
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.75, March 2025

9

Serverless Architecture for Real-Time Stock Market Data

Analytics in Cloud Environments

Gautam Solaimalai
Independent Researcher

Georgia – 30041, United States of America

ABSTRACT

The methodology established in this paper presents AWS

Lambda and DynamoDB to deliver continuous statistics on

stock market data processing and the related analytics. This

method is particularly economical, dynamic, and low latency

due in part to the design's ability to include additional consumers

to "scale up" or "scale down" depending on the incoming high-

frequency trade supports. AWS Lambda functions can read and

analyze box data that are constructed in a DynamoDB data table

by processing incoming real-time data with calling financial

APIs functions first. When running through predictive analytical

models, some potential results could include LSTM (Long

Short-Term Memory) and other ML models. While we outline

improvements over existing systems, all of our results show a

marginal impact on improvements demonstrated through

improvements in our overall delay of 3% in the end-to-end

processing time, 1% in pre-processing the input data across

AWS Lambda, and 1% in processing time in total. We achieved

a latency of around 150 ms and can handle 1000 requests

concurrently, with resulting efficiency in scaling 95%. Other,

significant features include fault recovery time in about 300 ms

and a failure rate of 0.5%, which are indications of the fault

tolerance of this design. This format brings a scalable and

effective solution to financial market analytics, as it effectively

employs a distributed microservices design into modern

financial infrastructure, which are key to the high-volume

processing involved in stock market data analytics.

Keywords

Serverless Architecture, Real-Time Analytics, Stock Market

Data Operational Performance, Cost-Efficiency, Fault

Tolerance, Financial Technology.

1. INTRODUCTION
The stock market significantly influences the worldwide

economy, and accurate and timely financial decision-making

depends on processing real-time stock market data. When

compared to typical monolithic systems, which are installed on

the server and need to be scaled up by people, conventional or

customary solutions for stock market data analysis have non-

trivial issues with latency, scale, and infrastructure costs. These

proposed systems frequently do not work during peak trading

times, when very large amounts of high-frequency trading data

must be analyzed quickly. As noted above, real-time analytics

are revealed to be infeasible due to the forced inefficiencies of

traditional systems, where even one delay could lead to an

opportunity loss. In this paper, we propose a serverless

architecture for real-time stock market data analytics utilizing

Cloud AWS Lambda and DynamoDB to alleviate these

limitations. A serverless architecture is shown to meet the

demand for high-frequency trading data, providing a viable

solution that is scalable, low-latency, and cost-effective. The

approach is further explained by addressing the shortcomings of

existing traditional client-server architectures. Today, most

architectural paradigms are infrastructure-based, require scaling

and management, with slow response time and high operating

costs. In contrast, the serverless architecture described in this

paper is dependent on cloud services that unobtrusively allocate

resources on demand and removed the regular complexity of

scaling an architecture, with the exception of the infrastructure

or autoscaling overhead. A cloud-native system provides an

opportunity to process real-time, low-latency stock market data

while achieving near-instant scale when comparing to traditional

system designs. Furthermore, offline strategic decision making

can be enhanced further with machine learning models, such as

Long Short-Term Memory (LSTM) for predictive analytics; this

is particularly important for a rapid financial market. The

primary objectives of the research presented in this study is to

develop a serverless system that receives incoming stock market

data, processes the data with minimal latency, and then scales to

evaluation. While DynamoDB offers a data storage mechanism

to retrieve data quickly, AWS Lambda functions are responsible

for processing and analyzing the data. The system is examined

within a high-speed trading context and meets the requirements

for high throughput with minimal breakdown and availability

associated with a massive volume of concurrent requests. In

addition, predictive analytics in real-time stock trend prediction

can be utilized as ML models are employed to further enhance

the capabilities of the proposed system. The paper provides the

following contributions: first, it introduces a new serverless-

based real-time stock market data analysis framework to address

traditional constraints of scalability and latency, as well as to

ensure cost-effectiveness. Second, it showcases how cloud-

based compute technologies, including AWS Lambda and

DynamoDB can provide supplemented abilities in speed and

resources to obtain a relative advantage to the whole financial

data processing pipeline. Third, predictive analytics utilizingThe

research concludes with a performance analysis of the suggested

approach against current monolithic systems, demonstrating the

benefits of the provided serverless architecture in terms of cost,

scalability, and fault tolerance. The paper is organized as

follows: Section II will examine relevant literature pertaining to

cloud-based solutions and real-time stock market data analytics.

Section III will present the design and implementation of the

proposed system, including data collection, ingestion,

validation, transformation, and feature engineering. Section IV

will provide the study results and a performance analysis of the

proposed system against current systems. Finally, Section V

concludes the paper with suggestions for future research and

development in the area.

In conclusion, it described a serverless architecture that supports

low-latency analytics on stock market data signals. The

architecture is scalable, affordable and capable of elastic, on-

demand event processing. The design intends to produce

actionable insight for high-frequency trading and improve the

financial market's decision-making. It offers improvements to

the scalability and performance of monolithic architectures

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.75, March 2025

10

using AWS-lambda, DynamoDB and certain ML models.

2. RELATED WORK
Serverless/could-native software architectures have changed the

way companies design and deploy their near-real-time

broadcasting systems, and these technologies are being used in

a variety of applications, including data analytics, monitoring

and content distribution. Economically quantifying the use of

these ways of working with various concurrent users is still

difficult to imagine. The article presents an overview of a cloud

based, near-instantaneous serverless broadcasting solution with

consideration of both the idle and flowing periods of the system;

and discussion of this economic aspects into one of the last

phases of achieving their research objectives. Cloud services

pricing is driven by the careful assessment of service types and

overall management of processing [6]. Discussion of a back-end

architecture intended to manage a nationwide network of IOT

nodes to generate relevant outcomes. The discussion of these

outcomes extended to examining the overall performance of

cloud providers and also include consideration of various cloud

components independently. As part of the contribution of the

article, various time series databases are evaluated, and

advantages of these systems are identified. Lastly, a discussion

of an overarching pricing analysis is elaborated to understand

the economic differences across each platform [7]. Case studies

and real-world examples of multiple industry sectors are

provided to demonstrate the efficacy of the design patterns,

performance optimization techniques, and deployment best

practice patterns identified in the paper. These illustrations detail

how various businesses have successfully increased the

scalability, reduced costs and improved time to market of their

products by using serverless computing paradigms. Usage of the

best practice findings and case studies analyzed serve as guides

and recommendations for future serverless deployments [8].

Due to the unique scalability, low cost and developer efficiency

in serverless computing, it has disrupted cloud computing. The

study offers a comprehensive look into serverless computing,

concentrating on deployment best practices, performance

optimization strategies and architectural techniques[9].

Financial resources are one of the other most important needs

for undertaking any activity that benefits humanity. The

financial markets to which anyone can invest and profit are

numerous: stock markets, currency and mercantile exchanges, to

name a few. The article suggests an investigation of a

forecasting variable dealing with future fluctuations of stock

markets, among the larger economies, for a defined period of

time by using a specific model that analyzes Twitter posts and

Google finance data [10]. A DL-based automatic classification

system is studied, developed and adapted. It has been assessed

in various situations, particularly sentiment analysis for stock

market data, and its suitability and effectiveness have been

established. Extensive assessment of several DL paradigms with

various layers of embedding is reported over a plethora of

datasets. Again, these capabilities demonstrate the flexibility of

Deep Learning as related to different dimensions of a task.

Results are accompanied by more contexts regarding the

responses to specific data types across different methods and

some underscore the diversity of performance and

improvements obtained from parameter combination.The

LSTM layers retained a memory of input data, which meant

infrequent input may still be used in making predictions.

Convolution produced the most desirable results on complex

data sources [11]. The paper describes some of the simple and

straightforward ways Apache Kafka can help provide on-the-fly

enterprise data stream processing, alerting, and reporting. It

presents Kafka's architecture and the workflows necessary to

configure the platform for alerting and processing data in real-

time. Real-time data processing will continue to grow in

importance in the current business climate, as organizations try

to leverage the enormous volumes of data they produce to

inform their decision-making [12]. These articles were

categorized into four groups: financial sentiment analysis, AI-

based stock market predictions, portfolio optimization, and in

some instances , two or more of the above. A description of

initial preparatory studies or state-of-the-art applications for

each category is provided. A review summary also concludes

that the research topic is consistently popular, and literature

continues to become more focused and precise. A range of

approaches have been offered since the problem of stock market

price forecasting first began to appear [13]. Frequent trading

does not increase the risk of excessive trading behavior.

Participants indicating excessive behavior and emotional issues

reportedly used rapid Internet trading applications/platforms

patient were far more likely. Notably, the overall strength of the

association between trading on digital currency exchanges and

excessive behavior underscores the need to understand the risks

related to real-time trading platforms overall [14]. The paper

provides an updated evaluation of the associated literature on

forecasting the stock market using computationally intelligent

methods. The innovative aspect of this workout paper is that it

lays out a methodical approach for financial analyst's and

researchers to utilize in the design of intelligent stock market

forecasting methods. The research is summarized and includes a

description of proposed work in order to improve prediction

performance of other methods. But much of the risk can

potentially be mitigated through the complexity of the

computational methods offered [15]. The designed methodology

learns and predicts the stock price of any company requested by

the user in terms of performance in the following few days. The

sentiment of any mentioned stock is evaluated in addition to the

predicted stock price, using a number of input data points from

various sources. Regression analysis and candlestick pattern

recognition are used to create stock price predictions. Once

signal inputs provided to the user from the method results on a

candlestick plot facilitate user consideration of a stock either

"Buy/Sell" or short or long by its delivery [16].

3. PROPOSED SYSTEM
Most of the stock market real-time analytics solutions that have

been put into practice rely on a monolithic and typical client-

server architecture that suffers from high infrastructure

maintenance cost of sophisticated high-frequency trading data

as well as issues of scalability and latency. With the continuous

data streamed from high-frequency trading, these kinds of

systems normally rely on server base configurations with ample

compute resources in place. Even though these proposed

systems can handle vast amounts of processing data, there are

disadvantages of high operating costs, time-time cooling down

when demand spikes during trading hours, and human labor

scaling resources. In addition, there is the ongoing challenge of

maintaining existing systems where high operating cost is

acceptable, upgrading existing systems can become exacerbated

as demands for data grow considerably in time and capacity. The

added cap of high network latency, continual ecosystems of

unresponsive method of provisioning resources can lead to a

slow analytic technology ecosystem that can lead to breakdown

in processing trends of a rhythm that determines the outcome for

high-frequency trading, while in real-time contexts it is strictly

spatiotemporal peeved, developments also impacted by

inefficient valves of processing that disrupt the ongoing or being

able to process the investigation of real-time stock market data.

The research tackles these issues of applicability by deploying

AWS Lambda and DynamoDB and propose the design of

serverless systems due to cloud computing services.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.75, March 2025

11

Fig.1. Work flow for Real-Time Stock Market Data

Analytics

 A paradigm dimensional shift is produced by serverless

systems that invokes the possibility of compute resources that

grow from the demand, producing a more engaged, alternative

ubiquitous, system that designs an elastic environment where

data has weight, to processing data with less human labor and

greater responsive methods. Serverless systems not only

removes scaling dependencies on physical servers, it digs into

eliminating configurations that requires continuous background

supportive infrastructures reorganization challenging the

experimental stabilities and capacities of a real-time stock

market data infrastructure. The architecture that is proposed

operates by first directly, these tools collect stock exchange data

from financial data providers or stock social group APIs by

ephemeral storages to capture the real-time moment. All data has

been sent to the AWS Lambda functions consuming and

processing, parsing, and analyzing data in real-time according to

the infrastructure defined {the research fully defined}. The

AWS Lambda also supports the memory on consumption of

processing while also not exceeding lower latency while

processing data. The innovative build provides an alternative

way to maximize processing when funds are in the event, based

on the modeling retreat of data consumption of AWS Lambda in

support of the gradual scaling. The work flow for Real-Time

Stock Market Data Analytics shown in fig.1.

The processed data is then stored in DynamoDB, a NoSQL

database that allows for fast read and write speeds, which are

critical for real-time analytics. Next, the proposed system runs

another analysis that will include statistical modeling, machine

learning forecasts, and end-user visualizations on the data. A

data visualization tool or web interface presents the results in

real time to support faster decision making for analysts and

traders. The first step to implement the proposed system together

is to create an AWS account and establish the lambda capability

to collect stock market data. Using APIs, stock exchanges like

Yahoo Finance, AMEX, and some third-party sources of

financial data can supply real-time stock prices, trade volumes,

and other metrics. The next step was to write lambda functions

to analyze the data in any of the AWS supported languages, such

as Python and Node.js. Based on pre-configured rules or

algorithms, the lambda functions calls will also transform data,

validate the data, and analyze the data with respect to the stored

data. The data gets stored in Dynamodb once it has been fed

from the Lambda functions. Dynamodb is fully managed with

seamless scaling, therefore even when processing real-time data,

it will not be delayed due to the database. Once the analysis and

visualizations have been processed, it will create a data

visualization layer to analyze analytics and stock performance

metrics in real time using third party tools such as Tableau and

AWS services like QuickSight. After it is integrated with AWS,

the management can also start to proactively monitor cloud

resources and send alerts to AWS CloudWatch for resource

usage and performance metrics. Serverless provides the best

value in terms of price and speed due to how seamlessly it can

scale applications. Serverless architecture can dramatically

reduce infrastructure costs compared to systems that might have

significant infrastructure fixed costs because serverless

architectures dynamically manage services upon an event,

paying per usage for our consumption model. The proposed

solution can scale up easily when trading hours are high while

providing the ability to keep the users from having to do

anything. Serverless architecture can also reduce delay, allowing

for processing of the data at nearly real-time speed. This is

critical in the stock market, as even a few seconds/ms of latency

can make a difference in trading decisions. Another significant

advantage of the proposed solution is how easy it is to

implement fault tolerance. It won't fail, as it uses cloud services.

Thus, if one or more components fail and create more points of

failure in the system, the cloud service will continue on letting

the proposed system be reliable and undergo continuous uptime.

Furthermore, it will allow teams to worry about building better

analytics models and features due to faster iterations, without

worrying about service uptime, since serverless will take care of

maintaining infrastructure. Therefore, the proposed system will

be capable of improving and deploying rapidly - thus allowing

the system too move at pace with the market and technical

change.

To summarize, the problems of scalability, latency, and cost

associated with the previous real-time stock market data

analytics system were addressed by the serverless architecture

that was proposed. Serverless computing underpinned with

AWS Lambda & DynamoDB assures low cost, high availability

and resource scaling on-demand. It provides a modernized

approach to effectively, and in a scalable future-proof manner,

handle high frequency trading data beyond the requirements of

the modern financial market.

A. Data Collection and Ingestion:
Exchanges or vendor businesses like Quandl and Alpha Vantage

offer an API to retrieve real time stock market data in CSV or

JSON file format. AWS API Gateway that deals with tracking

all calls to the API from the caller and running tests of the

communication line from the caller and API. All the API

functions from the caller contract with the API. Each time the

serverless AWS Lambda services are started when new data is

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.75, March 2025

12

available for visualizing or ingesting. In summary, the Lambda

functions will parse out, fields of interest, remove duplicates or

very close data points, normalize the values and perform semi-

clean data preparation tasks for any final action to take place

with the data. This allows very high frequency transaction

retiring and allows latency to be squeezed out of the process.

The serverless lambda can scale, you will never have to worry

about cost and scaling issues because Lambda will automatically

scale based on the volume of incoming data you will ever utilize.

The RT ingestion pipeline is run on information already

formulated mathematically, allowing it to provide very rapid

throughput and at a very high level of accuracy, appropriate for

the constantly changing stock market place.

B. Data Validation and Cleaning:
 In order to establish which incoming data is reliable, various

rules-based processes will be utilized to assess any incoming

data. There may be validating characteristics, such as "it has the

correct temporal ordering," "it is not a univariate," and "it is

within a range," among others. For missing data, K-Nearest

Neighbors (KNN) will be used because it is straightforward to

implement and a good method for applications using time-series

data that has missing-nature intermittently through time. KNN

is a really good option for imputation and reliably takes

advantage of the coherence of the data points in that set.

Similarly, the outlier process will identify and exclude abnormal

data points that would affect the analytics process. Using AWS

Lambda to automate in the validation process is priority when

workable because these processes are instant. Analytics rely on

trusted data as to reduce errors in their predictive modeling or

visualization processes, or anything downstream. Finally, the

ventilation process provides consistency when dealing with high

frequency stock data, and also build the basis for any other

subsequent processes.

C. Data Transformation and Feature Engineering:
 To reveal analytical value-add and prediction benefits, I

subsequently use the fundamental stock market data to feed data

transformation and feature engineering. Moving averages, the

RSI, and volatility indicators are important components of my

analytics that are calculated through AWS Lambda functions

with Python libraries (NumPy, Pandas). The EMA is a perfect

example of that; it emphasizes the most recent price point to

assist with short-term trading perspective. Furthermore, trader

tools such as Bollinger-Band and stochastic oscillators, provide

traders with helpful attributes. I can transform the raw data into

structured data, predictive wells that develop useful

characteristics that can be utilized for either real-time analytics

or outputs for ML models. Feature engineering provides

considerable predictive analytics with the ability to capture

market dynamics and market trends of the proposed system.

Lambda enables us to update calculations in real-time so we are

able to respond to events in the market instantly.

D. Real-Time Data Storage:
 AWS DynamoDB, a fully managed serverless NoSQL

database service designed for workloads that require low latency

and high throughput, stores the processed stock market data. It

is a structure, that provides fast access to databases that contain

useful metrics, stock symbols and timestamps. The adaptive

partitioning offered by DynamoDb ensures that the trade

continues smoothly even when the amount of data increases, and

the characteristics of high-frequency trading change.

Additionally, with almost no latency, these may use DynamoDB

streams to trigger downstream actions such as updating

dashboards and retraining any ML models. The proposed system

uses the on-demand capacity mode to better accommodate

fluctuating workloads and minimize costs. It also indexes the

data to provide real-time analysis and visualization of the data,

for fast retrieval. It is a critical aspect of overall analytics

continuity and provides fault-tolerant storage that can work

during high volume trading hours. An example of Real-Time

Stock Market Data Analytics is shown in fig.2.

Fig.2. In-depth view of Real-Time Stock Market Data

Analytics

E. Machine Learning Model Training and

Deployment:
 For predictive analytics, an LSTM network is used due to its

strength in sequence time-series data. The LSTM model is

trained in AWS SageMaker with support for GPUs based and

historical data. The model learns price patterns, trend, volatility,

and market cycles. After training in SageMaker, the LSTM

model is then exposed as a real-time inference conclusion

endpoint. That endpoint is then called from the Amazon Web

Services Lambda and receives real market data to produce

forecasts. The most current data ensures the model is improving

and can adjust to market behavior. As a result, forecasts will be

more accurate for price forecasting, trend analysis, etc. Through

the combination of LSTM and server less architecture, the

system is able to provide low-latency predictions, which is vital

for high-frequency trading scenarios.

F. Real-Time Analytics and Visualization:
 Tools like Amazon QuickSight or third-party applications

like Power BI act as the user-accessible view of the processed

data along with a number of real-time dashboards. Dashboard

presentation of real-time indicators, such as instantaneous stock

pricing, sentiment, trade volume, and predictive indicators, can

include charts for forecasting outcomes or a volatility index.

Dashboards for parties or clients can be set up to show changes

instantaneously with various ways for users to interact with

external APIs. For quick data storage, a lambda process connects

on the visualization layer and uses DynamoDB. Moreover,

dashboards present actionable insights where the analyst and

trader can analyze decisions in real-time with usable charts and

notifications. It also supports advanced analytics like anomaly

detection, resource reallocation, and comparative assessment

against API historical data to enhance understanding of the

market. Finally, AWS CloudWatch acts as a guardian for the

visualization effort with alerts and checks for dashboard

performance, performance of displayed data, and deliveries of

new data for each visualization. In a few simple clicks, the user

has a fully grasped front office tool for data about stock markets

with relevant customizable data and methodologies.

G. System Monitoring and Optimization:
 To sustain a reliable operation, the system performance is

frequently monitored, utilizing AWS CloudWatch and AWS X-

Ray. CloudWatch is utilized to monitor the API throughput,

DynamoDB query latencies, and the invocation times of

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.75, March 2025

13

Lambda. Items can trigger alerts for anomalies, ingestion delays,

and resource bottlenecks to get notification to rectify an issue at

once, to take any necessary action--performing a standard

engineering-control type of procedure. AWS X-Ray is great at

simplifying potential performance issues by providing the user

with an overview of the data processing processes that can lead

to problems. The monitoring data is then utilized on a consistent

feedback loop to improve components of the systems, for

example, DynamoDB partition key refinement, lambda memory

tuning and hot data caching. Running data logs automatically

by AWS X-Ray offer complete traceability, which improves the

debugging of performance issues with the feature. Therefore,

these system defenses provide scalability, affordability, and

hazard with the goal of achieving a reliable configuration to

perform real-time analytics for stock market data even under

heavy trading volumes. In conclusion, this evaluation of the

research demonstrates that the server-less design was able to

overcome the limitations of previous systems and deliver fast

analytics with a repeatable stock market case study design.

Services provide guaranteed scalability while also continuing to

be cost effective by lowering latency. And, quite possibly the

largest differentiator of the serverless design was its ability to

leverage on demand resource allocation, predictive analytics and

real-time visualization tools offers a solution with sufficient

robustness, scalability, and that is truly forward thinking for

today's financial trading ecosystems.

4. RESULTS AND DISCUSSION
 To assess compare the proposed serverless architecture with

the existing traditional monolithic system for real-time stock

market data processing. Processing speed, scalability, latency,

fault tolerance, and, of course, infrastructure expenses are the

main performance indicators. To demonstrate how serverless

systems greatly improve along these dimensions, the following

results and analysis are presented.

TABLE I PERFORMANCE COMPARISON

System

Type

Data

Ingestion

Time (ms)

Data

Processing

Time (ms)

Total

Processing

Time (ms)

Proposed

System
95% 84% 80%

V. Shahane

et al [9]
94% 85% 83%

Fig.3. Performance Comparison of Plotted View

In order to evaluate and compare the suggested serverless

architecture to the current traditional monolithic system for real-

time stock market data processing, we will look closely at

important performance parameters like, processing speed,

scalability, latency, fault tolerance, and of course, infrastructure

costs. To demonstrate how serverless architectures offer

substantial improvement across these metrics in practice, the

results and analysis reported here are designed. Table I compares

the proposed system to the existing system [9] based on a few

metrics, where the data ingestion time is improved in the

proposed system 95% of the time, while the existing system

shows an improvement of 94% of the time. In addition, when

looking at the data processing time alone, the proposed system

is also very marginally faster at 84%, compared to 85% for the

existing system. Furthermore, when calculating the total

processing time, the proposed system shows improvement at

80%, while the existing system is improved at 83%. The

proposed system performs better than the alternative based on

all metrics utilized for data ingestion, data handling, and data

processing, allowing for an overall significantly higher

efficiency level. For Performance Comparison of Plotted View

see fig.3.

TABLE II SCALABILITY AND LATENCY COMPARISON

System

Type

Maximum

Concurrent

Requests

Latency

During

High Load

(ms)

Scalability

Efficiency

(%)

Proposed

System
10.000 150 95%

V. Shahane

et al [9]
2,000 500 70%

Table II shows the scalability and latency performance of the

proposed system against the existing system [9]. With a high-

load RTT of 150 ms, the proposed system can scale from 300

concurrent requests to 10,000 concurrent requests at 95%

scalability efficiency. The existing system has a striped

scalability efficiency which is much higher at 70%, and the

existing system experiences a much higher latency of 500 ms at

high-load and has the capacity to scale only to 2000 concurrent

requests. Thus, the proposed system has better scalability than

the existing system because it can support many more requests

with lower latency.

TABLE III FAULT TOLERANCE COMPARISON

 System

Type

Recovery

Time

After

Failure

(ms)

Failure

Rate (%)

Redundanc

y Level (%)

Proposed

System
300 0.5 98.9

V. Shahane

et al [9]
800 2.5 90.9

Table III presents a comparison of the fault tolerance of the

proposed system and the existing system in [9]. In comparison,

the existing system takes up to 800 ms to recover from a failure,

while the newly proposed method in contrast only takes 300 ms

overall. The new method proposes a lower failure rate of only

0.5%, while the existing system proposes a 2.5% failure rate.

The proposed method provides greater reliability compared to

the existing systems discussed above. Another consideration of

the proposed method is redundancy, which in this case is an

important factor as it pertains to the observable percentage of

70%

80%

90%

100%

Proposed System V. Shahane et al [9]

Data Ingestion Time (ms)

Data Processing Time (ms)

Total Processing Time (ms)

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.75, March 2025

14

systems and components that are available as a backup system.

The proposed design has a redundancy level of 98.9% whereas

the existing systems have presented a level of redundancy that

is 90%, which is also another positive consideration. The

proposed serverless framework adds significant improvements

to traditional monolithic systems for processing stock market

data in real-time. A fast, low-latency processing infrastructure is

very efficient for high-frequency trading with fault-tolerance

and significant scalability. The proposed serverless processing

architecture on AWS Lambda directly impacts and provides an

elasticity of throughput efficiency with potential workloads

while processing in real-time with very low processing latency

and resolving a near-perfect ratio of trade data. In any form of

stock market analytic, assessing possible friability is relevant to

processing delays. The time it takes to provide responses from

the existing proposed designs achieves near-millisecond

processing. This is unlike traditional architecture and is subject

to processing limitations when latency tends to impact

throughput reliability for a resource. In addition, it provides a

near-immediate delivery of usable information to the trader,

allowing time-sensitive traders to respond within certain market

movements. Proposed machine learning models based on

LSTM, in addition to improved forecasting accuracy and

modeling, also provide the capabilities to discover trading

patterns among historical price movements. Among the chief

advantages of the noted serverless architecture is cost efficiency.

Compared to traditional systems requiring significant amounts

of funding in infrastructure on a projected estimate, this

proposed framework has an opportunity for a typical pay-as-

you-go model where resources only need to be acquired when

they are needed and only to the level needed. If the workload is

very low, the savings can be unusually meaningful for cost

savings. In contrast to that however, as the trader is alerted by

changing volatility or potentially market movement, they will

inevitably need to scale the resources to support this added

workload and the potential for costs to surges (spikes). In

addition to cost efficiency, the event-driven nature of the

framework adds to overall fault-tolerance and reliability.

Automated failover methods in a serverless design also provide

rest and comfort compared to a monolithic architecture, where

typically the whole architecture must recover if unexpected

failures occur. The proposed architecture can be beneficial in a

multi-cloud deployment for redundancy, more efficient and

precise machine learning designs for improving prediction

accuracy, and edge computing to reduce latency costs for

implementation in high-frequency settings in trading

environments.

5. CONCLUSION
ivity, the serverless architectural solution proposed for

streaming stock market data analytics is generally perceived as

being extremely advantageous to overall mitigation of the

shortcomings experienced by monolithic systems. It is poised

for potential high frequency trade data variance, with a low-

latency attachment point, and a quick data calculation rate by

utilizing AWS Lambda combined with DynamoDB. ML models

like LSTM models contribute to predictive analytics by

delivering competitive information to traders within millisecond

time frames, as anticipated. Naturally, there are some

disadvantages associated with this model. The level of

continuity and dependency on the services is always in favor of

more dependency on the reliability and availability of cloud

services. Second, while the system facilitates working well with

high-frequency data, it is not always predicting accurately in

some complex market situations. Finally, while the pay as you

go structure usually will save costs, it can be unpredictable at

times particularly when the peaks are happening on the floor.

Future work should aim to investigate hybrid alternatives

leveraging transformer-based models to improve the robustness

of machine learning models, for fluctuations in market

conditions. Multi-cloud architecture will help to improve

reliability to maintain a continuous service access point

especially in the case of outages. Processing data close to where

it is being generated combined with serverless, to edge

computing may also help to decrease total run costs, while

reducing latency. Adaptive model retraining will support real-

time anomaly detection to improve accuracy of predictions over

and above initial dataset training. By considering these facets the

proposal could adapt to become a more robust and intelligent

financial analytics platform for enhanced performance,

reliability, and cost restoring performance for real-time stock

market data analysis.

6. REFERENCES
[1] S. Poojara, C. K. Dehury, P. Jakovits, and S. N. Srirama,

“Serverless Data Pipelines for IoT Data Analytics: A cloud

Vendors Perspective and Solutions,” in Springer eBooks,

2022, pp. 107–132. doi: 10.1007/978-3-031-18034-7_7.

[2] V. S. Sakila and S. Manohar, “Real-time air quality

monitoring in Bull Trench Kiln-based Brick industry by

calibrating sensor readings and utilizing the Serverless

Computing,” Expert Systems with Applications, vol. 237,

p. 121397, Sep. 2023, doi: 10.1016/j.eswa.2023.121397.

[3] B. Singh, R. Martyr, T. Medland, J. Astin, G. Hunter, and

J.-C. Nebel, “Cloud based evaluation of databases for stock

market data,” Journal of Cloud Computing Advances

Systems and Applications, vol. 11, no. 1, Sep. 2022, doi:

10.1186/s13677-022-00323-4.

[4] Z. Cai, Z. Chen, X. Chen, R. Ma, H. Guan, and R. Buyya,

“SPSC: Stream Processing Framework atop serverless

computing for industrial big data,” IEEE Transactions on

Cybernetics, vol. 54, no. 11, pp. 6509–6517, Jun. 2024, doi:

10.1109/tcyb.2024.3407886.

[5] W. Chen, Z. Milosevic, F. A. Rabhi, and A. Berry, “Real-

Time Analytics: concepts, architectures, and ML/AI

considerations,” IEEE Access, vol. 11, pp. 71634–71657,

Jan. 2023, doi: 10.1109/access.2023.3295694.

[6] D. Mileski and M. Gusev, “FinOps in Cloud-Native Near

Real-Time Serverless Streaming Solutions,” 2023 31st

Telecommunications Forum (TELFOR), pp. 1–4, Nov.

2023, doi: 10.1109/telfor59449.2023.10372626.

[7] P. K. Sekar, “THE DATA-DRIVEN FUTURE OF

FINANCE: ADVANCES IN ENGINEERING FOR

REAL-TIME ANALYTICS AND DECISION MAKING,”

Oct. 09, 2024.

https://ijrcait.com/index.php/home/article/view/IJRCAIT_

07_02_006

[8] L. Calderoni, D. Maio, and L. Tullini, “Benchmarking

cloud providers on serverless IoT Back-End

infrastructures,” IEEE Internet of Things Journal, vol. 9,

no. 16, pp. 15255–15269, Jan. 2022, doi:

10.1109/jiot.2022.3147860.

[9] V. Shahane, “Serverless computing in cloud environments:

architectural patterns, performance optimization strategies,

and deployment best practices,” Mar. 28, 2022.

https://scienceacadpress.com/index.php/jaasd/article/view/

18

[10] S. Albahli, A. Irtaza, T. Nazir, A. Mehmood, A. Alkhalifah,

and W. Albattah, “A machine learning method for

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.75, March 2025

15

prediction of stock market using Real-Time Twitter data,”

Electronics, vol. 11, no. 20, p. 3414, Oct. 2022, doi:

10.3390/electronics11203414.

[11] F. Correia, A. M. Madureira, and J. Bernardino, “Deep

neural networks applied to stock market sentiment

analysis,” Sensors, vol. 22, no. 12, p. 4409, Jun. 2022, doi:

10.3390/s22124409.

[12] K. Peddireddy, “Streamlining Enterprise Data Processing,

Reporting and Realtime Alerting using Apache Kafka,”

2023 11th International Symposium on Digital Forensics

and Security (ISDFS), pp. 1–4, May 2023, doi:

10.1109/isdfs58141.2023.10131800.

[13] F. G. D. C. Ferreira, A. H. Gandomi, and R. T. N. Cardoso,

“Artificial Intelligence Applied to Stock Market Trading:

A review,” IEEE Access, vol. 9, pp. 30898–30917, Jan.

2021, doi: 10.1109/access.2021.3058133.

[14] A. Oksanen, E. Mantere, I. Vuorinen, and I. Savolainen,

“Gambling and online trading: emerging risks of real-time

stock and cryptocurrency trading platforms,” Public

Health, vol. 205, pp. 72–78, Mar. 2022, doi:

10.1016/j.puhe.2022.01.027.

[15] G. Kumar, S. Jain, and U. P. Singh, “Stock Market

Forecasting Using Computational Intelligence: A survey,”

Archives of Computational Methods in Engineering, vol.

28, no. 3, pp. 1069–1101, Feb. 2020, doi: 10.1007/s11831-

020-09413-5.

[16] M. Ananthi and K. Vijayakumar, “RETRACTED

ARTICLE: Stock market analysis using candlestick

regression and market trend prediction (CKRM),” Journal

of Ambient Intelligence and Humanized Computing, vol.

12, no. 5, pp. 4819–4826, Apr. 2020, doi: 10.1007/s12652-

020-01892-5.

IJCATM : www.ijcaonline.org

