
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.76, March 2025

22

Design and Implementation of Wyltl: An Imperative,

Embeddable and Portable Programming Language

Dineth Mallawarachchi
Dept. of Computer Science University of

Bedfordshire,
Luton, LU1 3JU, UK

Yasas Jayaweera
Dean

SLIIT City University
Colombo 3, Colombo, SL

ABSTRACT

Wyltl is a programming language with a strong focus on

simplicity, portability and functionality. It supports core

imperative programming features such as variables,

conditionals, loops, functions, and closures. Additionally,

Wyltl provides a rich standard library with support for

mathematical, date / time, JavaScript Interoperability, i /o, type

conversion and more! Its implementation allows Wyltl code to

be executed on a variety of platforms such as Windows, Linux,

Web (via Web Assembly), and allows Wyltl to be used as an

embedded programming language for applications written

using the Go programming language. Wyltl offers two

reference implementations, a tree walking interpreter [3], and a

stack based virtual machine. The primary distinction between

the two is execution speed. Executing compiled Wyltl code

through the virtual machine is 1.5x - 4x faster depending on the

Wyltl code that is executed. However, developers who wish to

extend Wyltl with new language features will find the

Interpreter easier to modify. Wyltl includes a compilation

format named ‘wyltlc’ which allows developers to compile

their existing code to an intermediate format which can be

executed with the Wyltl stack based virtual machine. This

paper provides a breakdown of the design of the Wyltl language

and the implementation of its interpreter, compiler and virtual

machine.

General Terms

Programming Languages, Interpreter, Virtual Machines,

Compilers, Imperative Programming

Keywords

Embeddable Programming Language, Portable Programming

Language, Stack based Virtual Machine, Tree Walking

Interpreter, Web Assembly, Go.

1. INTRODUCTION
Simplicity and portability in programming languages should

not be ensured at the expense of functionality. Striking a

balance between the three is a classical problem in

programming language design. While there are several

programming languages that claim to maintain this balance,

none has managed to properly stay within the sub

consciousness of the developer community. Taking inspiration

from venerable languages such as Lua [4] Wyltl was created

with the belief that by ensuring that the three characteristics of

programming design are given an equal priority in the design

and implementation of the language, it will in turn ensure that

its usefulness to developers. That is, the goal of Wyltl is to

provide all developers the ability to create applications and

programs with ease, as a standalone language or embedded

language in complex Go projects.

1.1. Motivation
In implementing a project in Go, a mandate was given that the

end user be given the ability to program using a simple yet fully

functional programming language. Additionally, it must not

harm the project’s deployment. Within the Go ecosystem and

beyond, no language implementation could meet all the

requirements. It was this that led to the conceptual idea of Wyltl

as a programming language.

1.2. Key Features of Wyltl Implementations
The key features of the Wyltl Language and its

implementations are based on ensuring that simplicity,

portability, functionality and embed-ability are all considered

in the design and implementation of the language

The Wyltl language is simple and familiar. It is easy for a new

programmer to learn, and experienced programmers can start

using the language within the timespan of an afternoon. Its

simple syntax was also designed with the goal of ensuring that

the language is readable, akin to traditional pseudocode.

Wyltl’s functionality is ensured with the implementation of all

common imperative programming concepts. Pseudocode or

code written in another language can easily be re-written in

Wyltl. As such, Wyltl can also be used as an introductory

programming language.

Wyltl offers an interpreter and compiler. The implementation

of the Wyltl compiler is unique as it has been implemented with

easy modification in mind. These implementations are portable

and can be run on all major desktop operating systems and Web

Browsers. This ensures that users can execute their Wyltl

applications on any modern platform. For experienced

developers, the Wyltl implementations are easily embeddable

within a Go application. Additionally, it is also possible to

execute JavaScript code through Wyltl in the web version of

the Wyltl implementations.

1.3. Development Approach
Some overlap was present in the development of the Wyltl

Interpreter and Compiler, as two core components required for

each (the parser and the tokenizer) were shared. This

significantly assisted in maintaining functional parity between

the two implementations, as using the same parser ensures that

both implementations handle Wyltl parsing properly, proper

logic is ensured by using unit tests and running complex Wyltl

code in both implementations and comparing the results. When

combined with user acceptance tests, it was possible to

minimize undefined behavior to a minimum. No external

dependencies were used in implementing the project, this

greatly assisted in ensuring portability, and ensuring Wyltl

could be used as a scripting language [6].

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.76, March 2025

23

2. DESIGN OF THE WYLTL

LANGUAGE
Out of simplicity, portability, embed-ability and functionality.

The core language design of the Wyltl language is responsible

for ensuring the characteristics of simplicity and portability. A

literature review was performed to ascertain what could be

done to ensure how could be designed. It was also important to

consider practicality of implementing language features as well

After investigation, a bottom – up approach was followed, in

which the fundamentals would be designed first.

2.1. Simmilar Programming Languages
It is generally accepted that programming languages inherit

features and characteristics from ‘parent’ programming

languages. It is not excessive to say that the lineages of popular

programming languages of today can be traced back to different

programming languages from decades ago – such as Java and

its grand-parent-language simula-67. In the case of Wyltl there

are several programming languages which hold characteristics

that Wyltl draws inspiration from.

2.1.1 Lua – The programming language for

application extension
Lua [5] is a programming language with a rich history and a

passionate user-base. It has enjoyed success in many

endeavors, but it’s main use has come as an ‘embeddable

language’, meaning that Lua is often embedded into

applications and systems, and used to implement features and

functions. Two popular examples are Roblox (the popular

children’s video game platform) and MPV (a media player).

Though used in wildly differing applications the use of Lua is

always done in a similar manner – with it being used to

implement additional features. The pain points many users

express with Lua are its unique syntax. However, it is

undeniable that Lua’s syntax is simple and effective. Wyltl

draws in heavy inspiration from Lua’s overall philosophy.

Lua’s main limitation comes from its most important strength,

as being written in C guarantees high portability and room for

optimization, attempting to interop with languages such as Rust

and Go severely affect portability. However, it should be noted

that this not a problem with Lua, Rust or Go, but with the

fragmentation of C compilers.

2.1.2 Wren – A small concurrent scripting

language
Wren [4] is a language created by Bob Nystrom, the author of

‘Crafting Interpreters’. It is similar to Lua in many ways, they

are both written in C, are primarily created as scripting

languages which can be embedded within existing projects and

implementations. Additionally, Wren’s syntax is generic, but

this plays into its favor as it makes the language understandable

and easy to learn. Wren itself has no qualms about stepping into

complexity with support for concurrency and objected oriented

programming paradigm support. Its weaknesses are very

similar to those used of Lua. ‘C’ as a programming language is

only used in certain sectors and areas of development, with

most casual users preferring to use languages such as

JavaScript, Python, Go, Rust, etc. It is apparent that Lua has

already taken the fundamental role of the ‘embeddable

language for C’ niche. That combined with the portability

issues that arise when trying to interop with other language

harm the possible of Wren’s adoption. Regardless, Wren's

philosophy of clear and simple language design, is worthy of

admiration.

2.2. What makes the Wyltl Programming

Language Unique?
Wyltl has three main focuses – that is simplicity, portability and

functionality. The main research problem that Wyltl attempts

to tackle is the fine balance between the three aspects. This

section is an overview of how Wyltl uses these aspects to

improve the experience of its users, and how it attempts to

evolve the design and implementation decisions of similar

languages.

Regarding simplicity, Wyltl draws in inspiration from Lua,

Wren, Monkey and Lox. The fundamental goal of Wyltl is to

provide a simple syntax – that is easily readable and writeable.

While some liberties have been taken in regards to the design

of the language, it is still similar in structure to the

Programming Languages experienced developers will likely be

familiar with. Keywords are used instead of symbols to

increase the readability of the language. This design choice was

received positively and is a part of why Wyltl stands out.

In terms of Portability - a key design decision was to base the

language on the Go programming language instead of the C

programming language. This allowed for increased portability

and support for a wide range of platforms. It is important to

note that Go by itself does not guarantee portability. The

dependency free design used in Wyltl ensured that the full cross

compiling functions of the Go language could be used. Neither

Lua or Wren feature first class support for Web execution with

Web Assembly, but it is well supported in Wyltl. This mature

support for multiple platforms, despite being a young language,

makes Wyltl unique among programming languages.

Especially among the new generation of programming

languages (languages that saw their first release in the last

decade).

In terms of functionality Wyltl aims to be a language that can

meet the needs of many users. While Wyltl is capable of being

used as a language for extending applications, as a scripting

language, or even a language for developing web applications,

it is defined as a general purpose programming language. The

difference in the Wyltl implementations is how its functionality

is implemented. Wyltl strictly implements most of its features

as parts of the standard library. This standard library itself is

implemented in a similar manner to a plugin system, where

users can add and remove functions as required.

A key feature of Wyltl is its interoperability. Wyltl can interop

with JavaScript quite easily and effectively using its Web

Assembly release. Additionally, Wyltl is not isolated from its

parent language as Wyltl – Go interoperability can be achieved

with little effort. While this feature is not unique to Wyltl (in

fact Lua is capable of interoperating with C as required), this

kind of robust first party support for interoperability is rare and

makes Wyltl unique. It also heavily increases the value

proposition of Wyltl for experienced developers.

Wyltl’s approach with a compilation format (.wyltlc) is not

common, but is useful to users who might desire performance

or obfuscation – as it offers an easy way to share their code

while stopping other from easily viewing its inner workings. It

should also be mentioned that dual implementation of Wyltl

which allows users to have the choice between the Wyltl

interpreter and compiler depending on their requirements or

interest in modifying the language is an uncommon feature.

2.3. Programming Fundamentals in Wyltl
The choice to design Wyltl as an imperative programming

language was influenced by its popularity among new and

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.76, March 2025

24

experienced developers. In practical use it was expected that

developers would use Wyltl to write straight forward logic

focusing on application state, as such an objected oriented

approach was determined to be illogical. It is possible that Go’s

imperative nature played a role in this decision as well.

The first of the three basic constructs is variable creation and

variable assignment.

Fig 1: Variable Definition and Assignment in Wyltl

As shown by above figure, Wyltl implements variable

definition using the ‘suppose’ keyword. It is also used to

implement variable re-assignment as well. Additionally, Wyltl

uses dynamic typing, as such defining data types for variables

is not required.

Fig 2: Mathematical Operators in Wyltl

As shown by the above figure, Wyltl implements all standard

mathematical operators in addition to what is shown above

(over for division and modulo for modulus). Word based

keywords are used, however the user has the freedom to use the

symbol notation if required. This default notation was chosen

to improve the readability and simplicity of the language

Fig 3: Logical Operators in Wyltl

Wyltl implements all common logical operators (and, nequals

and not are implemented in addition to the above). In Wyltl, the

use of a logical operator will always result in a Boolean value.

Fig 4: Conditionals in Wyltl

The second basic construct – conditionals are implemented by

Wyltl as well. Wyltl, also offers a standalone if statement as

well. When designing the conditions in Wyltl, it was decided to

not force indentation rules regarding formatting code, which

was strongly requested by potential users.

Fig 5: For loop in Wyltl

As shown by the above figure Wyltl’s implementation of the

for loop is slightly different, with the ‘:’ symbol used to denote

separation. Standard while loops were designed to for Wyltl as

well. These constitute Wyltl’s implementation of the third basic

programming language construct.

2.4. Advanced Programming in Wyltl
While not considered as fundamentals there are several features

that are considered important in programming languages.

These can be loosely grouped together as ‘advanced

programming constructs’

Fig 6: Array and Index Operator Implementation in Wyltl

The basic data structure employed by Wyltl is arrays, which in

turn can be used within the language to create virtual data

structures such as graphs, stacks and queues. Arrays in Wyltl

are dynamically typed themselves thus an array in Wyltl can

hold different types of data. As shown in the above figure, the

standard index operator can be used to retrieve an array

element.

Fig 7: Function Creation and Execution in Wyltl

Functions can be defined with the use of the ‘suppose’ and

‘compose’ keywords within Wyltl. A function definition is

relatively flexible in that there are no defined limits regarding

what is possible within them. There is also no requirement to

return values, a function within Wyltl can execute without

returning anything.

Fig 8: Switch Case Conditional in Wyltl

Switch – Case conditionals are provided to use for Wyltl

programmers. Within Wyltl, switch case statements are flexible

in that they are not limited to evaluating the value of the given

reference. Instead, they can be used to evaluate expressions of

even perform type checking as required by the developer.

A common concern in dynamically typed programming

languages is automatic type conversion. A conscious decision

was taken to limit Wyltl’s automatic type conversions to

converting integers, floats and bool values to string in the case

of string concatenation. An additional fact to note is that the

‘null’ data type was removed upon user request during

acceptance as a measure to ensure null safety within programs

written in Wyltl.

3. IMPLEMENTATION OF THE

WYLTL INTERPRETER
The reference Wyltl implementations are responsible for

implementing the portability and functionality of the Wyltl

language. These implementations are composed of several

packages.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.76, March 2025

25

Fig 9: Structure of the Wylt Interpreter

In the case of the Wyltl Interpreter these are the tokenizer, Pratt

parser [1] (or recursive descent parser), and the Processor.

These packages must coordinate together to prepare and

execute any given Wyltl code. In the distributed releases of the

Wyltl Interpreter and Compiler this coordination is performed

by the REPL package, or the Main package (in the web releases

of Wyltl). Care was taken to ensure simplicity and ease of

modification, and Wyltl users are encouraged to add new

features to the implementations if they desire to do so.

3.1 Tokenization of Wyltl Code
Tokenization in Wyltl is straightforward. The tokenizer parses

the given Wyltl code character by character. A point of interest

is that the Tokenizer supports Unicode characters, so there

should be little friction in using any language with Wyltl.

Additionally, comments are handled directly in the Tokenizer,

instead of being sent to the parser, which is a minor

optimization to increase processing speed.

Fig 10: Tokenized Output of "suppose x is 1."

The above figure represents the output of the Tokenizer given

a simple suppose statement. It is important to note that it is

possible to define multiple definitions for the same token. For

example, it is possible for a hypothetical user to easily modify

the token definitions to consider ‘let’ as the keyword for the

‘suppose’ statement if they so desire.

3.2 Parsing of Wyltl Code
After a given Wyltl code is tokenized, the resulting list of Wyltl

tokens is passed to one Wyltl parser. The parsing process

results in two important results. Firstly, the given Wyltl code is

checked for any syntax errors or code structure violations

within the parser, as the Wyltl tokenizer forgoes any form of

error checking or validation to focus on execution speed.

Secondly, the parser is responsible for the creation of the

abstract syntax tree which are very important for both reference

implementations of the Wyltl language.

The reference implementations of Wyltl are unique in that they

support three different types of Parsers. Only one Parser can be

used at a time, and in fact Wyltl’s implementations by default

use the Wyltl Pratt parser as the default token parser. However,

a Packrat parser [2] and a recursive descent Parser are available

to be used if the user desires.

Within the context of the Wyltl implementations they return the

same output, however the way they function is different. A

Pratt Parser is built on the work described Vaughan Pratt’s

paper on parsing, it is both token centric and precedence base,

where each token has its own parse rules. It is easy to modify.

On the other hand, the Packrat Parser implemented in Wyltl is

grammar based and uses Strict grammar rules. It also uses

elements of dynamic programming as it caches partial results.

In comparison to them, the recursive descent parser is quite

simplistic as it uses top-down parsing in combination with

simple grammar rules.

Fig 11: Parsed Output of 'suppose x is 1 plus 3 times 6 over 2.'

As shown by the above figure, the Parsed output from the Wyltl

Parser will be properly structured. Any syntax errors within the

given Wyltl code will be caught during this process. Wyltl does

not continue parsing the code if any error is found, as such the

user will be asked to fix any errors before the processing can

continue.

3.3 Processing of Wyltl Code
The final step in the Wyltl Interpreter is the processor. The

processor is ‘brain’ of the Interpreter so to speak. The parsed

abstract syntax tree from a Wyltl parser is the input taken by

the Processor. The structure of the Processor itself is closely

modeled after a standard tree walking interpreter and

implemented using a visitor pattern, this approach was chosen

due to its ease of implementation, while allowing users to easily

modify and add new features to the language. However, the

heavy dependence on traversing the abstract syntax tree with

recursion results in relatively slow Wyltl code execution.

Variables and Wyltl runtime data is stored within

‘environments’ which are closed off tables. A global table is

always maintained, and for block statements closed off tables

are created to ensure that variable scopes are ensured. Variable

are passed by reference to ensure memory usage and increase

the execution speed of Wyltl code.

A potential weakness of the Processor is its heavy dependence

on runtime type checking. To counteract this weakness effort

has been taken to ensure that the Processor can infer basic Wyltl

data types such as Integer, Float and Bool as required, however

reflection is used as a fallback if automatic type inference

results in failure. Additionally, measures have been taken to

ensure type safety in the processing of all Wyltl code.

As additional measures for safety bounds checking, null safety,

scope protection, type safe error propagation and graceful error

handling have been implemented to ensure that users can use

the Wyltl Interpreter with confidence and trust.

4. IMPLEMENTATION OF THE

WYLTL COMPILER
The second reference Wyltl implementation is the Wyltl

Compiler. In reference to the Wyltl Interpreter, there are two

main differences which a regular user would be able to notice

when comparing the two reference Wyltl Implementations.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.76, March 2025

26

Firstly, the Wyltl Compiler is significantly faster when

compared with the Wyltl Interpreter. This is not true for all

tasks, but the in most operations, the difference is very much

noticeable. Secondly, the Wyltl compiler can compile any

Wyltl files (.wyltl) to the Wyltl compiled format (.wyltlc). In

terms of the implementation, the packages which comprise the

Compiler are unique to itself.

Fig 12: Structure of the Wylt Compiler

As shown by the above figure, the Wyltl compiler uses the

same tokenization and parsing process used by the Wyltl

Interpreter. However, after the chosen parser creates the

relevant Wyltl abstract syntax tree, instead of passing to the

processor package to be directly executed, instead, the tree is

passed to the Wyltlc Compiler, which compiles the code and

executes it within the Wyltlc Virtual Machine.

4.1 Compilation of Wyltl Syntax Trees
The primary task of the Wyltlc compiler is to compile or

convert the given Wyltl code into the Wyltlc format.

Fig 13: Compilation of Wyltl Code to Wyltlc

As shown by the above diagram, it is more accurate to call the

compiler a ‘tree walking compiler’, as the compiler recursively

travels the given abstract syntax tree to generate Wyltlc

instructions. An instruction is composed of a node which is

extracted from the input abstract syntax tree. This effectively

simplifies each operation to a single instruction.

Fig 14: Creation of standalone Wyltlc file

4.2 Implementation of the Wyltlc Format
The desktop versions of Wyltl have the ability to compile a

given Wyltl code file and save it as a Wyltlc file. This file

contains binary data which can be executed using the Wyltlc

virtual machine. The process of compiling Wyltl code to an

output file is done as a possible intermediate in execution if

enabled by the user.

The above figure showcases the creation of an output Wyltlc

file from the Wyltlc code created during the compilation

process. This process makes heavy of the ‘Gob’ packaged

within Go to serialize the compiled instructions to a storage

format. While Gob is slower when compared with

implementations such as protocol buffers, it offers a

dependency free and cross platform implementation, which is

very important in ensuring simplicity and portability. The

process is reversed when reading the output wyltlc using the

execute function in the Wyltl reference implementations. With

Gob being used to de-serialize the file and the encoded

statements and expressions being un-marshalled and sent to the

next stage of the execution process.

4.3 Implementation of the Wyltlc Virtual

Machine
The compiled Wyltlc code which is comprised out of

instructions is passed to the Wyltlc virtual machine for

execution. In essence it performs the same function as the

processor used within the Wyltl Interpreter, however the main

difference is that the Wyltlc virtual machine processes the

compiled Wyltlc instructions instead of the Wyltl abstract

syntax tree. This a middle point between a traditional

interpreter and a bytecode compiled that allows Wyltl to have

the advantages of both implementations, while reducing the

overall complexity significantly.

Fig 15: Instruction Processing Process within the Wyltl

Virtual Machine

The above figure elaborates on the fetch – decode – execute

cycle run by the virtual machine as it loops through the given

Wyltlc instructions. In this instance the instructions act as a

virtual ‘instruction set’. The virtual machine itself makes heavy

use of stacks in processing data, this allows it to avoid a

significant amount of recursion and achieve a baseline speed

that is 3 – 4 times faster than the interpreter when executing its

compiled Wyltlc code. Unlike traditional virtual machines,

several stacks will likely exist at time, since different scopes

maintain their own stacks. However, a central global stack is

used for managing global operations. To manipulate and

control the stack several helper methods such as push, pop and

peek are used. However, to manage the overall resource usage

of the stack itself Wyltl depends on Go’s garbage collection

mechanisms.

5. IMPLEMENTATION OF THE

WYLTL STANDARD LIBRARY
The Wyltl reference implementations, that is the Wyltl tree

walking interpreter, and the instruction-based compiler are

implementations of the core Wyltl Language. The ‘core’ Wyltl

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.76, March 2025

27

language implements the basic and advanced programming

constructs touched upon in the ‘design of the Wyltl language’

topic. ‘Functionality’ is a core design goal of Wyltl, and it is

not implemented in the core design of the language, but instead

using a sibling package known as ‘standardLibraryFunctions’.

This results in a significant boost to the maintainability and

development velocity of the language. It should be noted that

many of Wyltl’s standard library functions are ‘return’

functions which take a given value and return another value.

Therefore, many standard library functions are used with the

‘suppose’ statement.

5.1 Implementation of I/O Functionality

within the Wyltl Standard Library
A basic feature of any programming language is the ability to

accept inputs and display outputs to the user. Wyltl implements

these using its standard library as follows.

Table 1. I/O functions in Wyltl

Function Purpose

print() Print an item using STDOUT

inputText() Take string input

inputNumber() Take integer input

inputFloat() Take floating point input

5.2 Implementation of String Functions

within the Wyltl Standard Library
While string manipulation is admittedly not a strong focus of

the Wyltl language, the standard library does offer some

convenience functions for dealing with strings.

Table 2. String focused functions in Wyltl

Function Purpose

length() Returns the length of an item*

upperCaseString() Returns an uppercase string

lowerCaseString() Returns a lowercase string

reverseString() Returns of reversed string

*This function can be used on both Arrays and Strings

5.3 Implementation of Array Functions

within the Wyltl Standard Library
Arrays are the principal data structure in the Wyltl language,

and they are core of many a complex program written in Wyltl.

As such Wyltl provides a complete set of functions focused on

demystifying usage and manipulation of arrays.

Table 3. Array functions in Wyltl

Function Purpose

firstArrayElement() Returns the first array element

lastArrayElement() Returns the last array element

pushArrayElement()

Returns a copy of the array with

the given element added to the

end

popArrayElement()
Returns a copy of the array with

the first element removed

stringToArray()
Converts the given string to an

array and returns it

arrayToString()
Converts the given array to a

string and returns it

changeArrayElement()

Takes an array, a index, and an

element as a parameters then

returns an array with the element

at the given index replaced with

the given element

enqueueArrayElement()
Returns an array with the given

element added to its end

dequeueArrayElement()
Returns an array with its first

element removed

cutLineArrayElement()

Adds the given element to the

given index of the given array,

and returns the new Array

5.4 Implementation of Math Functions

within the Wyltl Standard Library
Alongside arrays, Wyltl places a strong emphasis on

mathematical calculations. As such, the Wyltl standard library

implements many common mathematical functions.

Table 4. Mathematical functions in Wyltl

Function Purpose

exponent()
Return the exponential value of

the given number

logarithm()
Return the base 10 logarithmic

value of the given number

minimum()
Returns the smaller of the

given two numbers

maximum()
Returns the larger of the given

two numbers

sine()
Returns the sine equivalent of

the given value

cosine()
Returns the cosine equivalent

of the given value

tangent()
Returns the tangent equivalent

of the given value

arcSine()
Returns the arc sine equivalent

of the given value

arcCosine()
Returns the arc cosine

equivalent of the given value

arcTangent()
Returns the arc tangent

equivalent of the given value

absoluteValue()
Returns the absolute value of

the given number

toPowerOf()

Returns the value of the given

base to the given power i.e.

(2,2) is 4

squareRoot()
Returns the square root of the

given integer

floatToInteger()
Returns the integer conversion

of the given float

integerToFloat()
Returns the float conversion of

the given integer

random()
Returns a random float between

0 and 10

round()

Rounds the given number up or

down. The positive or negative

position can be given as an

argument (this is the only Wyltl

function with a variable

number of input parameters)

5.5 Implementation of Date &Time

Functions within the Wyltl Standard

Library
Wyltl implements several Standard Library functions focused

on allowing users to easily capture and measure a particular

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.76, March 2025

28

date and time. The way Wyltl implements these functions are

somewhat unique, with a focus on simplicity and functionality.

Table 5. Date & Time functions in Wyltl

Function Purpose

presentYear()
Returns the current year as an

integer

presentMonth()
Returns the current month as an

integer between one and twelve

presentDay()

Returns the current day of the

of the month as an integer

between one and thirty-one

presentHour()

Returns the current hour of the

day as an integer between zero

and twenty-four

presentMinute()

Returns the current minute of

the hour as an integer between

zero and sixty

presentSecond()

Returns the current second of

the minute as an integer

between zero and sixty

presentMilliSecond()

Returns the current milli

second of the second as an

integer between zero and nine

hundred and ninety nine

5.6 Implementation of Type Checking

Functions within the Wyltl Standard

Library
Wyltl provides a standard type checking function to ensure that

type safety can be ensured within programs. Generally, type

checking is intended to be verbose within Wyltl, as such users

are expected to use the type checking function declaratively as

required. The data types implemented in Wyltl are INTEGER,

FLOAT, STRING, ARRAY, and FUNCTION.

Fig 16: Standard Type Checking Function in Wyltl

5.7 Implementation of JavaScript

Interoperability within the Wyltl Standard

Library
While Wyltl attempts to maintain parity among the different

releases of Wyltl there is a feature supported in the Web or Web

Assembly release of Wyltl that is not supported in the

standalone desktop or embedded releases of Wyltl – that is the

ability to execute JavaScript code. This interoperability was

started with the request of allowing HTML document object

model manipulation in the Wyltl web release. However, it

gradually grew in scop until full JavaScript Interoperability was

achieved. This interoperability is made more robust with Wyltl’

ability to share data and variables with the executed JavaScript

code, and the ability of the JavaScript code to return values that

map to Wyltl’s native data types. It is important to note that

errors and undefined data will automatically be mapped to

strings. However, integers, floats, strings and arrays will map

to Wyltl as expected.

In terms of limitations, it must be noted that due to how the

Wyltl and JavaScript processes communicate with each other,

all objects and variables within JavaScript must be created as

objects of ‘window’ lest they become undefined.

Fig 17: Transfer of Data between Wyltl and JavaScript

The above diagram provides a high-level overview of the

transfer of data between the two language runtimes.

5.8 Porting Wyltl to Web Assembly
Go’s support for Web Assembly made the initial exporting

process easy, only becoming easier due to Wyltl’s dependency

free implementation philosophy. However, the initial port

suffered from several limitations, it only ran in the Web

Browser’s developer console, and had no support for standard

input and output. Thus, some glue code had to be written to

connect them, which replaced the traditional console

application used on desktop, with a standard input and output

GUI made in JavaScript, HTML and CSS.

Fig 18: Glue connecting Wyltl and the Web Browser

This functionality was used to introduce interoperability

between Wyltl and JavaScript.

6. EVALUATING THE WYLTL

IMPLEMENTATIONS
The native benchmarking suite available in Go was used to test

the efficacy of Wyltl’s performance.

Table 6. Wyltl Algorithm Benchmarks

Name of

Test

Compile

r Speed

(μs)

Interprete

r Speed

(μs)

Interprete

r Memory

Usage
(KB)

Compile

r

Memory

Usage
(KB)

Iterative-

Fibonacc

i

555.33 952.26 91.57 98.75

Bubble-

Sort
97.60 374.46 3.00 9.85

Selection

-Sort
121.48 370.69 3.09 10.17

Dijikstra-

Search
531.23 939.29 3.09 10.17

Prims-

Search
327.99 794.49 10.09 29.22

Breadth-

First-

Search

230.63 566.80 8.48 22.82

Depth-

First-

Search

184.18 501.90 7.76 20.36

Quick-

Sort
332.93 648.64 14.08 26.07

Merge-

Sort
629.57 963.25 29.13 41.23

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.76, March 2025

29

 The above table showcases the difference in execution speed

and efficiency between the Wyltl Compiler and Interpreter

when tested using Go’s native benchmarking tools.

Fig 19: Differences in Wyltl Implementation Speed

The above graph showcases the difference in execution speed

between the Wyltl Compiler and Interpreter. For a given period

of, the compiler was able to consistently beat the interpreter in

speed ranging from a rate of 1.5x to 4x. This is a showcase of

different scenarios which the stack based virtual machine can

showcase its improved efficiency and direct execution speed

over the direct implementation of array based environments as

used in the Wyltl Interpreter.

A Comparison of memory usage between the Wyltl interpreter

and compiler when running the same bubble-sort operation is

provided below.

Fig 21: Differences in Wyltl Memory Usage

As shown by the below two diagrams, the Wyltl Compiler is

far more efficient in the amount of memory used. This is of

considerable importance, as lesser overall memory usage

translates to lesser burden on the Go garbage Collector, which

in turn ensures more consistent performance.

7. CONCLUSIONS AND FUTURE

WORK
The central conclusion of the project is that the creation of a

programming language with a potential balance of simplicity,

embeddability, portability and functionality using Go is not

only valid, but holds great promise and potential. The mix of

low and high level functionality provided by go – along with

its excellent cross compilation provides an excellent base for

languages to build upon.

While we were able to achieve a reasonably high level of

performance and optimization, there is some further room for

improvements in regard to Wyltl. The implementation of

detailed networking libraries, and the implementation of binary

compilation using flat assembler or net assembler are valid but

beyond the initial scope of the project. While there is always

room for further optimization, and such efforts were attempted,

it came at the cost of overall readability and extendibility. As

optimizations resulted in Wyltl code and definitions that were

difficult to modify. A particular aim to strive towards in the

future is dogfooding. The process in which parts of the

language are written using itself. This is implemented to an

extent in Wyltl with array standard library functions. However,

further work can be performed to implement many other core

functions using Wyltl itself.

8. ACKNOWLEDGMENTS
The author would like to express his gratitude towards

University of Bedfordshire and SLIIT City University for their

support during this research. Special thanks to Dr. Yasas

Jayaweera for his invaluable guidance and supervision

throughout the research.

9. REFERENCES
[1] Pratt, V.R. (1973) ‘Top-down operator precedence’,

Proceedings of the 1st annual ACM SIGACT-SIGPLAN

symposium on Principles of programming languages -

POPL ’73, pp. 41–51. doi:10.1145/512927. 512931.

[2] Ford, B. (2002) ‘Packrat parsing: Simple, Powerful, Lazy,

Linear Time’, Proceedings of the seventh ACM

SIGPLAN international conference on Functional

programming, pp. 36–47. doi:10.1145/581478.581483.

[3] Nystrom, R. (2021) Crafting interpreters. United States

Genever Benning.

[4] Nystrom, B. (no date) Wren. Available at: https://wren.io/

(Accessed: 22 February 2025).

[5] Ierusalimschy, R., de Figueiredo, L.H. and Filho, W.C.

(1996) ‘Lua—an extensible extension language’,

Software: Practice and Experience, 26(6), pp. 635–652.

doi:10.1002/(sici)1097-024x(199606)26:6<635::aid-

spe26>3.0.co;2-p.

[6] Ousterhout, J.K., 1998. Scripting: Higher level

programming for the 21st century. Computer, 31(3).

IJCATM : www.ijcaonline.org

