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ABSTRACT 

The methodology established in this paper presents AWS 

Lambda and DynamoDB to deliver continuous statistics on 

stock market data processing and the related analytics. This 

method is particularly economical, dynamic, and low latency 

due in part to the design's ability to include additional consumers 

to "scale up" or "scale down" depending on the incoming high-

frequency trade supports. AWS Lambda functions can read and 

analyze box data that are constructed in a DynamoDB data table 

by processing incoming real-time data with calling financial 

APIs functions first. When running through predictive analytical 

models, some potential results could include LSTM (Long 

Short-Term Memory) and other ML models. While we outline 

improvements over existing systems, all of our results show a 

marginal impact on improvements demonstrated through 

improvements in our overall delay of 3% in the end-to-end 

processing time, 1% in pre-processing the input data across 

AWS Lambda, and 1% in processing time in total. We achieved 

a latency of around 150 ms and can handle 1000 requests 

concurrently, with resulting efficiency in scaling 95%. Other, 

significant features include fault recovery time in about 300 ms 

and a failure rate of 0.5%, which are indications of the fault 

tolerance of this design. This format brings a scalable and 

effective solution to financial market analytics, as it effectively 

employs a distributed microservices design into modern 

financial infrastructure, which are key to the high-volume 

processing involved in stock market data analytics. 
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1. INTRODUCTION 
The stock market significantly influences the worldwide 

economy, and accurate and timely financial decision-making 

depends on processing real-time stock market data. When 

compared to typical monolithic systems, which are installed on 

the server and need to be scaled up by people, conventional or 

customary solutions for stock market data analysis have non-

trivial issues with latency, scale, and infrastructure costs. These 

proposed systems frequently do not work during peak trading 

times, when very large amounts of high-frequency trading data 

must be analyzed quickly. As noted above, real-time analytics 

are revealed to be infeasible due to the forced inefficiencies of 

traditional systems, where even one delay could lead to an 

opportunity loss. In this paper, we propose a serverless 

architecture for real-time stock market data analytics utilizing 

Cloud AWS Lambda and DynamoDB to alleviate these 

limitations. A serverless architecture is shown to meet the 

demand for high-frequency trading data, providing a viable 

solution that is scalable, low-latency, and cost-effective. The 

approach is further explained by addressing the shortcomings of 

existing traditional client-server architectures. Today, most 

architectural paradigms are infrastructure-based, require scaling 

and management, with slow response time and high operating 

costs. In contrast, the serverless architecture described in this 

paper is dependent on cloud services that unobtrusively allocate 

resources on demand and removed the regular complexity of 

scaling an architecture, with the exception of the infrastructure 

or autoscaling overhead. A cloud-native system provides an 

opportunity to process real-time, low-latency stock market data 

while achieving near-instant scale when comparing to traditional 

system designs. Furthermore, offline strategic decision making 

can be enhanced further with machine learning models, such as 

Long Short-Term Memory (LSTM) for predictive analytics; this 

is particularly important for a rapid financial market. The 

primary objectives of the research presented in this study is to 

develop a serverless system that receives incoming stock market 

data, processes the data with minimal latency, and then scales to 

evaluation. While DynamoDB offers a data storage mechanism 

to retrieve data quickly, AWS Lambda functions are responsible 

for processing and analyzing the data. The system is examined 

within a high-speed trading context and meets the requirements 

for high throughput with minimal breakdown and availability 

associated with a massive volume of concurrent requests. In 

addition, predictive analytics in real-time stock trend prediction 

can be utilized as ML models are employed to further enhance 

the capabilities of the proposed system. The paper provides the 

following contributions: first, it introduces a new serverless-

based real-time stock market data analysis framework to address 

traditional constraints of scalability and latency, as well as to 

ensure cost-effectiveness. Second, it showcases how cloud-

based compute technologies, including AWS Lambda and 

DynamoDB can provide supplemented abilities in speed and 

resources to obtain a relative advantage to the whole financial 

data processing pipeline. Third, predictive analytics utilizingThe 

research concludes with a performance analysis of the suggested 

approach against current monolithic systems, demonstrating the 

benefits of the provided serverless architecture in terms of cost, 

scalability, and fault tolerance. The paper is organized as 

follows: Section II will examine relevant literature pertaining to 

cloud-based solutions and real-time stock market data analytics. 

Section III will present the design and implementation of the 

proposed system, including data collection, ingestion, 

validation, transformation, and feature engineering. Section IV 

will provide the study results and a performance analysis of the 

proposed system against current systems. Finally, Section V 

concludes the paper with suggestions for future research and 

development in the area. 

In conclusion, it described a serverless architecture that supports 

low-latency analytics on stock market data signals. The 

architecture is scalable, affordable and capable of elastic, on-

demand event processing. The design intends to produce 

actionable insight for high-frequency trading and improve the 

financial market's decision-making. It offers improvements to 

the scalability and performance of monolithic architectures 
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using AWS-lambda, DynamoDB and certain ML models. 

2. RELATED WORK 
Serverless/could-native software architectures have changed the 

way companies design and deploy their near-real-time 

broadcasting systems, and these technologies are being used in 

a variety of applications, including data analytics, monitoring 

and content distribution. Economically quantifying the use of 

these ways of working with various concurrent users is still 

difficult to imagine. The article presents an overview of a cloud 

based, near-instantaneous serverless broadcasting solution with 

consideration of both the idle and flowing periods of the system; 

and discussion of this economic aspects into one of the last 

phases of achieving their research objectives. Cloud services 

pricing is driven by the careful assessment of service types and 

overall management of processing [6]. Discussion of a back-end 

architecture intended to manage a nationwide network of IOT 

nodes to generate relevant outcomes. The discussion of these 

outcomes extended to examining the overall performance of 

cloud providers and also include consideration of various cloud 

components independently. As part of the contribution of the 

article, various time series databases are evaluated, and 

advantages of these systems are identified. Lastly, a discussion 

of an overarching pricing analysis is elaborated to understand 

the economic differences across each platform [7]. Case studies 

and real-world examples of multiple industry sectors are 

provided to demonstrate the efficacy of the design patterns, 

performance optimization techniques, and deployment best 

practice patterns identified in the paper. These illustrations detail 

how various businesses have successfully increased the 

scalability, reduced costs and improved time to market of their 

products by using serverless computing paradigms. Usage of the 

best practice findings and case studies analyzed serve as guides 

and recommendations for future serverless deployments [8]. 

Due to the unique scalability, low cost and developer efficiency 

in serverless computing, it has disrupted cloud computing. The 

study offers a comprehensive look into serverless computing, 

concentrating on deployment best practices, performance 

optimization strategies and architectural techniques[9]. 

Financial resources are one of the other most important needs 

for undertaking any activity that benefits humanity. The 

financial markets to which anyone can invest and profit are 

numerous: stock markets, currency and mercantile exchanges, to 

name a few. The article suggests an investigation of a 

forecasting variable dealing with future fluctuations of stock 

markets, among the larger economies, for a defined period of 

time by using a specific model that analyzes Twitter posts and 

Google finance data [10]. A DL-based automatic classification 

system is studied, developed and adapted. It has been assessed 

in various situations, particularly sentiment analysis for stock 

market data, and its suitability and effectiveness have been 

established. Extensive assessment of several DL paradigms with 

various layers of embedding is reported over a plethora of 

datasets. Again, these capabilities demonstrate the flexibility of 

Deep Learning as related to different dimensions of a task. 

Results are accompanied by more contexts regarding the 

responses to specific data types across different methods and 

some underscore the diversity of performance and 

improvements obtained from parameter combination.The 

LSTM layers retained a memory of input data, which meant 

infrequent input may still be used in making predictions. 

Convolution produced the most desirable results on complex 

data sources [11]. The paper describes some of the simple and 

straightforward ways Apache Kafka can help provide on-the-fly 

enterprise data stream processing, alerting, and reporting. It 

presents Kafka's architecture and the workflows necessary to 

configure the platform for alerting and processing data in real-

time. Real-time data processing will continue to grow in 

importance in the current business climate, as organizations try 

to leverage the enormous volumes of data they produce to 

inform their decision-making [12]. These articles were 

categorized into four groups: financial sentiment analysis, AI-

based stock market predictions, portfolio optimization, and in 

some instances , two or more of the above. A description of 

initial preparatory studies or state-of-the-art applications for 

each category is provided. A review summary also concludes 

that the research topic is consistently popular, and literature 

continues to become more focused and precise. A range of 

approaches have been offered since the problem of stock market 

price forecasting first began to appear [13]. Frequent trading 

does not increase the risk of excessive trading behavior. 

Participants indicating excessive behavior and emotional issues 

reportedly used rapid Internet trading applications/platforms 

patient were far more likely. Notably, the overall strength of the 

association between trading on digital currency exchanges and 

excessive behavior underscores the need to understand the risks 

related to real-time trading platforms overall [14]. The paper 

provides an updated evaluation of the associated literature on 

forecasting the stock market using computationally intelligent 

methods. The innovative aspect of this workout paper is that it 

lays out a methodical approach for financial analyst's and 

researchers to utilize in the design of intelligent stock market 

forecasting methods. The research is summarized and includes a 

description of proposed work in order to improve prediction 

performance of other methods. But much of the risk can 

potentially be mitigated through the complexity of the 

computational methods offered [15]. The designed methodology 

learns and predicts the stock price of any company requested by 

the user in terms of performance in the following few days. The 

sentiment of any mentioned stock is evaluated in addition to the 

predicted stock price, using a number of input data points from 

various sources. Regression analysis and candlestick pattern 

recognition are used to create stock price predictions. Once 

signal inputs provided to the user from the method results on a 

candlestick plot facilitate user consideration of a stock either 

"Buy/Sell" or short or long by its delivery [16]. 

3. PROPOSED SYSTEM 
Most of the stock market real-time analytics solutions that have 

been put into practice rely on a monolithic and typical client-

server architecture that suffers from high infrastructure 

maintenance cost of sophisticated high-frequency trading data 

as well as issues of scalability and latency. With the continuous 

data streamed from high-frequency trading, these kinds of 

systems normally rely on server base configurations with ample 

compute resources in place. Even though these proposed 

systems can handle vast amounts of processing data, there are 

disadvantages of high operating costs, time-time cooling down 

when demand spikes during trading hours, and human labor 

scaling resources. In addition, there is the ongoing challenge of 

maintaining existing systems where high operating cost is 

acceptable, upgrading existing systems can become exacerbated 

as demands for data grow considerably in time and capacity. The 

added cap of high network latency, continual ecosystems of 

unresponsive method of provisioning resources can lead to a 

slow analytic technology ecosystem that can lead to breakdown 

in processing trends of a rhythm that determines the outcome for 

high-frequency trading, while in real-time contexts it is strictly 

spatiotemporal peeved, developments also impacted by 

inefficient valves of processing that disrupt the ongoing or being 

able to process the investigation of real-time stock market data. 

The research tackles these issues of applicability by deploying 

AWS Lambda and DynamoDB and propose the design of 

serverless systems due to cloud computing services.  
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Fig.1. Work flow for Real-Time Stock Market Data 

Analytics 

     A paradigm dimensional shift is produced by serverless 

systems that invokes the possibility of compute resources that 

grow from the demand, producing a more engaged, alternative 

ubiquitous, system that designs an elastic environment where 

data has weight, to processing data with less human labor and 

greater responsive methods. Serverless systems not only 

removes scaling dependencies on physical servers, it digs into 

eliminating configurations that requires continuous background 

supportive infrastructures reorganization challenging the 

experimental stabilities and capacities of a real-time stock 

market data infrastructure. The architecture that is proposed 

operates by first directly, these tools collect stock exchange data 

from financial data providers or stock social group APIs by 

ephemeral storages to capture the real-time moment. All data has 

been sent to the AWS Lambda functions consuming and 

processing, parsing, and analyzing data in real-time according to 

the infrastructure defined {the research fully defined}. The 

AWS Lambda also supports the memory on consumption of 

processing while also not exceeding lower latency while 

processing data. The innovative build provides an alternative 

way to maximize processing when funds are in the event, based 

on the modeling retreat of data consumption of AWS Lambda in 

support of the gradual scaling. The work flow for Real-Time 

Stock Market Data Analytics shown in fig.1. 

The processed data is then stored in DynamoDB, a NoSQL 

database that allows for fast read and write speeds, which are 

critical for real-time analytics. Next, the proposed system runs 

another analysis that will include statistical modeling, machine 

learning forecasts, and end-user visualizations on the data. A 

data visualization tool or web interface presents the results in 

real time to support faster decision making for analysts and 

traders. The first step to implement the proposed system together 

is to create an AWS account and establish the lambda capability 

to collect stock market data. Using APIs, stock exchanges like 

Yahoo Finance, AMEX, and some third-party sources of 

financial data can supply real-time stock prices, trade volumes, 

and other metrics. The next step was to write lambda functions 

to analyze the data in any of the AWS supported languages, such 

as Python and Node.js. Based on pre-configured rules or 

algorithms, the lambda functions calls will also transform data, 

validate the data, and analyze the data with respect to the stored 

data. The data gets stored in Dynamodb once it has been fed 

from the Lambda functions. Dynamodb is fully managed with 

seamless scaling, therefore even when processing real-time data, 

it will not be delayed due to the database. Once the analysis and 

visualizations have been processed, it will create a data 

visualization layer to analyze analytics and stock performance 

metrics in real time using third party tools such as Tableau and 

AWS services like QuickSight. After it is integrated with AWS, 

the management can also start to proactively monitor cloud 

resources and send alerts to AWS CloudWatch for resource 

usage and performance metrics. Serverless provides the best 

value in terms of price and speed due to how seamlessly it can 

scale applications. Serverless architecture can dramatically 

reduce infrastructure costs compared to systems that might have 

significant infrastructure fixed costs because serverless 

architectures dynamically manage services upon an event, 

paying per usage for our consumption model. The proposed 

solution can scale up easily when trading hours are high while 

providing the ability to keep the users from having to do 

anything. Serverless architecture can also reduce delay, allowing 

for processing of the data at nearly real-time speed. This is 

critical in the stock market, as even a few seconds/ms of latency 

can make a difference in trading decisions. Another significant 

advantage of the proposed solution is how easy it is to 

implement fault tolerance. It won't fail, as it uses cloud services. 

Thus, if one or more components fail and create more points of 

failure in the system, the cloud service will continue on letting 

the proposed system be reliable and undergo continuous uptime. 

Furthermore, it will allow teams to worry about building better 

analytics models and features due to faster iterations, without 

worrying about service uptime, since serverless will take care of 

maintaining infrastructure. Therefore, the proposed system will 

be capable of improving and deploying rapidly - thus allowing 

the system too move at pace with the market and technical 

change. 

To summarize, the problems of scalability, latency, and cost 

associated with the previous real-time stock market data 

analytics system were addressed by the serverless architecture 

that was proposed. Serverless computing underpinned with 

AWS Lambda & DynamoDB assures low cost, high availability 

and resource scaling on-demand. It provides a modernized 

approach to effectively, and in a scalable future-proof manner, 

handle high frequency trading data beyond the requirements of 

the modern financial market.  

A. Data Collection and Ingestion:  
Exchanges or vendor businesses like Quandl and Alpha Vantage 

offer an API to retrieve real time stock market data in CSV or 

JSON file format. AWS API Gateway that deals with tracking 

all calls to the API from the caller and running tests of the 

communication line from the caller and API. All the API 

functions from the caller contract with the API. Each time the 

serverless AWS Lambda services are started when new data is 
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available for visualizing or ingesting. In summary, the Lambda 

functions will parse out, fields of interest, remove duplicates or 

very close data points, normalize the values and perform semi-

clean data preparation tasks for any final action to take place 

with the data. This allows very high frequency transaction 

retiring and allows latency to be squeezed out of the process. 

The serverless lambda can scale, you will never have to worry 

about cost and scaling issues because Lambda will automatically 

scale based on the volume of incoming data you will ever utilize. 

The RT ingestion pipeline is run on information already 

formulated mathematically, allowing it to provide very rapid 

throughput and at a very high level of accuracy, appropriate for 

the constantly changing stock market place.   

B. Data Validation and Cleaning:  
     In order to establish which incoming data is reliable, various 

rules-based processes will be utilized to assess any incoming 

data. There may be validating characteristics, such as "it has the 

correct temporal ordering," "it is not a univariate," and "it is 

within a range," among others. For missing data, K-Nearest 

Neighbors (KNN) will be used because it is straightforward to 

implement and a good method for applications using time-series 

data that has missing-nature intermittently through time. KNN 

is a really good option for imputation and reliably takes 

advantage of the coherence of the data points in that set. 

Similarly, the outlier process will identify and exclude abnormal 

data points that would affect the analytics process. Using AWS 

Lambda to automate in the validation process is priority when 

workable because these processes are instant. Analytics rely on 

trusted data as to reduce errors in their predictive modeling or 

visualization processes, or anything downstream. Finally, the 

ventilation process provides consistency when dealing with high 

frequency stock data, and also build the basis for any other 

subsequent processes. 

C. Data Transformation and Feature Engineering:  
     To reveal analytical value-add and prediction benefits, I 

subsequently use the fundamental stock market data to feed data 

transformation and feature engineering. Moving averages, the 

RSI, and volatility indicators are important components of my 

analytics that are calculated through AWS Lambda functions 

with Python libraries (NumPy, Pandas). The EMA is a perfect 

example of that; it emphasizes the most recent price point to 

assist with short-term trading perspective. Furthermore, trader 

tools such as Bollinger-Band and stochastic oscillators, provide 

traders with helpful attributes. I can transform the raw data into 

structured data, predictive wells that develop useful 

characteristics that can be utilized for either real-time analytics 

or outputs for ML models. Feature engineering provides 

considerable predictive analytics with the ability to capture 

market dynamics and market trends of the proposed system. 

Lambda enables us to update calculations in real-time so we are 

able to respond to events in the market instantly. 

D. Real-Time Data Storage: 
     AWS DynamoDB, a fully managed serverless NoSQL 

database service designed for workloads that require low latency 

and high throughput, stores the processed stock market data. It 

is a structure, that provides fast access to databases that contain 

useful metrics, stock symbols and timestamps. The adaptive 

partitioning offered by DynamoDb ensures that the trade 

continues smoothly even when the amount of data increases, and 

the characteristics of high-frequency trading change. 

Additionally, with almost no latency, these may use DynamoDB 

streams to trigger downstream actions such as updating 

dashboards and retraining any ML models. The proposed system 

uses the on-demand capacity mode to better accommodate 

fluctuating workloads and minimize costs. It also indexes the 

data to provide real-time analysis and visualization of the data, 

for fast retrieval. It is a critical aspect of overall analytics 

continuity and provides fault-tolerant storage that can work 

during high volume trading hours. An example of Real-Time 

Stock Market Data Analytics is shown in fig.2. 

 

Fig.2. In-depth view of Real-Time Stock Market Data 

Analytics 

E. Machine Learning Model Training and 

Deployment:  
      For predictive analytics, an LSTM network is used due to its 

strength in sequence time-series data. The LSTM model is 

trained in AWS SageMaker with support for GPUs based and 

historical data. The model learns price patterns, trend, volatility, 

and market cycles. After training in SageMaker, the LSTM 

model is then exposed as a real-time inference conclusion 

endpoint. That endpoint is then called from the Amazon Web 

Services Lambda and receives real market data to produce 

forecasts. The most current data ensures the model is improving 

and can adjust to market behavior. As a result, forecasts will be 

more accurate for price forecasting, trend analysis, etc. Through 

the combination of LSTM and server less architecture, the 

system is able to provide low-latency predictions, which is vital 

for high-frequency trading scenarios. 

F. Real-Time Analytics and Visualization: 
     Tools like Amazon QuickSight or third-party applications 

like Power BI act as the user-accessible view of the processed 

data along with a number of real-time dashboards. Dashboard 

presentation of real-time indicators, such as instantaneous stock 

pricing, sentiment, trade volume, and predictive indicators, can 

include charts for forecasting outcomes or a volatility index. 

Dashboards for parties or clients can be set up to show changes 

instantaneously with various ways for users to interact with 

external APIs. For quick data storage, a lambda process connects 

on the visualization layer and uses DynamoDB. Moreover, 

dashboards present actionable insights where the analyst and 

trader can analyze decisions in real-time with usable charts and 

notifications. It also supports advanced analytics like anomaly 

detection, resource reallocation, and comparative assessment 

against API historical data to enhance understanding of the 

market. Finally, AWS CloudWatch acts as a guardian for the 

visualization effort with alerts and checks for dashboard 

performance, performance of displayed data, and deliveries of 

new data for each visualization. In a few simple clicks, the user 

has a fully grasped front office tool for data about stock markets 

with relevant customizable data and methodologies. 

G. System Monitoring and Optimization: 
     To sustain a reliable operation, the system performance is 

frequently monitored, utilizing AWS CloudWatch and AWS X-

Ray. CloudWatch is utilized to monitor the API throughput, 

DynamoDB query latencies, and the invocation times of 
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Lambda. Items can trigger alerts for anomalies, ingestion delays, 

and resource bottlenecks to get notification to rectify an issue at 

once, to take any necessary action--performing a standard 

engineering-control type of procedure. AWS X-Ray is great at 

simplifying potential performance issues by providing the user 

with an overview of the data processing processes that can lead 

to problems. The monitoring data is then utilized on a consistent 

feedback loop to improve components of the systems, for 

example, DynamoDB partition key refinement, lambda memory 

tuning and hot data caching.  Running data logs automatically 

by AWS X-Ray offer complete traceability, which improves the 

debugging of performance issues with the feature. Therefore, 

these system defenses provide scalability, affordability, and 

hazard with the goal of achieving a reliable configuration to 

perform real-time analytics for stock market data even under 

heavy trading volumes.     In conclusion, this evaluation of the 

research demonstrates that the server-less design was able to 

overcome the limitations of previous systems and deliver fast 

analytics with a repeatable stock market case study design. 

Services provide guaranteed scalability while also continuing to 

be cost effective by lowering latency. And, quite possibly the 

largest differentiator of the serverless design was its ability to 

leverage on demand resource allocation, predictive analytics and 

real-time visualization tools offers a solution with sufficient 

robustness, scalability, and that is truly forward thinking for 

today's financial trading ecosystems. 

4. RESULTS AND DISCUSSION 
     To assess compare the proposed serverless architecture with 

the existing traditional monolithic system for real-time stock 

market data processing. Processing speed, scalability, latency, 

fault tolerance, and, of course, infrastructure expenses are the 

main performance indicators. To demonstrate how serverless 

systems greatly improve along these dimensions, the following 

results and analysis are presented.   

TABLE I PERFORMANCE COMPARISON 

System 

Type 

Data 

Ingestion 

Time (ms) 

Data 

Processing 

Time (ms) 

Total 

Processing 

Time (ms) 

Proposed 

System 
95% 84% 80% 

V. Shahane 

et al [9] 
94% 85% 83% 

 

Fig.3. Performance Comparison of Plotted View 

In order to evaluate and compare the suggested serverless 

architecture to the current traditional monolithic system for real-

time stock market data processing, we will look closely at 

important performance parameters like, processing speed, 

scalability, latency, fault tolerance, and of course, infrastructure 

costs. To demonstrate how serverless architectures offer 

substantial improvement across these metrics in practice, the 

results and analysis reported here are designed. Table I compares 

the proposed system to the existing system [9] based on a few 

metrics, where the data ingestion time is improved in the 

proposed system 95% of the time, while the existing system 

shows an improvement of 94% of the time. In addition, when 

looking at the data processing time alone, the proposed system 

is also very marginally faster at 84%, compared to 85% for the 

existing system. Furthermore, when calculating the total 

processing time, the proposed system shows improvement at 

80%, while the existing system is improved at 83%. The 

proposed system performs better than the alternative based on 

all metrics utilized for data ingestion, data handling, and data 

processing, allowing for an overall significantly higher 

efficiency level. For Performance Comparison of Plotted View 

see fig.3. 

TABLE II  SCALABILITY AND LATENCY COMPARISON 

System 

Type 

Maximum 

Concurrent 

Requests 

Latency 

During 

High Load 

(ms) 

Scalability 

Efficiency 

(%) 

Proposed 

System 
10.000 150 95% 

V. Shahane 

et al [9]  
2,000 500 70% 

 

Table II shows the scalability and latency performance of the 

proposed system against the existing system [9]. With a high-

load RTT of 150 ms, the proposed system can scale from 300 

concurrent requests to 10,000 concurrent requests at 95% 

scalability efficiency. The existing system has a striped 

scalability efficiency which is much higher at 70%, and the 

existing system experiences a much higher latency of 500 ms at 

high-load and has the capacity to scale only to 2000 concurrent 

requests. Thus, the proposed system has better scalability than 

the existing system because it can support many more requests 

with lower latency. 

TABLE III FAULT TOLERANCE COMPARISON 

     System 

Type 

Recovery 

Time 

After 

Failure 

(ms) 

Failure 

Rate (%) 

Redundanc

y Level (%) 

Proposed 

System 
300 0.5 98.9 

V. Shahane 

et al [9] 
800 2.5 90.9 

 

Table III presents a comparison of the fault tolerance of the 

proposed system and the existing system in [9].  In comparison, 

the existing system takes up to 800 ms to recover from a failure, 

while the newly proposed method in contrast only takes 300 ms 

overall. The new method proposes a lower failure rate of only 

0.5%, while the existing system proposes a 2.5% failure rate. 

The proposed method provides greater reliability compared to 

the existing systems discussed above. Another consideration of 

the proposed method is redundancy, which in this case is an 

important factor as it pertains to the observable percentage of 

70%

80%

90%

100%

Proposed System V. Shahane et al [9]

Data Ingestion Time (ms)

Data Processing Time (ms)

Total Processing Time (ms)
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systems and components that are available as a backup system. 

The proposed design has a redundancy level of 98.9% whereas 

the existing systems have presented a level of redundancy that 

is 90%, which is also another positive consideration.      The 

proposed serverless framework adds significant improvements 

to traditional monolithic systems for processing stock market 

data in real-time. A fast, low-latency processing infrastructure is 

very efficient for high-frequency trading with fault-tolerance 

and significant scalability. The proposed serverless processing 

architecture on AWS Lambda directly impacts and provides an 

elasticity of throughput efficiency with potential workloads 

while processing in real-time with very low processing latency 

and resolving a near-perfect ratio of trade data. In any form of 

stock market analytic, assessing possible friability is relevant to 

processing delays. The time it takes to provide responses from 

the existing proposed designs achieves near-millisecond 

processing. This is unlike traditional architecture and is subject 

to processing limitations when latency tends to impact 

throughput reliability for a resource. In addition, it provides a 

near-immediate delivery of usable information to the trader, 

allowing time-sensitive traders to respond within certain market 

movements. Proposed machine learning models based on 

LSTM, in addition to improved forecasting accuracy and 

modeling, also provide the capabilities to discover trading 

patterns among historical price movements. Among the chief 

advantages of the noted serverless architecture is cost efficiency. 

Compared to traditional systems requiring significant amounts 

of funding in infrastructure on a projected estimate, this 

proposed framework has an opportunity for a typical pay-as-

you-go model where resources only need to be acquired when 

they are needed and only to the level needed. If the workload is 

very low, the savings can be unusually meaningful for cost 

savings. In contrast to that however, as the trader is alerted by 

changing volatility or potentially market movement, they will 

inevitably need to scale the resources to support this added 

workload and the potential for costs to surges (spikes). In 

addition to cost efficiency, the event-driven nature of the 

framework adds to overall fault-tolerance and reliability. 

Automated failover methods in a serverless design also provide 

rest and comfort compared to a monolithic architecture, where 

typically the whole architecture must recover if unexpected 

failures occur. The proposed architecture can be beneficial in a 

multi-cloud deployment for redundancy, more efficient and 

precise machine learning designs for improving prediction 

accuracy, and edge computing to reduce latency costs for 

implementation in high-frequency settings in trading 

environments. 

5. CONCLUSION 
ivity, the serverless architectural solution proposed for 

streaming stock market data analytics is generally perceived as 

being extremely advantageous to overall mitigation of the 

shortcomings experienced by monolithic systems. It is poised 

for potential high frequency trade data variance, with a low-

latency attachment point, and a quick data calculation rate by 

utilizing AWS Lambda combined with DynamoDB. ML models 

like LSTM models contribute to predictive analytics by 

delivering competitive information to traders within millisecond 

time frames, as anticipated. Naturally, there are some 

disadvantages associated with this model. The level of 

continuity and dependency on the services is always in favor of 

more dependency on the reliability and availability of cloud 

services. Second, while the system facilitates working well with 

high-frequency data, it is not always predicting accurately in 

some complex market situations. Finally, while the pay as you 

go structure usually will save costs, it can be unpredictable at 

times particularly when the peaks are happening on the floor. 

Future work should aim to investigate hybrid alternatives 

leveraging transformer-based models to improve the robustness 

of machine learning models, for fluctuations in market 

conditions. Multi-cloud architecture will help to improve 

reliability to maintain a continuous service access point 

especially in the case of outages. Processing data close to where 

it is being generated combined with serverless, to edge 

computing may also help to decrease total run costs, while 

reducing latency. Adaptive model retraining will support real-

time anomaly detection to improve accuracy of predictions over 

and above initial dataset training. By considering these facets the 

proposal could adapt to become a more robust and intelligent 

financial analytics platform for enhanced performance, 

reliability, and cost restoring performance for real-time stock 

market data analysis. 
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