible

22



for ensuring the characteristics of simplicity and portability. A
literature review was performed to ascertain what could be
done to ensure how could be designed. It was also important to
consider practicality of implementing language features as well
After investigation, a bottom — up approach was followed, in
which the fundamentals would be designed first.

2.1 Simmilar Programming Languages

It is generally accepted that programming languages inherit
features and characteristics from ‘parent’ programming
languages. It is not excessive to say that the lineages of popular
programming languages of today can be traced back to different
programming languages from decades ago — such as Java and
its grand-parent-language simula-67. In the case of Wyltl there
are several programming languages which hold characteristics
that Wyltl draws inspiration from.

2.1.1 Lua - The programming language for

application extension

Lua [2] is a programming language with a rich history and a
passionate user-base. It has enjoyed success in many
endeavors, but it’s main use has come as an ‘embeddable
language’, meaning that Lua is often embedded into
applications and systems, and used to implement features and
functions. Two popular examples are Roblox (the popular
children’s video game platform) and MPV (a media player).
Though used in wildly differing applications the use of Lua is
always done in a similar manner — with it being used to
implement additional features. The pain points many users
express with Lua are its unique syntax. However, it is
undeniable that Lua’s syntax is simple and effective. Wyltl
draws in heavy inspiration from Lua’s overall philosophy.
Lua’s main limitation comes from its most important strength,
as being written in C guarantees high portability and room for
optimization, attempting to interop with languages such as Rust
and Go severely affect portability. However, it should be noted
that this not a problem with Lua, Rust or Go, but with the
fragmentation of C compilers.

2.1.2 Wren — A small concurrent scripting
language

Weren [3] is a language created by Bob Nystrom, the author of
‘Crafting Interpreters’. It is similar to Lua in many ways, they
are both written in C, are primarily created as scripting
languages which can be embedded within existing projects and
implementations. Additionally, Wren’s syntax is generic, but
this plays into its favor as it makes the language understandable
and easy to learn. Wren itself has no qualms about stepping into
complexity with support for concurrency and objected oriented
programming paradigm support. Its weaknesses are very
similar to those used of Lua. ‘C’ as a programming language is
only used in certain sectors and areas of development, with
most casual users preferring to use languages such as
JavaScript, Python, Go, Rust, etc. It is apparent that Lua has
already taken the fundamental role of the ‘embeddable
language for C’ niche. That combined with the portability
issues that arise when trying to interop with other language
harm the possible of Wren’s adoption. Regardless, Wren's
philosophy of clear and simple language design, is worthy of
admiration.

2.2 What makes the Wyltl Programming
Language Unique?

Wyltl has three main focuses — that is simplicity, portability and

functionality. The main research problem that Wyltl attempts

to tackle is the fine balance between the three aspects. This

section is an overview of how Wyltl uses these aspects to

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.76, March 2025

improve the experience of its users, and how it attempts to
evolve the design and implementation decisions of similar
languages.

Regarding simplicity, Wyltl draws in inspiration from Lua,
Wren, Monkey and Lox. The fundamental goal of Wyiltl is to
provide a simple syntax — that is easily readable and writeable.
While some liberties have been taken in regards to the design
of the language, it is still similar in structure to the
Programming Languages experienced developers will likely be
familiar with. Keywords are used instead of symbols to
increase the readability of the language. This design choice was
received positively and is a part of why Wyltl stands out.

In terms of Portability - a key design decision was to base the
language on the Go programming language instead of the C
programming language. This allowed for increased portability
and support for a wide range of platforms. It is important to
note that Go by itself does not guarantee portability. The
dependency free design used in Wyltl ensured that the full cross
compiling functions of the Go language could be used. Neither
Lua or Wren feature first class support for Web execution with
Web Assembly, but it is well supported in Wyltl. This mature
support for multiple platforms, despite being a young language,
makes Wyltl unique among programming languages.
Especially among the new generation of programming
languages (languages that saw their first release in the last
decade).

In terms of functionality WyItl aims to be a language that can
meet the needs of many users. While Wyltl is capable of being
used as a language for extending applications, as a scripting
language, or even a language for developing web applications,
it is defined as a general purpose programming language. The
difference in the Wyltl implementations is how its functionality
is implemented. Wyltl strictly implements most of its features
as parts of the standard library. This standard library itself is
implemented in a similar manner to a plugin system, where
users can add and remove functions as required.

A key feature of Wyltl is its interoperability. Wyltl can interop
with JavaScript quite easily and effectively using its Web
Assembly release. Additionally, Wyltl is not isolated from its
parent language as Wyltl — Go interoperability can be achieved
with little effort. While this feature is not unique to Wyltl (in
fact Lua is capable of interoperating with C as required), this
kind of robust first party support for interoperability is rare and
makes WyItl unique. It also heavily increases the value
proposition of Wyltl for experienced developers.

Wyltl’s approach with a compilation format (.wyltlc) is not
common, but is useful to users who might desire performance
or obfuscation — as it offers an easy way to share their code
while stopping other from easily viewing its inner workings. It
should also be mentioned that dual implementation of Wyltl
which allows users to have the choice between the Wyltl
interpreter and compiler depending on their requirements or
interest in modifying the language is an uncommon feature.

2.3 Programming Fundamentals in Wyltl
The choice to design Wyltl as an imperative programming
language was influenced by its popularity among new and
experienced developers. In practical use it was expected that
developers would use Wyltl to write straight forward logic
focusing on application state, as such an objected oriented
approach was determined to be illogical. It is possible that Go’s
imperative nature played a role in this decision as well.

The first of the three basic constructs is variable creation and
variable assignment.

23



suppose x is 1.
suppose y is 2.5.
suppose z is "Hello World".

Fig 1: Variable Definition and Assignment in Wyltl

As shown by above figure, Wyltl implements variable
definition using the ‘suppose’ keyword. It is also used to
implement variable re-assignment as well. Additionally, Wyltl
uses dynamic typing, as such defining data types for variables
is not required.

suppose x is 3 plus 1.
suppose y is 2 minus 1.

suppose z is 3 times 2.
Fig 2: Mathematical Operators in Wyltl

As shown by the above figure, Wyltl implements all standard
mathematical operators in addition to what is shown above
(over for division and modulo for modulus). Word based
keywords are used, however the user has the freedom to use the
symbol notation if required. This default notation was chosen
to improve the readability and simplicity of the language

suppose x is 1 below 2.

suppose x is 3 above 2.
suppose x is 3 equals 2 or 2 above 0.

Fig 3: Logical Operators in Wyltl

Wyltl implements all common logical operators (and, nequals
and not are implemented in addition to the above). In Wyltl, the
use of a logical operator will always result in a Boolean value.

if (3 above 2) {
return 1.
}else {
return 2.

}
Fig 4: Conditionals in Wyltl

The second basic construct — conditionals are implemented by
Wyltl as well. Wyltl, also offers a standalone if statement as
well. When designing the conditions in Wyltl, it was decided to
not force indentation rules regarding formatting code, which
was strongly requested by potential users.

for(suppose y is 3 : y below 12 : suppose y is y plus 1) {
print("Value of y is " plus y).
}
Fig 5: For loop in Wyltl

As shown by the above figure Wyltl’s implementation of the
for loop is slightly different, with the ‘:> symbol used to denote
separation. Standard while loops were designed to for Wyltl as
well. These constitute Wyltl’s implementation of the third basic
programming language construct.

2.4 Advanced Programming in Wyltl

While not considered as fundamentals there are several features
that are considered important in programming languages.
These can be loosely grouped together as ‘advanced
programming constructs’

suppose myArray is [1, 2, 4, minus 3, 0].
suppose sum is myArray[2] plus myArray[3].

Fig 6: Array and Index Operator Implementation in Wyltl

The basic data structure employed by Wyltl is arrays, which in
turn can be used within the language to create virtual data

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.76, March 2025

structures such as graphs, stacks and queues. Arrays in Wyltl
are dynamically typed themselves thus an array in Wyltl can
hold different types of data. As shown in the above figure, the
standard index operator can be used to retrieve an array
element.

suppose concatWithSpace is compose(x, y) {

return x plus " " plus y.
}.

concatWithSpace("John","Doe").
Fig 7: Function Creation and Execution in Wyltl

Functions can be defined with the use of the ‘suppose’ and
‘compose’ keywords within Wyltl. A function definition is
relatively flexible in that there are no defined limits regarding
what is possible within them. There is also no requirement to
return values, a function within Wyltl can execute without
returning anything.

suppose X is 3 minus 2.

switch(x) {

case(2) {
return "The wrong answer".

t
case(1) {
return "The correct answer!"

1
default {
return "The wrong answer".
}
}
Fig 8: Switch Case Conditional in Wyltl

Switch — Case conditionals are provided to use for Wyltl
programmers. Within Wyltl, switch case statements are flexible
in that they are not limited to evaluating the value of the given
reference. Instead, they can be used to evaluate expressions of
even perform type checking as required by the developer.

A common concern in dynamically typed programming
languages is automatic type conversion. A conscious decision
was taken to limit Wyltl’s automatic type conversions to
converting integers, floats and bool values to string in the case
of string concatenation. An additional fact to note is that the
‘null” data type was removed upon user request during
acceptance as a measure to ensure null safety within programs
written in Wyltl.

3. IMPLEMENTATION OF THE
WYLTL INTERPRETER

The reference Wyltl implementations are responsible for
implementing the portability and functionality of the Wyltl
language. These implementations are composed of several
packages.

L/

Parser -
Selection Recursive
Pratt Parser Desecent
Parser

|

Processor

Fig 9: Structure of the Wylt Interpreter

24



In the case of the Wyltl Interpreter these are the tokenizer, Pratt
parser [4] (or recursive descent parser), and the Processor.
These packages must coordinate together to prepare and
execute any given Wyltl code. In the distributed releases of the
Wyltl Interpreter and Compiler this coordination is performed
by the REPL package, or the Main package (in the web releases
of Wyltl). Care was taken to ensure simplicity and ease of
modification, and Wyltl users are encouraged to add new
features to the implementations if they desire to do so.

3.1 Tokenization of Wyltl Code

Tokenization in Wyltl is straightforward. The tokenizer parses
the given Wyltl code character by character. A point of interest
is that the Tokenizer supports Unicode characters, so there
should be little friction in using any language with Wyltl.
Additionally, comments are handled directly in the Tokenizer,
instead of being sent to the parser, which is a minor
optimization to increase processing speed.

SUPPOSE : suppose
IDENTIFIER : x

ASSIGN : is
INTEGER : 1
DOT :

Fig 10: Tokenized Output of "'suppose x is 1.""

The above figure represents the output of the Tokenizer given
a simple suppose statement. It is important to note that it is
possible to define multiple definitions for the same token. For
example, it is possible for a hypothetical user to easily modify
the token definitions to consider ‘let’ as the keyword for the
‘suppose’ statement if they so desire.

3.2 Parsing of Wyltl Code

After a given Wyltl code is tokenized, the resulting list of Wyiltl
tokens is passed to one Wyltl parser. The parsing process
results in two important results. Firstly, the given Wyltl code is
checked for any syntax errors or code structure violations
within the parser, as the Wyltl tokenizer forgoes any form of
error checking or validation to focus on execution speed.
Secondly, the parser is responsible for the creation of the
abstract syntax tree which are very important for both reference
implementations of the Wyltl language.

The reference implementations of Wyltl are unique in that they
support three different types of Parsers. Only one Parser can be
used at a time, and in fact Wyltl’s implementations by default
use the Wyltl Pratt parser as the default token parser. However,
a Packrat parser [5] and a recursive descent Parser are available
to be used if the user desires.

Within the context of the Wyltl implementations they return the
same output, however the way they function is different. A
Pratt Parser is built on the work described Vaughan Pratt’s
paper on parsing, it is both token centric and precedence base,
where each token has its own parse rules. It is easy to modify.
On the other hand, the Packrat Parser implemented in Wyltl is
grammar based and uses Strict grammar rules. It also uses
elements of dynamic programming as it caches partial results.
In comparison to them, the recursive descent parser is quite
simplistic as it uses top-down parsing in combination with
simple grammar rules.

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.76, March 2025

SUPPOSE : suppose
IDENTIFIER : x

ASSIGN : is
INTEGER : 1
PLUS : plus
INTEGER : 3
TIMES : times
INTEGER : 6
OVER : over
INTEGER : 2

Fig 11: Parsed Output of 'suppose x is 1 plus 3 times 6 over 2.'

As shown by the above figure, the Parsed output from the Wyltl
Parser will be properly structured. Any syntax errors within the
given Wyltl code will be caught during this process. Wyltl does
not continue parsing the code if any error is found, as such the
user will be asked to fix any errors before the processing can
continue.

3.3 Processing of Wyltl Code

The final step in the Wyltl Interpreter is the processor. The
processor is ‘brain’ of the Interpreter so to speak. The parsed
abstract syntax tree from a Wyltl parser is the input taken by
the Processor. The structure of the Processor itself is closely
modeled after a standard tree walking interpreter and
implemented using a visitor pattern, this approach was chosen
due to its ease of implementation, while allowing users to easily
modify and add new features to the language. However, the
heavy dependence on traversing the abstract syntax tree with
recursion results in relatively slow Wyltl code execution.
Variables and Wyltl runtime data is stored within
‘environments’ which are closed off tables. A global table is
always maintained, and for block statements closed off tables
are created to ensure that variable scopes are ensured. Variable
are passed by reference to ensure memory usage and increase
the execution speed of Wyltl code.

A potential weakness of the Processor is its heavy dependence
on runtime type checking. To counteract this weakness effort
has been taken to ensure that the Processor can infer basic Wyltl
data types such as Integer, Float and Bool as required, however
reflection is used as a fallback if automatic type inference
results in failure. Additionally, measures have been taken to
ensure type safety in the processing of all Wyltl code.

As additional measures for safety bounds checking, null safety,
scope protection, type safe error propagation and graceful error
handling have been implemented to ensure that users can use
the Wyltl Interpreter with confidence and trust.

4. IMPLEMENTATION OF THE
WYLTL COMPILER

The second reference Wyltl implementation is the Wyltl
Compiler. In reference to the Wyltl Interpreter, there are two
main differences which a regular user would be able to notice
when comparing the two reference Wyltl Implementations.
Firstly, the Wyltl Compiler is significantly faster when
compared with the Wyltl Interpreter. This is not true for all
tasks, but the in most operations, the difference is very much
noticeable. Secondly, the Wyltl compiler can compile any
Wyltl files (.wyltl) to the Wyltl compiled format (.wyltlc). In
terms of the implementation, the packages which comprise the
Compiler are unique to itself.

25



L

)

Pratt Parser

ecursive
Descent
Parser

wyltle
Compiler
W Yes Wyltle
Compiing Compilation
fo fe Process

No

wyltlc Virtual
Machine

Fig 12: Structure of the Wylt Compiler

As shown by the above figure, the Wyltl compiler uses the
same tokenization and parsing process used by the Wyltl
Interpreter. However, after the chosen parser creates the
relevant Wyltl abstract syntax tree, instead of passing to the
processor package to be directly executed, instead, the tree is
passed to the Wyltlc Compiler, which compiles the code and
executes it within the Wyltlc Virtual Machine.

4.1 Compilation of Wyltl Syntax Trees
The primary task of the Wyltlc compiler is to compile or
convert the given Wyltl code into the Wyltlc format.

WYLTL AST

compileStatement

Contains Statement

Contains Expression

compileExpression

Statement Expression
Instruction Instruction

WYLTLC Instructions

Fig 13: Compilation of Wyltl Code to Wyltlc

Create

As shown by the above diagram, it is more accurate to call the
compiler a ‘tree walking compiler’, as the compiler recursively
travels the given abstract syntax tree to generate Wyltlc
instructions. An instruction is composed of a node which is
extracted from the input abstract syntax tree. This effectively
simplifies each operation to a single instruction.

4.2 Implementation of the Wyltlc Format
The desktop versions of Wyltl have the ability to compile a
given Wyltl code file and save it as a Wyltlc file. This file
contains binary data which can be executed using the Wyltlc
virtual machine. The process of compiling Wyltl code to an
output file is done as a possible intermediate in execution if
enabled by the user.

. Register
- Registe! Encode -
Instructions - - .wyltlc File
Types Program & | =, ations to Fils
Statements

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.76, March 2025

Fig 14: Creation of standalone Wyiltlc file

The above figure showcases the creation of an output Wyltlc
file from the Wyltlc code created during the compilation
process. This process makes heavy of the ‘Gob’ packaged
within Go to serialize the compiled instructions to a storage
format. While Gob is slower when compared with
implementations such as protocol buffers, it offers a
dependency free and cross platform implementation, which is
very important in ensuring simplicity and portability. The
process is reversed when reading the output wyltlc using the
execute function in the Wyltl reference implementations. With
Gob being used to de-serialize the file and the encoded
statements and expressions being un-marshalled and sent to the
next stage of the execution process.

4.3 Implementation of the Wyltlc Virtual

Machine

The compiled Wyltlc code which is comprised out of
instructions is passed to the Wyltlc virtual machine for
execution. In essence it performs the same function as the
processor used within the Wyltl Interpreter, however the main
difference is that the Wyltlc virtual machine processes the
compiled Wyltlc instructions instead of the Wyltl abstract
syntax tree. This a middle point between a traditional
interpreter and a bytecode compiled that allows Wyltl to have
the advantages of both implementations, while reducing the
overall complexity significantly.

PROCESS NEXT INSTRUCTION More

Instructions?

Push Result to
Stack

Push Error to Stack

Process Instruction

Return Stack Top

Evaluate
Node Type

Fig 15: Instruction Processing Process within the Wyltl
Virtual Machine

The above figure elaborates on the fetch — decode — execute
cycle run by the virtual machine as it loops through the given
Wyltlc instructions. In this instance the instructions act as a
virtual ‘instruction set’. The virtual machine itself makes heavy
use of stacks in processing data, this allows it to avoid a
significant amount of recursion and achieve a baseline speed
that is 3 — 4 times faster than the interpreter when executing its
compiled Wyltlc code. Unlike traditional virtual machines,
several stacks will likely exist at time, since different scopes
maintain their own stacks. However, a central global stack is
used for managing global operations. To manipulate and
control the stack several helper methods such as push, pop and
peek are used. However, to manage the overall resource usage
of the stack itself Wyltl depends on Go’s garbage collection
mechanisms.

5. IMPLEMENTATION OF THE

WYLTL STANDARD LIBRARY

The Wyltl reference implementations, that is the Wyltl tree
walking interpreter, and the instruction-based compiler are
implementations of the core Wyltl Language. The ‘core’ Wyltl
language implements the basic and advanced programming
constructs touched upon in the ‘design of the Wyltl language’
topic. ‘Functionality’ is a core design goal of Wyltl, and it is
not implemented in the core design of the language, but instead
using a sibling package known as ‘standardLibraryFunctions’.
This results in a significant boost to the maintainability and

26




development velocity of the language. It should be noted that
many of Wyltl’s standard library functions are ‘return’
functions which take a given value and return another value.
Therefore, many standard library functions are used with the
‘suppose’ statement.

5.1 Implementation of 1/O Functionality
within the Wyltl Standard Library

A basic feature of any programming language is the ability to
accept inputs and display outputs to the user. Wyltl implements
these using its standard library as follows.

Table 1. 1/O functions in Wyltl

Function Purpose
print() Print an item using STDOUT
inputText() Take string input

inputNumber() Take integer input

inputFloat() Take floating point input

5.2 Implementation of String Functions
within the Wyltl Standard Library

While string manipulation is admittedly not a strong focus of
the Wyltl language, the standard library does offer some
convenience functions for dealing with strings.

Table 2. String focused functions in Wyltl

Function Purpose
length() Returns the length of an item*
upperCaseString() Returns an uppercase string

lowerCaseString() Returns a lowercase string

reverseString() Returns of reversed string

*This function can be used on both Arrays and Strings

5.3 Implementation of Array Functions
within the Wyltl Standard Library

Arrays are the principal data structure in the Wyltl language,
and they are core of many a complex program written in Wyltl.
As such Wyltl provides a complete set of functions focused on
demystifying usage and manipulation of arrays.

Table 3. Array functions in Wyltl

Function Purpose

firstArrayElement() Returns the first array element

lastArrayElement() Returns the last array element

Returns a copy of the array with
the given element added to the
end

pushArrayElement()

Returns a copy of the array with

popArrayElement() the first element removed

Converts the given string to an

stringToArray() array and returns it

Converts the given array to a

arrayToString() string and returns it

Takes an array, a index, and an
element as a parameters then
changeArrayElement() | returns an array with the element
at the given index replaced with
the given element

enqueueArrayElement() | Returns an array with the given

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.76, March 2025

element added to its end

Returns an array with its first

dequeueArrayElement() element removed

Adds the given element to the
cutLineArrayElement() | given index of the given array,
and returns the new Array

5.4 Implementation of Math Functions
within the Wyltl Standard Library

Alongside arrays, Wyltl places a strong emphasis on
mathematical calculations. As such, the Wyltl standard library
implements many common mathematical functions.

Table 4. Mathematical functions in Wyltl

Function Purpose

Return the exponential value of

exponent() the given number
logarithm() Return the base 10 logarithmic
9 value of the given number
. Returns the smaller of the
minimum() given two numbers
. Returns the larger of the given
maximum() two numbers
sine() Returns the sine equivalent of
the given value
cosine() Returns the cosine equivalent
of the given value
Returns the tangent equivalent
tangent() of the given value
. Returns the arc sine equivalent
arcSine()

of the given value

Returns the arc cosine

arcCosine() equivalent of the given value

Returns the arc tangent

arcTangent() equivalent of the given value

Returns the absolute value of

absoluteValue() the given number

Returns the value of the given

toPowerOf() base to the given power i.e.
(2,2)is 4
squareRoot() Returns the square root of the

given integer

Returns the integer conversion

floatTolnteger() of the given float

Returns the float conversion of

integerToFloat() the given integer

Returns a random float between

random() 0and 10
Rounds the given number up or
down. The positive or negative
round() position can be given as an

argument (this is the only Wyltl
function with a variable
number of input parameters)

5.5 Implementation of Date &Time
Functions within the Wyltl Standard
Library

Wyltl implements several Standard Library functions focused

on allowing users to easily capture and measure a particular

date and time. The way Wyltl implements these functions are
somewhat unique, with a focus on simplicity and functionality.

27



Table 5. Date & Time functions in Wyltl

Function Purpose
presentYear() _Returns the current year as an
integer
presentMonth() Returns the current month as an

integer between one and twelve

Returns the current day of the

presentDay() of the month as an integer
between one and thirty-one
Returns the current hour of the

presentHour() day as an integer between zero

and twenty-four

Returns the current minute of
the hour as an integer between
zero and sixty

presentMinute()

Returns the current second of
the minute as an integer
between zero and sixty

presentSecond()

Returns the current milli
second of the second as an
integer between zero and nine
hundred and ninety nine

presentMilliSecond()

5.6 Implementation of Type Checking
Functions within the Wyltl Standard
Library

Wyltl provides a standard type checking function to ensure that
type safety can be ensured within programs. Generally, type
checking is intended to be verbose within Wyltl, as such users
are expected to use the type checking function declaratively as
required. The data types implemented in Wyltl are INTEGER,
FLOAT, STRING, ARRAY, and FUNCTION.

typeOf(Data)
Fig 16: Standard Type Checking Function in Wyltl

5.7 Implementation of JavaScript
Interoperability within the Wyltl

Standard Library

While Wyltl attempts to maintain parity among the different
releases of Wyltl there is a feature supported in the Web or Web
Assembly release of Wyltl that is not supported in the
standalone desktop or embedded releases of Wyltl — that is the
ability to execute JavaScript code. This interoperability was
started with the request of allowing HTML document object
model manipulation in the Wyltl web release. However, it
gradually grew in scop until full JavaScript Interoperability was
achieved. This interoperability is made more robust with Wyltl’
ability to share data and variables with the executed JavaScript
code, and the ability of the JavaScript code to return values that
map to Wyltl’s native data types. It is important to note that
errors and undefined data will automatically be mapped to
strings. However, integers, floats, strings and arrays will map
to Wyltl as expected.

In terms of limitations, it must be noted that due to how the
Wyltl and JavaScript processes communicate with each other,
all objects and variables within JavaScript must be created as
objects of ‘window’ lest they become undefined.

Wyltl Implementation JavaScript Runtime

Wyltl Types IL——syscall/js

(String/Number/Float) prompt()y/eval()

js.Value =

Fig 17: Transfer of Data between Wyltl and JavaScript

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.76, March 2025

The above diagram provides a high-level overview of the
transfer of data between the two language runtimes.

5.8 Porting Wyltl to Web Assembly

Go’s support for Web Assembly made the initial exporting
process easy, only becoming easier due to Wyltl’s dependency
free implementation philosophy. However, the initial port
suffered from several limitations, it only ran in the Web
Browser’s developer console, and had no support for standard
input and output. Thus, some glue code had to be written to
connect them, which replaced the traditional console
application used on desktop, with a standard input and output
GUI made in JavaScript, HTML and CSS.

Return Values

WYLTL WASM | _—— § Output Display
{Compiled Go) [~ QDP”"‘()” (DOM Element)

JSlFuncli:Jn Ca\g

Fig 18: Glue connecting WyItl and the Web Browser

This functionality was used to introduce interoperability

between Wyltl and JavaScript.

6. EVALUATING THEWYLTL
IMPLEMENTATIONS

The native benchmarking suite available in Go was used to test
the efficacy of Wyltl’s performance.

Table 6. Wyltl Algorithm Benchmarks

Name of | Compiler | Interpreter | Interpreter | Compiler

Test Speed Speed (us) | Memory Memory
(us) Usage Usage

(KB) (KB)

Iterative- | 555.33 952.26 91.57 98.75

Fibonacci

Bubble- 97.60 374.46 3.00 9.85

Sort

Selection- | 121.48 370.69 3.09 10.17

Sort

Dijikstra- | 531.23 939.29 3.09 10.17

Search

Prims- 327.99 794.49 10.09 29.22

Search

Breadth- | 230.63 566.80 8.48 22.82

First-

Search

Depth- 184.18 501.90 7.76 20.36

First-

Search

Quick- 332.93 648.64 14.08 26.07

Sort

Merge- 629.57 963.25 29.13 41.23

Sort

The above table showcases the difference in execution speed
and efficiency between the Wyltl Compiler and Interpreter
when tested using Go’s native benchmarking tools.

28



Wyltl Compiler vs Interpreter Speed

E 800 -

E 6007 ? r’
"s 400 2 g . - é
& 200 4 ? ’ ? ? ? g

Test Cases

Fig 19: Differences in Wyltl Implementation Speed

The above graph showcases the difference in execution speed
between the Wyltl Compiler and Interpreter. For a given period
of, the compiler was able to consistently beat the interpreter in
speed ranging from a rate of 1.5x to 4x. This is a showcase of
different scenarios which the stack based virtual machine can
showcase its improved efficiency and direct execution speed
over the direct implementation of array-based environments as

used in the Wyltl Interpreter.

A Comparison of memory usage between the Wyltl interpreter
and compiler when running a variety of operations is provided
below.

Wyltl Compiler vs Interpreter Memory Usage

100+ 2 Wyltl Compiler
:-: o ? EEm Wyltl Interpreter
rN’
ﬁ 60 ’
S |7
E‘ 40 ?
£ v
Pl ] | /
vV
/ A7 AN
I § &
} & ﬁ)@@@&o@@ Qé&?@«"@ & &°
.@@ & &,b&' &
S
Test Cases

Fig 21: Differences in Wyltl Memory Usage

As shown by the above diagram, the Wyltl Compiler is far more
efficient in the amount of memory used. This is of considerable
importance, as lesser overall memory usage translates to lesser
burden on the Go garbage Collector, which in turn ensures
more consistent performance.

7. CONCLUSIONS AND FUTURE
WORK

The central conclusion of the project is that the creation of a
programming language with a potential balance of simplicity,
embeddability, portability and functionality using Go is not

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.76, March 2025

only valid, but holds great promise and potential. The mix of
low- and high-level functionality provided by go — along with
its excellent cross compilation provides an excellent base for
languages to build upon.

Additionally, there is further potential for improving Wyltl
with implementations of reference counting or mark and sweep
garbage collections that could lesson or resolve the issues
brought by using the Go garbage collector. In terms of features,
while all fundamental programming features have been
implemented there is always opportunity for improvements to
the Wyltl Standard Library.

While we were able to achieve a reasonably high level of
performance and optimization, there is some further room for
improvements regarding Wyltl. The implementation of detailed
networking libraries, and the implementation of binary
compilation using flat assembler or net assembler are valid but
beyond the initial scope of the project. While there is always
room for further optimization, and such efforts were attempted,
it came at the cost of overall readability and extendibility. As
optimizations resulted in Wyltl code and definitions that were
difficult to modify. A particular aim to strive towards in the
future is dogfooding. The process in which parts of the
language are written using itself. This is implemented to an
extent in Wyltl with array standard library functions. However,
further work can be performed to implement many other core
functions using Wyfltl itself.

8. ACKNOWLEDGMENTS

The author would like to express his gratitude towards
University of Bedfordshire and SLIIT City University for their
support during this research. Special thanks to Dr. Yasas
Jayaweera for his invaluable guidance and supervision
throughout the research. Additionally, the helpfulness of
Robert Nystrom’s book ‘Crafting Interpreters’ [6] is also
acknowledged and appreciated.

9. REFERENCES
[1] Ousterhout, J.K., 1998. Scripting: Higher level
programming for the 21st century. Computer, 31(3),

[2] lerusalimschy, R., de Figueiredo, L.H. and Filho, W.C.
(1996) ‘Lua—an extensible extension language’,
Software: Practice and Experience, 26(6), pp. 635-652.
doi:10.1002/(sici)1097-024x(199606)26:6 &It;635::aid-
spe26&gt;3.0.co;2-p.

[3] Nystrom, B. (no date) Wren. Available at: https://wren.io/
(Accessed: 22 February 2025

[4] Pratt, V.R. (1973) ‘Top-down operator precedence’,
Proceedings of the 1st annual ACM SIGACT-SIGPLAN
symposium on Principles of programming languages -
POPL 73, pp. 41-51. d0i:10.1145/512927. 512931..

[5] Ford, B. (2002) ‘Packrat parsing: Simple, Powerful, Lazy,
Linear Time’, Proceedings of the seventh ACM
SIGPLAN international conference on Functional
programming, pp. 36—47. doi:10.1145/581478.581483.

[6] Nystrom, R. (2021) Crafting interpreters. United States
Genever Benning.

29



