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ABSTRACT 
Recent work has shown that convolutional neural networks can 

be more precise, deeper and more efficient for training if they 

integrate shorter connections between the layers near the input 

and those near the output. In this paper, we adopt this 

observation and propose a new deep network structure called 

“densely connected Network in network” (DcNiN), which 

connects each layer of MLPconv to all other layers in the same 

structure in ways as the own maps of MLPconv. Characteristics 

for each layer are used as inputs in all subsequent layers. The 

interesting advantages presented by DcNiN are several. 

Examples include strengthening feature propagation, reducing 

the leakage gradient problem, reducing the number of 

parameters, and encouraging feature reuse. We evaluate our 

proposed architecture against a widely known and highly 

competitive database (CIFAR-10). DcNINs achieved 

99.9611% accuracy on this test set. 
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1. INTRODUCTION 
 With the increase in the depth of the CNN model, a new 

research problem emerges: as information about the input or 

gradient passes through many layers, it can vanish and “wash 

out” by the time it reaches the end of the network. Several 

techniques are used to solve this problem. We note among them 

: Stochastic depth [1], FractalNets [2], ResNets [3] and 

Highway Networks [4]. Stochastic depth [1], consists of 

shortening ResNets by randomly removing layers during 

formation. Highway Networks [4] and ResNets [3] by pass the 

signal from one layer to the next via identity connections. 

FractalNets [2] repeatedly combines multiple sequences of 

parallel layers with different number of convolutional blocks to 

achieve large nominal depth, while maintaining many short 

paths in the network. Although these different techniques vary 

in training procedure and network topology, they all share one 

main characteristic: they create short paths from the first layers 

to the later layers. In this article, we propose an architecture that 

anchors this idea in a simple communication model named 

“Densely Connected Network in Network”. Where all the 

layers are connected directly to each other in order to ensure 

maximum information flow between the layers of the network. 

The advantages of the architecture are verified experimentally 

on CIFAR-10 classification data sets. The contributions of this 

work are: (i) We propose a new architecture for the 

DcMLPconv layers which allows to have "DcNIN" models 

with considerably improved performance (ii) We propose a 

new way to use batch normalization in the  

DcNIN model to regularize and normalize them correctly and 

avoid overfitting during training. (iii) We present a detailed 

experimental study of deep model architectures that examines 

in depth several important aspects of DcMLPconv layers. (iv) 

Finally, we show that our proposed DcNIN architectures obtain 

interesting results on CIFAR-10 significantly improving the 

accuracy of DcNIN. The rest of this article is organized as 

follows: In Sect. 2, an overview of related works is given. 

Section 3 is about strategy. Experimental evaluations and 

comparative analysis are presented and discussed in Sect. 4. 

Section 5 is devoted to implementation details. The advantages 

and limitations of  DcNIN are reported in Sect. 6. The work is 

concluded in the last section. 

2. RELATED WORKS 
To improve the performance of CNN, several techniques can 

be used. Among these techniques we cite: increasing the depth 

[5, 3, 6] and/or the width [8, 7], modifying the convolution 

parameters [8, 9] and reducing the size of the convolution filter 

[9, 10, 11], change the number of channels and feature map [11, 

7]. The modification at the level of the pooling layers [12, 13, 

14, 15, 16–24] and of the activation function [25, 26]. 

Simple linear filters are at the heart of the computations within 

the convolutional layer of classical CNNs. In contrast, in the 

lattice-based model, non-linear filters are exploited instead of 

classical simple linear filters such as multi-layer perceptron 

(MLP) [9, 16, 10,27]. Many works have exploited nonlinear 

filters such as the NIN model [16], DNIN [9], DrNIN [10], 

WDrNIN [27]. The “Network In Network” model [16], consists 

of several “MLPconv” layers which are stacked in a successive 

way. The “MLPconv” layer consists of a linear convolution 

layer and a two-layer MLP with a ReLU unit used as an 

activation function. Figure 1 illustrates the overall structure of 

the architecture,  

 

Fig 1: Network In Network (NIN) 

The "Deep Network In Network (DNIN)" model [9], illustrated 

in Fig. 2., represents a modification of the NIN model [16]. This 

model consists of blocks of DMLPconv stacked in a successive 

way and which integrates two convolutional layers of size 3 × 

3 and a nonlinear activation unit "eLU" instead of ReLU. 
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Fig.2 - Deep Network in Network 

The DrNIN model proposed in [10] is a model based on DNIN 

[9]. It represents an improvement of the architecture of DNIN 

[9] by reformulating the convolutional layers of DMLPConv as 

residual learning functions. Figure 3 illustrates the DrNIN 

model composed of 3 DrMLPconv layers. 

 

Fig. 3 - Deep residual network in network 

In [27], the authors proposed the Wide deep residual networks 

in networks (WDrNIN) model which represents a broader 

model of DrNIN. In this model, the authors increased the width 

of the DrNINs and decreased the depth. 

3. THE PROPOSED METHODS 
We describe our different DrNIN model configurations for 

CIFAR-10. In these model configurations, the convolutional 

layers have 3 × 3 filters and follow a simple design rule: the 

layers have the same feature map size and the same number of 

filters; on the other hand, the exploitation of a pooling layer 

which is generally inserted periodically after each DcMLPconv 

structure. In our architecture, we perform downsampling using 

the maximum clustering layers of size 3 × 3 which have a stride 

of 2 (3 × 3/ST.2). The network ends with a global average 

pooling layer and a softmax layer. Figure 4 illustrates an 

example of the DcNIN model composed of three DcMLPconv 

layers. 

 

Fig.4 - DcNIN. 

The overall structure of DcNIN generally consists of layer 3 

DcMLPconv. Table 1 shows the overall structure of DcNIN. 

Additionally, it displays the output sizes after each layer used 

in the model. The first table describes the overall structure of 

DcNIN.    

Table 1 : The structure of DcNIN. 

Layer name  Output size 

DcMLPconv-1 32 × 32 

Max-pool 16 × 16 

DcMLPconv-2 16 × 16 

Max-pool 8 × 8 

DcMLPconv-3 8 × 8 

Global average 

pooling 

1 × 1 

 

3.1. The “DcMLPconv” structure:  
The DcMLPconv structure, shown in Figure 5, consists of two 

convolution layers of size 3 × 3, MLP layers. These different 

layers are followed by a rectified linear unit (ReLU). For each 

layer in DcMLPconv, the feature maps of all previous layers 

are used as inputs, and its own feature maps are used as inputs 

in all subsequent layers.  

 

Fig 5 - DcMLPconv. 

Let DcMLPconv(X) be the DcMLPconv structure, where X is 

a list of layers used in the structure. For example, DcMLPconv 

(3) denotes the base layers of DcMLPconv. DrMLPconv (3, B) 

denotes the DcMLPconv structure (3,) with normalization 

layers (B). The different structure of our DcMLPconv is 

presented in the table 2. 

Table.2 :  The configurations of DcMLPconv. 

Layer DcMLPconv (X) 

(x) DrMLPconv (3) DrMLPconv (3, B) 

Conv-1 

 

3 × 3 × 192/st. 

1/pad  1/ReLU 

3 × 3 × 192/st. 1/pad 

1/ReLU/BN 

Conv-2 3 × 3 × 192/st. 

1/pad 1/ReLU 

3 × 3 × 192/st. 1/pad 

1/ReLU/BN 

 

MLP-1 1 × 1 × 192/st. 

1/pad 0/ReLU 

1 × 1 × 192/st. 1/pad 

0/ReLU/BN 

MLP-2 1 × 1 × 192/st. 

1/pad 0/ReLU 

1 × 1 × 192/st.  

1/pad0/ReLU/BN 

 

3.2. Batch Normalization in DcNIN 

The use of regularization represents a solution to avoid the 

problem of overfitting. A batch normalization [28] is already 

applied for DcNIN to provide a regularization effect. The batch 
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normalization layer was introduced in 2015 by Google 

researchers. The batch normalization layer was introduced in 

2015 by Google researchers. It is generally located after fully 

connected layers or convolutional layers, and before the non-

linearity. It alleviates problems with internal covariance shift in 

feature maps by normalizing the layer's output distribution to 

zero mean unit variance. Using this layer makes networks more 

resilient to bad initialization, moreover, it eliminates the need 

for using the dropout layer. 

4. EXPERIMENTAL RESULTS 
We evaluate our configurations on a reference data set: CIFAR-

10. This database includes 60,000 RGB images of 32x32 size 

grouped into 10 image classes. These different images are 

separated between 50,000 total training images and 10,000 test 

images. The networks used for this database consist of three 

“DcMLPconv” layers. The first two “DcMLPconv” layers of 

all experiments are followed by a maximum pooling layer. In 

the following, we will refer to networks as their 

DcMLPconv(X) structures. 

 4.1. The effect of normalization layers in 

DcNiN 

Experimental studies show that a network with batch 

normalization achieves higher accuracy than a network without 

batch normalization. The value of the increase in accuracy is 

about 0.36%. Table 3 represents a comparaion between the 

accuracy of different configurations of CIFAR-10 with a mini 

batch size equivalent to 128. Our results were obtained by 

calculating the average over 5 executions. 

Table 3: Accuracies of different models on CIFAR-10. 

Method Accuracy 

DcMLPconv(3) 94,49% 

DcMLPconv(3,B) 94,85% 

 

4.2. Discussions 
The main objective of this work is to examine and evaluate the 

success of our proposed architecture in image classification and 

to compare the performances found with the models cited in the 

literature. As shown in Table 4, the DcNIN model based on 

DcMLPconv(3) achieved slightly better accuracy than most 

work that uses nonlinear filters from the literature with the 

CIFAR-10 dataset such as NIN[16]. , DNIN[9], DrNIN(L=5) 

[10] and WDrNIN [27]. Additionally, DcNIN provides 

classification accuracy that allows it to have a well localized 

location between multiple jobs. Moreover, the experimental 

results show that exploiting the batch normalization layer 

yields a useful effect in reducing the error of the classification 

test. Table 4 represents a comparison between the proposed 

model and the state of the art on the CIFAR-10 database. The 

results of our work are presented with a mini batch size 

equivalent to 128 and calculating the average of 5 executions. 

Table 4 : CIFAR-10 test error. The results of our work are 

presented with the size of the mini batch equivalent to 128. 

Our results were obtained by calculating the average over 

5 executions 

Ref Method Error test(%) 

(I.Goodfellow et 

al, 2013) 

Maxout 

network 

(k=2) 

9.38 

( Lin M et al, 

2013) 

NIN 08.81 

(C-Y. Lee et al, 

2015) 
DSN 8.22 

(Alaeddine, H et 

al, 2021) 

DNIN 07.46 

(Hmidi A et al , 

2021) 

DrNIN(L=5) 07.21 

(Alaeddine H et 

al, 2023) 

WDrNIN 06.447 

Our DcNIN 5.15 

(K. He et al , 

2016) 
ResNet 6.43 

(Zagoruyk S        

et  al, 2017) 

Wide    

Resnet(28,10) 
3.89 

 

5. IMPLEMENTATION DETAILS 
Our models are trained using a “Root Mean Square Propagation 

Algorithm” with a batch size equivalent to 128 and a weight 

decay of 0.0001. We initialized the weights in each layer from 

a normal to mean random distribution with a standard deviation 

equivalent to 0.01. We initialized the learning rate to 0.01 and 

divide by 10 twice before the end. The network is trained for 

about 160 cycles at most on the CIFAR-10 training set in a 

central processing unit (CPU). The implementation is provided 

by the python language based on the "Keras" deep learning 

library to classify and recognize images. 

6. ADVANTAGE AND LIMITATIONS 
The proposed model provides competitive test accuracy that 

exceeds the accuracy of other linear filter-based models such as 

[9, 16, 10, 27] which allows it to rank prominently among the 

various works reported in the literature. DcNIN provides 

interesting test errors against the baseline. The importance of 

DcNIN also stems from its homogeneous structure which 

makes it well suited for implementation as an image 

recognition system in embedded system applications. 

However, DcNIN incorporates drawbacks and limitations that 

mainly reside in the number of convolution kernels. This 

negatively affects the number of parameters, computational 

complexity and memory. 

7. CONCLUSIONS 
We hope In this paper, we proposed a new convolutional 

network architecture, which we call Densely Connected 

Network in Network (DcNIN). It introduces direct connections 

between any two layers with the same feature map size. 

DcNINs tend to produce a steady improvement in accuracy 

with increasing number of parameters, with no signs of 

performance degradation or overfitting. In multiple contexts, 

he has achieved cutting-edge results on CIFAR 10 compared to 

work based on nonlinear filters. In addition, a proposed detailed 

study of DcNIN is presented describing in detail the effect of 

different layers on improving accuracy. The results are 

described as acceptable compared to other architectures tested 

on CIFAR-10 datasets. Future work should focus on designing 

new versions of CNN models that can meet or exceed the level 

of accuracy of this proposed model requiring shorter training 

time with less parameter consumption. 
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