
International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.76, March 2025

Improving Road Safety through Deep Learning-based
Approaches for Road Damage Detection and

Classification

Md. Mahadi Hasan
Dept. of CSE

Rajshahi University of Engineering
and Technology, Rajshahi-6204, Bangladesh

Boshir Ahmed
Dept. of CSE

Rajshahi University of Engineering
and Technology, Rajshahi-6204, Bangladesh

ABSTRACT
Transportation heavily depends on roads, which require proper
maintenance for safe and efficient travel. Traditional manual in-
spection methods are time consuming, labor-intensive and pose
safety risks. To address these challenges, Deep learning models are
presented for road damage detection using two benchmark datasets:
RDD-2020 and RDD-2022. This study compares five models in-
tegrating feature extractors such as ResNet-50, ResNet-101, and
MobileNetv3 with detection frameworks like Faster R-CNN, SSD,
and YOLO. Among them, YOLOv10 achieved the best perfor-
mance. Fine-tuning with the Adam optimizer and a batch size
of four improved its F1 scores to 0.67 for RDD-2022 and 0.63
for RDD-2020. Additionally, the CrackBD-2024 dataset was de-
veloped, consisting of 2,038 images with 5,060 instances from
Bangladeshi roads, to enhance the generalization of the models.
This work contributes to advancing road damage detection, im-
proving monitoring, and facilitating better maintenance planning.
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1. INTRODUCTION
Efficient and safe transportation depends on the proper mainte-
nance of road infrastructure. Traditional methods for detecting road
damage, such as visual inspections for cracks and potholes, are
time-consuming, labor-intensive, and prone to human error. Ad-
ditionally, these inspections pose significant safety risks for per-
sonnel. In Bangladesh, where urban roads are a vital component
of public transportation, road accidents remain a major concern. A
2024 report by the Road Safety Foundation recorded 6,927 road
accidents, resulting in 7,294 fatalities and 12,019 injuries. To im-
prove road safety, regular inspections and timely maintenance are
essential.

Advancements in artificial intelligence, particularly deep learning,
provide a promising solution for automating road damage detection
through image analysis. This technology significantly enhances ac-
curacy, speeds up the process, and reduces costs compared to con-
ventional methods. Automated detection also improves road main-
tenance planning and resource allocation, ultimately contributing
to safer and more efficient transportation systems.
This study explores advanced detection algorithms and feature ex-
traction models to enhance the accuracy of road damage detection.
Using the RDD-2020 and RDD-2022 datasets, Detection networks
such as YOLO, Faster R-CNN, and SSD were integrated with fea-
ture extractors like ResNet-50, ResNet-101, and MobileNet v3.
Among these architectures, YOLOv10 demonstrated the highest
accuracy in identifying and classifying damaged regions.
Road damage detection involves three primary tasks: classification,
detection, and segmentation. Classification determines whether
damage is present, detection identifies its location, and segmen-
tation defines its precise boundaries. A key challenge in this do-
main is accurately identifying multiple overlapping damaged areas
within a single image. Advanced object detection techniques im-
proved the precision of damage identification and classification, ef-
fectively addressing these challenges. The findings of this study can
be encapsulated as follows-

• Introduced a custom dataset named “CrackBD-2024”, featur-
ing samples collected from roads in Bangladesh.

• Utilized the RDD-2020 and RDD-2022 datasets for extensive
research and analysis.

• Developed an improved YOLO-based model, YOLO v10 that
achieved an F1-Score of 0.67 on the RDD-2022 dataset and
0.63 on the RDD-2020 dataset, outperforming previous ap-
proaches [1] [2].

• Evaluated the models using the CrackBD-2024 dataset, high-
lighting their effectiveness in detecting road damage in local
conditions.

2. RELATED WORK
Object detection in computer vision has made significant advance-
ments in recent years. Two-stage detectors, such as Fast R-CNN,
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Faster R-CNN, and Mask R-CNN, along with single-stage detec-
tors like SSD and YOLO, have played a crucial role in this progress.
Faster R-CNN, with its Region Proposal Network (RPN), provides
high accuracy but is computationally intensive. In contrast, SSD
offers a faster approach by directly predicting bounding boxes and
class probabilities within an image. The YOLO family, particularly
YOLOv8 and YOLOv10, is widely used for its real-time perfor-
mance and high accuracy. In road damage detection, researchers
have explored various techniques to assess and classify road surface
defects accurately. Faster R-CNN, SSD, and YOLO-based models
have been effectively applied to this task. However, balancing ac-
curacy and inference speed remains a significant challenge.
Single Stage Detection. Dipankar Dutta et al. [3] emphasize the
importance of cost-effective road maintenance strategies to en-
hance driving safety. Traditional road damage detection meth-
ods are expensive, leading to the exploration of smartphone-based
imaging and machine learning techniques, particularly YOLO algo-
rithms (YOLOv3–YOLOv7). The research demonstrates improved
accuracy and efficiency in road damage detection by incorporat-
ing data augmentation methods, including GANs, and optimizing
YOLOv6 through hyperparameter tuning. Notably, the optimized
YOLOv6 model maintains high accuracy despite significant size
reduction, making it a practical solution for resource-constrained
applications. Nik Ahmad Farihin Mohd Zulkifli et al. [4] aim to
improve road safety in autonomous vehicles by enhancing road
damage detection. The researchers utilized the YOLOv8 model
and optimized its hyperparameters using the Salp Swarm Algo-
rithm (SSA), achieving a notable 3.5% enhancement in accuracy.
The model was trained on the RDD2022 dataset, which includes
data from multiple countries, such as the Czech Republic, India,
and China. The findings demonstrate that SSA-based hyperparam-
eter optimization can significantly enhance the performance of
YOLOv8 in detecting road damage, ultimately contributing to safer
autonomous driving systems. Devesh Mothilall et al. [5] utilized
the Indian subset of the Road Damage Dataset (RDD) 2022, which
contains diverse street images. After data processing and labeling,
a YOLOv5s model was trained, validated, and tested on 1,959 im-
ages, achieving an F1 score of 41% for road damage detection. The
study recommends using the broader Global RDD 2022 dataset in
future research to develop more robust and accurate models. Yiwen
Jiang et al. [6] present an optimized YOLOv8 model for road dam-
age detection. Tested on the RDD2022 dataset, the model achieved
an mAP50 of 62.5%, mAP50-95 of 36.4%, and an F1 score of
69.6%, outperforming the baseline by 2.5%, 5.2%, and 2.8%, re-
spectively. These improvements enhance detection accuracy and ef-
ficiency, reducing resource requirements while supporting effective
road maintenance and safety assessments. Vaishnavee V. Rathod et
al. [7] introduces RDD-YOLO, an enhanced YOLOv8-based algo-
rithm for road damage detection. The model improves feature ex-
traction by integrating the Simple Attention Mechanism (SimAM),
which helps focus computational resources on critical image areas.
Additionally, the neck structure is optimized using GhostConv to
reduce computational complexity, while nearest-neighbor upsam-
pling is replaced with bilinear interpolation to enhance visual de-
tail retention. These enhancements address challenges in detect-
ing pavement defects such as cracks, potholes, and rutting. Tian-Yi
Jiang et al. [8] introduce YOLOv5s-Road, a novel model incorpo-
rating advancements such as the MHSA mechanism, a 1D convolu-
tion block, and the ASFF module. Additionally, the VariFocal loss
function effectively addresses class imbalance. YOLOv5s-Road
surpasses five leading models in performance on the RDD2022
dataset.

Two-stage detection. Qihan He et al. [9] propose a novel LSF-
RDD model for road damage detection on a custom dataset. Faster
R-CNN demonstrated superior performance, achieving the highest
overall mean average precision (mAP) of 88.49%, with an excep-
tional mAP of 96.62% for focused damage classes. While exhibit-
ing slightly lower overall performance (86.47% mAP), EfficientDet
D1 proved to be a strong contender, achieving 95.12% mAP for
focused classes while demonstrating lower computational require-
ments. These findings highlight the potential of EfficientDet D1 for
developing accurate and computationally efficient RDD systems.
Vaishnavee V. Rathod et al. [10] introduce a novel deep-learning
framework for automated road crack detection. The approach is
based on a hybrid feature extraction architecture that combines a
Pyramid Vision Transformer with a ConvMixer, allowing the model
to capture intricate crack patterns effectively. To enhance image
quality, median filtering is applied during preprocessing. The detec-
tion and classification of cracks are then performed using an Elman
neural network optimized by an improved black widow algorithm.
This framework addresses critical challenges such as varying dam-
age sizes and image blur, improving the accuracy and reliability of
road crack detection. Robert G. De Luna et al. [11] present a road
damage detection system leveraging Convolutional Neural Net-
works (CNNs) to classify road conditions into normal cracks and
potholes. Three models with varying input sizes and convolutional
layers were implemented using Python with Keras and TensorFlow.
Among them, Model 3 (Faster RCNN) exhibited superior perfor-
mance with the highest accuracy, lowest error rate, and best speci-
ficity, precision, and F1 score. In testing, Model 3 (Faster RCNN)
and Model 1 (YOLO v7) accurately classified seven out of nine
road images, while Model 2 correctly classified six, demonstrat-
ing the system’s potential to enhance road safety and infrastruc-
ture management. Muhammad Waseem Khan et al. [12] leverage
the RDD2022 dataset, which comprises images captured by UAVs
and vehicle dashboard cameras, to train and evaluate road damage
detection (RDD) models. Data augmentation techniques were em-
ployed to mitigate class imbalance within the dataset. The research
encompasses both pure and mixed model architectures, assessing
the performance of advanced detectors, including the two-stage de-
tection algorithm Faster R-CNN with a ResNet101 backbone and
one-stage models such as SSD MobileNet V1 FPN, YOLOv5, and
EfficientDet D1.

3. DATASET DESCRIPTION
Two benchmark datasets, RDD-2020 [13] and RDD-2022 [14],
were utilized, both comprising four distinct classes, as depicted in
Figure 1. In addition, a custom dataset named “CrackBD-2024”
was prepared, containing the same four classes as described below.
The models were also evaluated using this dataset.
Longitudinal Cracks (D00): Longitudinal cracks are elongated
fractures that run parallel to the road’s centerline. These cracks
are typically caused by stresses such as uneven roadbed settlement
or thermal expansion and contraction. They often appear as long,
straight lines and can vary in width and depth. If left untreated,
longitudinal cracks can expand over time, leading to further road
deterioration and potential safety hazards.
Transverse Cracks (D10): Transverse cracks are perpendicular to
the road’s centerline, creating short, straight lines that cross the
road. These cracks often result from thermal stresses, especially
in regions with significant temperature fluctuations. They may also
form due to the shrinkage of pavement materials. Transverse cracks
can compromise the road’s structural integrity and allow water in-
filtration, accelerating road damage.
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Fig. 1: Sample images illustrating the four damage classes

Alligator Cracks (D20): Alligator cracks, also known as fatigue
cracks, form a network of interconnected fractures resembling the
scales of an alligator’s skin. These cracks are typically caused by
repeated traffic loads that exceed the pavement’s capacity, leading
to structural fatigue. Alligator cracking is often indicative of se-
vere underlying issues, such as inadequate pavement thickness or
base layer failure. If not repaired, it can quickly escalate into larger
structural failures, such as potholes.
Potholes (D40): Potholes are depressions or cavities in the road
surface caused by the combined effects of wear and tear, water in-
filtration, and freeze-thaw cycles. They vary in size and depth but
are generally rounded or oval in shape. Potholes form when water
seeps into cracks in the pavement, weakening the underlying lay-
ers. When vehicles pass over these weakened areas, the pavement
collapses, creating a hole. Potholes pose significant risks to vehicle
safety and comfort, potentially causing damage to tires, suspension
systems, and even accidents.

3.1 CrackBD-2024
A total of 2,038 images were collected from Bangladeshi road
surfaces, forming the dataset named CrackBD-2024. This dataset
contains 5060 instances of four distinct classes of road dam-
age: longitudinal cracks (D00), transverse cracks (D10), alligator
cracks (D20), and potholes (D40), consistent with the classification
scheme employed in the well-established RDD-2020 and RDD-
2022 datasets. Each damage instance is meticulously annotated
with bounding boxes and corresponding labels, enabling precise
training of object detection and classification algorithms. The “La-
bellmg” annotation tool was used for damage class labeling, and
the annotation files are in .xml format. The dataset is available at
the following link: CrackBD-2024 Dataset
Data collection and annotation: High-resolution images of dam-
aged roads were collected via smartphone and preprocessed for
uniformity. These images were resized to ensure consistency and
renamed from 1 to 2,038 sequentially for easy identification and
management. Annotations were created using the “Labellmg” tool
in .xml format and then converted to .csv for better organiza-
tion. To optimize compatibility with TensorFlow’s object detection
pipeline, the .csv files were transformed into TFRecords, ensuring
a seamless workflow from data collection to model training. The
initial format for saving annotations was .xml, as shown in Figure
2.

Fig. 2: Annotation output in xml format derived from raw image

Fig. 3: Bar chart illustrating the number of instances across four different
classes in the CrackBD-2024 dataset

Data Statistics: The bar chart in Figure 3 illustrates the total num-
ber of instances for various types of road damage, classified as D00,
D10, D20, and D40. The chart reveals that D40 has the highest
number of instances, totaling 1560, followed closely by D20 with
1520 instances. In contrast, D00 and D10 have significantly fewer
instances, with 982 and 998, respectively. Each bar is color-coded
to represent a specific damage type, with the y axis indicating the
total number of instances and the x axis denoting the damage types.
The exact counts are displayed above each bar for added clarity, ef-
fectively highlighting the distribution of types of road damage.

4. METHODOLOGY
This section outlines a framework, shown in Figure 4, to detect and
categorize road damage in images. The system generates bounding
boxes and assigns class labels with confidence scores. Pre-trained
models are used for feature extraction, along with detection net-
works such as YOLO, Faster R-CNN, and SSD. The architecture
has three stages: image preprocessing, feature extraction, and dam-
age detection. The output layer uses a sigmoid activation function,
with hidden layers utilizing ReLU. MSE is used for bounding box
regression, and Sparse Categorical Cross Entropy is used for clas-
sification. The system outputs bounding boxes, predicted classes,
and confidence scores.
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Fig. 4: Proposed methodology of the model

4.1 Data Preprocessing
The RDD-2020 and RDD-2022 datasets were pre-processed to en-
sure consistency and optimize training. Images were resized to
448 × 448 pixels, and annotations in xml format were converted
to csv and then to TFRecords with UTF-8 encoding for efficient
data handling. The pixel values were normalized to a range of 0 to
1 using Min-Max normalization as shown in equation 1, improving
the stability of the model and the efficiency of training.

X’ =
X −Xmin

Xmax −Xmin

(1)

4.2 Backbone Network
To extract spatial features for this task, several deep learning archi-
tectures were experimented with popular transfer learning models
such as ResNet-50, ResNet-101, and MobileNet-v3. Below is a de-
tailed explanation of each.
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Fig. 5: Layer architecture of ResNet-50

ResNet-50 [15] is a highly effective pre-trained backbone network
with 50 layers of convolution operations, as shown in Figure 5.
Deep neural networks often struggle with overfitting, excessive pa-
rameters, and vanishing gradient problems. ResNet-50 addresses
these challenges using skip connections to maintain gradient flow.

There are two main types of skip connections: identity blocks and
convolutional blocks,
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Fig. 6: The identity block: A core component of the ResNet-50 architecture

Identity Block: An identity block is used when the input and output
dimensions of a convolutional block are the same. For example, in
Figure 6, the input and output sizes are both 56×56×3 because the
three convolutional layers have a stride of 1, preserving the image
dimensions. The identity block utilizes skip connections to help
mitigate the vanishing gradient issue.
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Fig. 7: The convolutional block: A core component of the ResNet-50
architecture

4



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.76, March 2025

Convolutional block: When the input and output of a convolutional
block are not the same, a convolutional block is used. For example,
in Figure 7, the input size is 56 × 56 × 3, and the output size is
28×28×3, as there are two convolution layers with stride one and
one convolution layer with stride two. The stride of 2 reduces the
image dimensions by approximately half, following the equation 2

F =
(n+ 2p− f)

s
+ 1 (2)

Here, F is the output of the convolution layer, n is the input size of
the image, p means padding, f means filter size, and s means stride.
So, 56+0−3

2
+ 1 = 28. Since the stride is 2, the image dimensions

are effectively reduced.
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Fig. 8: Architecture of the pre-trained ResNet-101 backbone network

ResNet-101 [16] is a deep learning architecture with 101 convo-
lutional layers, as shown in Figure 8, compared to ResNet-50’s 50
layers. This increased depth enhances its ability to extract features
for more complex tasks. However, it also faces challenges like van-
ishing gradients and overfitting. To mitigate these, ResNet-101 uses
residual connections with identity blocks for matching dimensions
and convolutional blocks. A key difference lies in the fourth con-
volutional block: ResNet-101 has 23 layers, while ResNet-50 has
only 6, which boosts its ability to handle more intricate tasks.
MobileNet v3 [17] is a lightweight architecture designed for
resource-limited settings. It achieves high accuracy with 78 lay-
ers and depth-wise separable convolutions, which reduce computa-
tional complexity. The architecture optimizes efficiency by group-
ing five depth-wise convolutions into a unit paired with a point-wise
convolution. This design enables effective spatial and channel-wise
feature processing, making it ideal for balancing performance and
resource usage.

4.3 Detection Head
The detection head receives feature maps from the backbone net-
work. It uses these feature maps to learn models and generate
bounding boxes with confidence scores to identify damaged re-
gions. The final layer consists of a bounding box layer and a soft-
max classifier layer. The bounding box layer generates the coordi-
nates of the bounding boxes, while the softmax classifier layer as-

signs a corresponding class and generates a class confidence score.
The methods differ by algorithm. Faster R-CNN, SSD, and YOLO
were evaluated, with each employing unique strategies for effective
damage detection and classification.

Image
Backbone
Network

Region Proposal
Network

RO
I  

Po
ol

in
g 

La
ye

r

Feature Maps

Regions

Output

FC Layers

FC FC

Bounding Box
Regressor

Softmax
Classifier

Predicted
Bounding Box

Predicted
Class

Fig. 9: A deep dive into the Faster R-CNN architecture

Faster R-CNN, shown in Figure 9, is a two-stage object detection
algorithm known for its accuracy and versatility. In the first stage,
the Region Proposal Network (RPN) generates region proposals by
creating anchor boxes of varying sizes and filtering them based on
Intersection over Union (IoU) scores. These regions are of different
sizes. The task of the pre-trained backbone transfer learning model
is to generate feature maps of varying sizes. The Region of Interest
(ROI) pooling layer is used to convert these varying sizes feature
maps and regions into a fixed dimension. In the second stage, fully
connected layers are used to learn the features, and based on the
learning, the softmax classifier classifies regions, while the bound-
ing box regressor layer predicts the four coordinate values of the
bounding boxes.
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Fig. 10: The architectural components of the Single Shot Detector (SSD)

Single Shot Detection (SSD) [18] is shown in Figure 10, de-
tects objects and predicts their locations by processing input im-
ages through a backbone network and multiple convolutional lay-
ers, generating 8,732 bounding boxes per object. To refine the re-
sults, SSD uses Non-Maximum Suppression (NMS) to eliminate
overlaps and selects the top 200 predictions based on confidence
scores. During training, SSD matches predicted boxes with ground
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truth using Intersection over Union (IoU), retaining those with an
overlap above 0.6.

YOLOv1

YOLOv2

YOLOv3

YOLOv4
YOLOv5

YOLOv6
YOLOv7

YOLOv8

YOLOv9
YOLOv10

Redmon J et al.
2015

2016
Redmon J et al.

Redmon J et al.
2018

2020 
Bochkovskiy A et al.

Ultralytics

2023
Ultralytics

Meituan Technical Team 
Bochkovskiy A et al.

2022

Team of Academia Sinica in
Taiwan and Tsinghua
University in China

2024

Fig. 11: The progression of the YOLO algorithm over time

The YOLO (You Only Look Once) series [19] shown in Fig-
ure 11, has evolved significantly for real-time object detection.
YOLOv1 introduced a grid-based approach but struggled with
detecting small and overlapping objects. YOLOv2 added anchor
boxes, batch normalization, and multi-scale training to improve
accuracy. YOLOv3 enhanced multi-scale detection with Darknet-
53 and feature pyramid networks. YOLOv4 leveraged CSPDark-
net53, IoU-based loss, and advanced augmentation techniques.
YOLOv5 emphasized usability with a modular PyTorch frame-
work, while YOLOv6 focused on industrial use with anchor-free
detection. YOLOv7 introduced dynamic label assignment and at-
tention modules. YOLOv8 offers anchor-free detection, C2f mod-
ules, and adaptive mosaic augmentation for improved speed and
accuracy.
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Fig. 12: Architecture of YOLOv10.

YOLOv10 is an advanced object detection model designed to en-
hance both speed and accuracy through various improvements. It
incorporates a CSPNet backbone for efficient feature extraction, a
Path Aggregation Network (PAN) in the neck to improve multi-
scale feature aggregation, and a C2f module that streamlines gradi-
ent flow while minimizing computational redundancy. The head of
YOLOv10 produces bounding boxes, class labels, and confidence
scores, applying Non-Maximum Suppression (NMS) to remove du-
plicate predictions. The architecture of YOLOv10 is shown in Fig-
ure 12. CSPNet in YOLOv10 improves computational efficiency
and feature representation by splitting the feature map into two
streams: one bypasses dense computations, and the other trans-
forms through dense layers. These streams merge to enhance gra-
dient flow and reduce vanishing gradients, making YOLOv10 more
accurate and versatile for real-time object detection across various
scales. PAN in the neck module enhances multi-scale feature aggre-
gation, which is essential for detecting objects of different sizes. By
using top-down and bottom-up pathways, PAN refines feature maps
and optimizes gradient flow, improving detection accuracy and ro-
bustness for both small and large objects. The head of YOLOv10

converts feature maps into bounding box coordinates, class labels,
and confidence scores, filtering irrelevant predictions using object-
ness scores. It employs Softmax for class probability estimation
and uses Non-Maximum Suppression (NMS) to refine detections,
ensuring fast, accurate, and scalable object detection across various
configurations.

5. EXPERIMENT RESULT
To assess the performance of various object detection models in de-
tecting road damage, experiments were conducted using the RDD-
2022 and RDD-2020 datasets. The dataset description is provided
below:

5.1 RDD-2020
The RDD-2020 dataset, comprising 26,336 high-resolution images
from India, Japan, and the Czech Republic, provides a valuable re-
source for advancing automated road damage detection and classifi-
cation research. This diverse dataset includes over 31,000 instances
of four distinct damage types: longitudinal cracks (D00), transverse
cracks (D10), alligator cracks (D20), and potholes (D40). The to-
tal image count for the four different classes and three countries in
the RDD-2020 dataset is shown in Figure 13, while the total image
count for six counties in the RDD-2022 dataset is shown in Figure
14.

RDD-2020 RDD-2020

Fig. 13: Image count for four different classes and three different countries
in RDD-2020 datasets

RDD-2022RDD-2022

Fig. 14: Image count for four different classes and six different countries in
RDD-2022 datasets
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5.2 RDD-2022
The RDD-2022 dataset builds upon its predecessor, RDD-2020, by
significantly expanding its scope and diversity. It includes a vast
collection of 47,420 high-resolution road images gathered from six
countries: India, Japan, the Czech Republic, Norway, the United
States, and China.
The models were evaluated using three primary metrics: Precision,
Recall, and F1-Score shown in equation 3, 4, and 5. These metrics
are widely used to assess the accuracy and balance of detection
algorithms by accounting for false positives and false negatives.

Precision =
TP

TP + FP
(3)

Precision =
TP

TP + FP
(4)

F1-Score = 2× Precision × Recall
Precision + Recall

(5)

Table 1. : Performance score of different model

Dataset Model Precision Recall F1-
Score

R
D

D
-2

02
0

YOLOv10 0.65 0.61 0.63

YOLOv8 0.64 0.57 0.60

Faster RCNN+ResNet-
50

0.58 0.59 0.59

Faster RCNN+ResNet-
101 [1]

0.59 0.60 0.60

SSD+MobileNet v3 0.54 0.52 0.53

R
D

D
-2

02
2

YOLOv10 0.67 0.68 0.67

YOLOv8 [2] 0.64 0.62 0.63

Faster RCNN+ResNet-
50

0.59 0.62 0.60

Faster RCNN+ResNet-
101

0.58 0.64 0.61

SSD+MobileNet v3 0.54 0.57 0.56

Table 2. : Performance score on CrackBD-2024 dataset

Dataset Model Precision Recall F1-
Score

C
ra

ck
B

D
-2

02
4 YOLOv10 0.61 0.58 0.59

YOLOv8 0.57 0.56 0.56

Faster RCNN with
ResNet-50

0.54 0.61 0.57

Faster RCNN with
ResNet-101

0.57 0.60 0.58

SSD with MobileNet v3 0.48 0.51 0.50

5.3 Result Analysis
Table 1 compares the performance of the YOLOv10, YOLOv8,
Faster R-CNN, and SSD models with different backbone net-
works (ResNet-50, ResNet-101, MobileNetv3) across the RDD-
2020, RDD-2022, and Crack-BD-2024 datasets. YOLOv10 con-
sistently outperformed the others, achieving the highest F1 scores
of 0.63 on RDD-2020 and 0.67 on RDD-2022. The models out-
perform previous models for both datasets [1] [2]. The Crack-BD-
2024 dataset led to lower performance in all models compared to
the RDD datasets, with YOLOv10 achieving the highest F1 score
of 0.59. This drop is mainly due to the dataset’s limited sample im-
ages. Crack-BD-2024 introduces valuable challenges, including di-
verse crack patterns and real-world factors like lighting and occlu-
sions. The confusion matrix of YOLOv10 on the RDD-2022 dataset
is shown in Figure 15. The loss of YOLOv10 training and valida-
tion in the RDD-2022 data set is shown in Figure 16.

Fig. 15: Confusion Matrix of the best model on RDD-2022 dataset
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Lo
ss
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validation loss

Fig. 16: Training vs Validation Loss

Figure 17 shows the detections of different models in the same im-
age, highlighting their varying abilities to handle complex and over-
lapping damage scenarios. Expanding the Crack-BD-2024 dataset
with more samples and diversity is key to improving accuracy and
ensuring reliable performance in future research.
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(a) (b) (c)

(d) (e)

Fig. 17: Detection and classification result of five models in the same
image (a) YOLOv10 (b) YOLOv8 (c) Faster RCNN with ResNet-50 (d)

Faster RCNN with ResNet-101 (e) SSD with MobileNet-v3

6. CONCLUSION
In this study, an automated system for detecting and classifying
road damage was developed using YOLOv10, achieving excep-
tional precision on the RDD-2020 and RDD-2022 datasets. The
model demonstrated superior performance, particularly in identify-
ing overlapping damage regions within a single image, as reflected
in its high precision, recall, and F1 score metrics. In addition, the
system was tested on a custom dataset, CrackBD-2024, further val-
idating its effectiveness. By offering a faster and more accurate al-
ternative to manual inspections, this approach improves road safety
and meets the needs of autonomous vehicles. Future research will
improve the ability of the model to handle complex damage scenar-
ios and improve real-time performance for continuous road moni-
toring. To increase accuracy, the models will be retrained using a
custom dataset with more images from Bangladeshi roads, address-
ing limitations caused by initial training in images from foreign
roads (RDD-2022 and RDD-2020). This work also holds potential
applications in the Bangladesh transportation system, such as mon-
itoring road surface.
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