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ABSTRACT
This study presents a novel approach for forecasting stock mar-
ket prices by combining Artificial Neural Networks (ANN) and
Long Short-Term Memory (LSTM) models into a hybrid ANN-
LSTM framework. This study focus on forecasting the closing
prices of the S&P 500 and Toronto Stock Exchange (TSX) in-
dices, evaluating the performance of the proposed hybrid model
against traditional ANN, LSTM, and Physics-Informed Neural Net-
work (PINN) models. The hybrid ANN-LSTM model demon-
strates superior forecasting accuracy, outperforming the individ-
ual models and the PINN in terms of multiple evaluation met-
rics. The training dataset spans from January 1, 2005, to Decem-
ber 31, 2020, while the testing period covers January 1, 2021,
to January 31, 2024. The results highlight the potential of hy-
brid deep learning models, specifically the ANN-LSTM com-
bination, in enhancing stock market prediction accuracy, rep-
resenting a significant advancement over conventional methods.
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Keywords
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1. INTRODUCTION
Accurate forecasting of stock market prices is a critical task for
investors, policymakers, and researchers due to its impact on
financial decision-making [16]. In recent years, machine learning
(ML) and deep learning (DL) models have gained significant
attention for their potential to predict market trends and asset
prices. Among these, Artificial Neural Networks (ANN) and

Long Short-Term Memory (LSTM) networks have proven to be
effective tools for time series forecasting [5]. However, despite
their individual strengths, both models exhibit limitations when
applied to complex, nonlinear financial data. ANN struggles with
capturing temporal dependencies, while LSTM, though capable
of handling sequential data, may not fully harness the nuances of
market dynamics.

Ajoku et al. [4] developed an ensemble ANN model using
ensemble averaging to address high variance issues in stock
market forecasting, demonstrating superior predictive accuracy
compared to traditional multilayer perceptron models . Srivastava
et al. [6] highlighted the use of artificial neural networks with a
Backpropagation algorithm and Multilayer Feedforward Network
to forecast stock prices, offering a robust approach to uncover
hidden patterns in complex market data . Ballesteros et al. [7]
demonstrated that incorporating market sentiment into a neural
network model, alongside fundamental and technical analysis
variables, improves prediction accuracy by 1.5% for 66% of S&P
500 companies, emphasizing tailored variable selection based on
market sectors.

Inani et al. [8] conducted a comparative analysis of RW, ARIMA,
and ANN models for forecasting the Nifty Fifty index, revealing
ANN’s superior accuracy using MAE and RMSE metrics, pro-
viding valuable insights for investors and financial stakeholders.
Singh et al. [1] developed a Long Short-Term Memory (LSTM)
framework to forecast stock prices, emphasizing its ability to
analyze complex market dynamics and empower investors with
data-driven decision-making insights . Qiu et al. [2] proposed an
attention-based LSTM model with wavelet denoising to enhance
stock price prediction accuracy, achieving superior performance
with R-squared values above 0.94 and MSE below 0.05 on S&P
500 and DJIA datasets . Sivadasan et al. [3] demonstrated that
GRU and LSTM models, optimized with technical indicators
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like SMA, EMA, and RSI, significantly improved stock market
forecasting accuracy, achieving lower MAPE values compared to
existing models. Patel et al. [9] explored various LSTM model
architectures for stock price prediction, highlighting that a model
using 11 years of data, 60 or 100 previous days, and a 70 : 10 : 20
data split outperformed others, emphasizing the importance of
hyper-parameter tuning.

Ku et al. [10] proposed integrating investor domain knowledge
with an LSTM model for stock price prediction, showing superior
accuracy and performance in a 100-stock simulation compared to
strategies based on random technical indicator selection. Karima
et al. [11] applied an LSTM-based recurrent neural network
to forecast daily stock prices for four Moroccan companies,
achieving promising performance with MSE and MAE validation
scores ranging from 0.0412 to 0.1230. Girish et al. [12] explored
the use of Long Short-Term Memory (LSTM) models for stock
market prediction, emphasizing their ability to capture temporal
dependencies and patterns in volatile stock price data. The study
highlights LSTM’s effectiveness in forecasting future market
trends based on historical data and other relevant indicators .

Ge [13] develops a hybrid predictive model combining time
series analysis and machine learning techniques, demonstrating
superior prediction accuracy and adaptability across various global
stock indices, including the S&P 500, NASDAQ 100, and Nikkei
225, with promising results for mitigating losses and enhancing
returns. Arora et al. [14] propose a hybrid LSTM-CNN model
that integrates temporal and image features from stock time
series, demonstrating improved prediction accuracy compared to
individual models like LSTM, CNN, and Naı̈ve Bayes, with LSTM
showing the best performance. Musa & Joshua [15] demonstrate
that the hybrid ARIMA-Artificial Neural Network model outper-
forms individual ARIMA and ANN models in forecasting Nigerian
stock market returns, recommending it for improved accuracy in
predictions.

Physics-Informed Neural Networks (PINNs) introduce a novel
approach by integrating physical laws into the learning process,
potentially enhancing the interpretability and robustness of
predictions. Although the application of PINNs in stock market
forecasting is still emerging, their ability to incorporate domain
knowledge may provide a significant advantage in understanding
market dynamics. This is particularly relevant in volatile markets
where traditional models may struggle to adapt to rapid changes.
The integration of such physics-informed approaches with existing
neural network methodologies could pave the way for more
resilient forecasting models. Moreover, the literature indicates
a growing consensus on the necessity of high-quality, diverse
datasets for training these models effectively.

This study proposes a hybrid ANN-LSTM model that combines the
strengths of both architectures, aiming to enhance the forecasting
accuracy for stock market prices. This hybrid model is applied to
forecast the closing prices of two major financial indices: the S&P
500 and the Toronto Stock Exchange (TSX). By integrating ANN’s
ability to capture patterns with LSTM’s proficiency in handling
temporal dependencies, the hybrid model aims to provide more
robust predictions compared to individual models.

In addition to the hybrid ANN-LSTM, this study also compare its
performance with a Physics-Informed Neural Network (PINN), a
novel approach that incorporates physical laws into neural network

models to improve prediction accuracy. This comparison aims to
evaluate the relative advantages of using a hybrid deep learning
model over other contemporary techniques, specifically PINN, in
stock market forecasting.

The primary contributions of this paper are as follows:

—The development of a hybrid ANN-LSTM model for stock mar-
ket forecasting, which combines the strengths of both ANN and
LSTM to improve predictive performance.

—A detailed comparison of the hybrid ANN-LSTM model with
traditional ANN, LSTM, and PINN models on forecasting the
closing prices of the S&P 500 and TSX.

—A comprehensive evaluation using multiple performance met-
rics, including RMSE, MAE, MAPE, MSLE, R-squared Score,
and Mean Forecast Error (MFE), to assess the accuracy and reli-
ability of the proposed model.

Section 2 details the data collection methods , data preprocessing,
and the description of the ML models using in the study. Section 3
focuses on the implementation of the ML models and the detailed
analysis of the results. Section 4 summarizes the findings from the
study and the conclusions drawn from the implementations and
results of the machine learning models. Limitations encountered
during the research are acknowledged, which may influence future
studies.

2. BACKGROUND THEORY & METHODOLOGY
Fig 1 presents an overview of the methodology employed in this
study.

Fig. 1. Methodology

2.1 Data Collection and Preparation
The closing price of S&P 500 and TSX were collected from Yahoo
Finance using the ‘pandas’ and ‘yfinance’ libraries of Python.
Initially, the dataset was loaded into a data frame, and the ‘Date’
column was parsed to ensure it was correctly recognized as a Date-
Time object.

2.1.1 Data Scaling. To prepare the data for neural network input,
the closing prices were scaled using the MinMaxScaler. This nor-
malization process transformed the data to a specific range [0,1],
enhancing convergence speed and performance stability. The scal-
ing transformation is given by:

Xscaled =
X −Xmin

Xmax −Xmin

(1)
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where Xmax and Xmin are the maximum and minimum values of
the training data respectively.

2.1.2 Data Parsing and Splitting. The objective is to develop a
model that successfully generalizes to new data while fitting the
training set of data.
The dataset was divided into training and test sets, with data up
to December 31, 2020, used for training and data from January 1,
2021, onward used for testing. This division is essential to simulate
real-world forecasting where future data points are unknown during
model training.
Let Xt represent the time series data at time t. The training set
{Xt}nt=1 and the test set {Xt}Nt=n+1 are defined as:

{Xt}nt=1 for t ≤ 2020-12-31 (2)

{Xt}Nt=n+1 for t ≥ 2021-01-01 (3)

2.2 Model Development
2.2.1 Hybrid ANN-LSTM Model. A Hybrid ANN-LSTM model
combines the strengths of both Artificial Neural Networks (ANNs)
and Long Short-Term Memory (LSTM) networks to create a model
capable of handling both complex non-linearities (using the ANN)
and long-term dependencies in sequential data (using the LSTM).
This hybrid approach is particularly effective when dealing with
time-series forecasting, where the data has both immediate and
long-range dependencies.
ANN is good for capturing non-linear relationships between inputs
and outputs, and it is typically used for extracting patterns from
data [17]. LSTM is specialized for learning temporal dependencies
in sequential data. It can capture long-term dependencies and retain
memory of past inputs.
In a Hybrid ANN-LSTM model, the ANN component learns the
non-linear patterns from the raw input features. The LSTM com-
ponent processes the sequential output of the ANN, capturing the
temporal dependencies.

Fig. 2. ANN Architecture

Suppose we have an input vector xt = [x1, x2, . . . , xn] at time step
t. In the first step, this input is processed by the ANN component
[19]. For an ANN layer with a nonlinear activation function ϕ (
ReLU), the output at at time step t is computed as:

at = ϕ(Wann · xt + bann) (4)

where Wann is the weight matrix for the ANN, xt is the input
vector at time step t, bann is the bias term for the ANN, ϕ is the
activation function applied element-wise (e.g., ReLU, sigmoid)
[18].

After the ANN layer, we feed the output at into the LSTM layer to
capture the temporal dependencies. The LSTM uses the equations
described in the previous answer to update its internal state and
compute the hidden state ht at each time step. Let the LSTM’s
input at time step t be the output from the ANN: at. The LSTM
cell components are:

ft = σ(Wf · [ht−1,at] + bf ) (5)
it = σ(Wi · [ht−1,at] + bi) (6)

C̃t = tanh(WC · [ht−1,at] + bC) (7)

Ct = ft · Ct−1 + it · C̃t (8)
ot = σ(Wo · [ht−1,at] + bo) (9)
ht = ot · tanh(Ct) (10)

where ft forget gate, it input gate, C̃t candidate cell state, Ct cell
state, ot output gate, ht hidden state, Wf ,Wi,WC ,Wo are the
weight matrices for the forget, input, candidate, and output gates
respectively, ht−1 is the previous hidden state, at is the ANN out-
put at time step t, bf , bi, bC , bo are the corresponding bias terms
[20].

Fig. 3. LSTM Architecture

Once the LSTM processes the sequential data, the output hidden
state ht is passed through an output layer. This layer is typically a
fully connected neural network (ANN) that provides the final pre-
diction for the time series value at time step t.
Let’s denote the final output of the network at time step t as ŷt:

ŷt = Wout · ht + bout (11)

where Wout is the weight matrix for the output layer, bout is the bias
term for the output layer.
The hybrid model combines the output from the ANN component
and the LSTM component. The final prediction ŷt is obtained after
passing the hidden state ht from the LSTM through a fully con-
nected layer.
Figure 4 depicts the methodology of the Hybrid ANN-LSTM
model utilized in this study The training of the hybrid model in-
volves minimizing a loss function L, typically the Mean Squared
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Error (MSE) for regression tasks, over the training data. The train-
ing process uses gradient descent (or variants like Adam) to update
all the weights in the model, including those of the ANN and LSTM
components.

Fig. 4. Hybrid ANN-LSTM Methodology

The loss function L for time series forecasting is usually defined
as:

L =
1

T

T∑
t=1

(ŷt − yt)
2 (12)

where T is the number of time steps in the training set, ŷt is the
predicted value at time step t, yt is the true value at time step t.
This loss is minimized through back propagation, where gradients
are computed for the weights of both the ANN and the LSTM com-
ponents and used to adjust the weights.

2.2.2 Physics Informed Neural Network(PINN) Model. Physics-
Informed Neural Networks (PINNs) are a class of machine learning
models that integrate physical laws, expressed as partial differen-
tial equations (PDEs) or other mathematical constraints, into the
loss function of a neural network. This allows PINNs to leverage
domain knowledge while training, providing robustness in scenar-
ios with limited or noisy data. In the context of stock market fore-
casting, the dynamics of prices can be approximated by stochastic
differential equations (SDEs) or autoregressive models. For sim-
plicity, let the system be described by a governing equation:

∂S(t)

∂t
+ F(S(t), θ) = 0, (13)

where S(t) is the stock price at time t, F is a function represent-
ing market dynamics (e.g., drift and volatility terms in a stochastic
model), θ represents model parameters or coefficients.
For example, F could take the form of a Black-Scholes equation or
a simplified autoregressive model.
A fully connected neural network u(t;w), parameterized by
weights and biases w, is employed to approximate S(t). The in-
put to the network is t, and the output is the predicted stock price
SNN(t).
The architecture typically includes:

—Input layer: Represents time t,

—Hidden layers: Capture nonlinear relationships using activation
functions like ReLU or tanh,

—Output layer: Predicts stock price SNN(t).

The loss function in PINNs incorporates two components:

—Data Loss: Ensures that the network predictions fit the observed
stock prices at discrete time points.

Ldata =
1

N

N∑
i=1

|SNN(ti)− S(ti)|2 , (14)

where S(ti) is the actual observed price at time ti, and N is the
number of observed data points.

—Physics Loss: Enforces the satisfaction of the governing equa-
tion ∂S(t)

∂t
+F(S(t), θ) = 0 over a set of collocation points {tc},

which may or may not overlap with the observed data points.

Lphysics =
1

M

M∑
j=1

∣∣∣∣∂SNN(t
j
c)

∂t
+ F(SNN(t

j
c), θ)

∣∣∣∣2 , (15)

where M is the number of collocation points.

The total loss is a weighted combination of these components:

Ltotal = λdataLdata + λphysicsLphysics, (16)

where λdata and λphysics are weights controlling the trade-off be-
tween data fitting and physical consistency.

Fig. 5. PINN Methodology

The PINN is trained using gradient-based optimization algorithms,
such as Adam , to minimize the total loss Ltotal. During each train-
ing iteration:

—The neural network predicts stock prices SNN(t).

—The derivatives ∂SNN(t)
∂t

are computed using automatic differen-
tiation.

—The loss components Ldata and Lphysics are calculated and back-
propagated to update the weights w.

Figure 5 illustrates the methodology of the Physics-Informed Neu-
ral Network (PINN) implemented in this study. The training proce-
dure of Physics-Informed Neural Networks (PINNs) involves min-
imizing a composite loss function that integrates data-driven and
physics-informed components. First, the network is initialized with
random weights, and the input time points (or other independent
variables) are fed into the neural network to generate predicted out-
puts, such as stock prices. The data loss ensures that the predictions
closely match observed stock prices at specific data points, while
the physics loss enforces the governing equation (e.g., a stochas-
tic or autoregressive model) at collocation points, which may ex-
tend beyond the observed data. Automatic differentiation is used to
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compute derivatives of the predicted outputs, required for evaluat-
ing the physics loss. The total loss, a weighted sum of the data and
physics losses, is minimized using gradient-based optimization al-
gorithms like Adam . During each iteration, gradients are computed
via backpropagation, and the network’s weights are updated to im-
prove both data fitting and adherence to the physical laws. Once
the loss converges, the trained PINN can predict future stock prices
while respecting the underlying market dynamics encoded in the
governing equations.
After training, the PINN is used to forecast stock prices by evalu-
ating SNN(t) at future time points t > ttrain. The model inherently
respects the underlying physical dynamics encoded in F , which
enhances generalization for extrapolative tasks.

2.3 Evaluation
After training, the model’s predictions are evaluated against the test
set. The predicted values and actual values are inverse transformed
to their original scale to facilitate comparison. Evaluation metrics
are computed to quantify the model’s accuracy. The predictions of
the models on the test dataset were evaluated using several key met-
rics:

(i) Root Mean Square Error (RMSE): RMSE measures the
square root of the average squared differences between predicted
and actual values. It penalizes large errors more heavily than
small ones. Lower RMSE indicates better accuracy.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (17)

where yi is the actual value, ŷi is the predicted value, and n is
the number of observations [21].

(ii) Mean Absolute Error (MAE): MAE calculates the average of
the absolute differences between predicted and actual values. It
provides a straightforward measure of the average error without
emphasizing outliers. Lower MAE indicates better performance.

MAE =
1

n

n∑
i=1

|yi − ŷi| (18)

(iii) Mean Absolute Percentage Error (MAPE): MAPE is a
percentage-based metric that computes the average absolute er-
ror as a percentage of the actual values. It is useful for under-
standing relative errors but can be biased when actual values are
close to zero. Lower MAPE indicates better performance [22].

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (19)

(iv) Mean Squared Logarithmic Error (MSLE): MSLE focuses
on the relative differences between predicted and actual values
by comparing their logarithms. It penalizes under-predictions
more than over-predictions and is effective when dealing with
data spanning multiple scales.

MSLE =
1

N

N∑
i=1

(log(Yi + 1)− log(Ŷi + 1))2 (20)

(v) R-squared Score (R2): R2 represents the proportion of the
variance in the actual values that is predictable from the model.

It ranges from 0 to 1, where values closer to 1 indicate a better
fit. Negative values may occur for poorly fitted models.

R2 = 1−
∑N

i=1(Yi − Ŷi)
2∑N

i=1(Yi − Ȳ )2
(21)

(vi) Mean Forecast Error (MFE): MFE measures the average
bias in predictions by computing the mean difference between
predicted and actual values. Positive or negative values indicate
systematic over-prediction or under-prediction, respectively.

MFE =
1

n

n∑
i=1

(yi − ŷi) (22)

3. RESULTS & DISCUSSION
The training data are the closing prices of the S&P 500 and TSX
from January 1, 2005, to December 31, 2020. The closing price is
forecasted from January 1, 2021, to January 31, 2024, using this
training data. Thus, 16% of the data is utilized as test data, and
84% of the data is used as training data.

Fig. 6. S&P 500 Closing Price

The test dataset has a higher mean and maximum closing price
compared to the training dataset, indicating that the prices in the
test period are generally higher than those in the training period.
The training dataset has a much lower mean and median value
compared to the test period, suggesting that the S&P 500 might
have had lower prices in the earlier years (used in training data).
The standard deviation (SD) is much higher in the training dataset,
which suggests more variability in prices during the training period.
The test dataset shows less variability in comparison(refer Table 1
and Figure 6).
The Hybrid ANN-LSTM model consistently outperforms all other
models across nearly all metrics, demonstrating the lowest RMSE,
MAE, and MFE, as well as the highest R-squared value, which in-
dicates that it provides the most accurate and precise predictions.
With an R-squared value of 0.9546, it explains 95.46% of the vari-
ance in the data, showcasing a high degree of fit. Furthermore, its
MAPE of 0.0115% and MSLE of 0.0002 reflect minimal percent-
age and logarithmic deviations from the actual values(refer Table 2
and Figure 7).
LSTM follows closely, providing robust results, with a slightly
higher RMSE and MAE than the hybrid model but still offering
excellent accuracy and a high R-squared value (0.9510). On the
other hand, the ANN model exhibits lower performance than both
LSTM and Hybrid ANN-LSTM, showing higher RMSE and MAE,
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Table 1. Statistics of S&P 500 Closing Price
Observations Min Max Mean Median SD

Training 4028 676.5300 3756.0701 1813.1928 1525.5850 692.1432

Test 773 3577.0300 4927.9302 4233.6370 4223.7002 295.5127

Table 2. Summary of Model Performance(S&P 500)
RMSE MAE MAPE MSLE R Squared MFE

ANN 81.7169 66.2887 0.0158% 0.0004 0.9182 −1.4311

LSTM 63.2422 50.8636 0.0119% 0.0002 0.9510 −0.8194

Hybrid ANN-LSTM 60.8746 48.5111 0.0115% 0.0002 0.9546 −0.8097

PINN 108.5009 96.5399 2.2258% 0.0006 0.8559 −92.6963

Fig. 7. ANN, LSTM and Hybrid ANN-LSTM Forecasting (S&P 500 )

Fig. 8. PINN Forecasting (S&P 500 )

though it still maintains reasonable predictive ability(refer Table 2
and Figure 7).
In contrast, the PINN model performs the weakest across all met-
rics, with the highest RMSE (108.5009), MAE (96.5399), and
MAPE (2.2258%), suggesting that while it incorporates physics-
based constraints, it struggles to capture the complexities of
the S&P 500 data. Additionally, the negative MFE for PINN
(−92.6963) highlights a significant underestimation bias, further
reinforcing its relatively poor fit compared to the machine learning
models(refer Table 2 and Figure 8).
Overall, the Hybrid ANN-LSTM model proves to be the most ef-
fective and reliable for forecasting S&P 500 closing prices, offer-
ing superior predictive accuracy and model performance across all
evaluated criteria(refer Table 2 ).
The test dataset has higher values for the mean, median, and max-
imum closing prices, suggesting that the market experienced an

Fig. 9. TSX Closing Price

upward trend during the period represented in the test data. The
training dataset has a wider range of variability (higher standard
deviation), which indicates that the closing prices fluctuated more
during the earlier years in the dataset. The mean and median values
in the test dataset are closer to each other compared to the train-
ing dataset, indicating that the distribution of closing prices in the
test period is less skewed. The minimum price in the test dataset
is significantly higher than in the training dataset, reflecting a pos-
sible market growth or a different market condition during the test
period(refer Table 3 and Figure 9).

Fig. 10. ANN, LSTM and Hybrid ANN-LSTM Forecasting(TSX)

The Hybrid ANN-LSTM model shows the best performance among
the models, with the lowest RMSE (0.2838) and MAE (0.2125),
indicating that it offers the most accurate predictions. It also
achieves the lowest MAPE (0.0069%), demonstrating that the
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Table 3. Statistics of TSX Closing Price
Observations Min Max Mean Median SD

Training 4017 11.5699 27.0 19.7199 19.6900 3.2614

Test 772 26.0200 33.7900 30.5535 30.6800 1.5097

Table 4. Summary of Model Performance(TSX)
RMSE MAE MAPE MSLE R Squared MFE

ANN 0.3825 0.3071 0.0100% 0.0001 0.9039 −0.8834

LSTM 0.3113 0.2382 0.0077% 9.5643e− 05 0.9364 0.4614

Hybrid ANN-LSTM 0.2838 0.2125 0.0069% 8.0752e− 05 0.9471 0.1067

PINN 0.5832 0.4586 1.4765% 0.0003 0.7767 −0.4335

Fig. 11. PINN Forecasting(TSX)

model’s errors are minimal relative to the actual values(refer Ta-
ble 4 and Figure 10).
The R-squared value of 0.9471 suggests that the Hybrid ANN-
LSTM model explains 94.71% of the variance in the TSX data,
showing a strong fit to the observed values. Additionally, the posi-
tive MFE (0.1067) indicates that the model tends to slightly over-
estimate the closing prices, but this is negligible given its overall
accuracy(refer Table 4 and Figure 10).
The LSTM model also performs well, with an RMSE of 0.3113,
MAE of 0.2382, and an R-squared value of 0.9364, showing a
strong correlation with the actual data, but still falling short of the
Hybrid ANN-LSTM model in terms of precision. In comparison,
the ANN model has higher RMSE (0.3825) and MAE (0.3071),
but still provides reasonable predictions with an R-squared value
of 0.9039, though it is less accurate than the LSTM and Hybrid
ANN-LSTM models(refer Table 4 and Figure 10).
The PINN model, while incorporating physical constraints, lags
behind in terms of performance. It exhibits the highest RMSE
(0.5832) and MAE (0.4586), as well as a relatively high MAPE of
1.4765%, suggesting that the model struggles to accurately predict
the TSX closing prices. Additionally, the PINN model has the low-
est R-squared value of 0.7767, meaning it explains only 77.67%
of the data’s variance, and the negative MFE (−0.4335) indicates
that the model tends to underestimate the closing prices(refer Ta-
ble 4 and Figure 11).
Overall, the Hybrid ANN-LSTM model proves to be the most ef-
fective for forecasting TSX closing prices, outperforming both in-
dividual models (ANN and LSTM) and the Physics-Informed Neu-
ral Network (PINN) in terms of accuracy, predictive power, and
model fit(refer Table 4 ).

4. CONCLUSIONS
This study aimed to forecast the closing prices of major stock
indices, specifically the S&P 500 and TSX, using various ma-
chine learning models: Artificial Neural Networks (ANN), Long
Short-Term Memory networks (LSTM), Hybrid ANN-LSTM, and
Physics-Informed Neural Networks (PINN). Among the models
tested, the Hybrid ANN-LSTM approach demonstrated superior
forecasting accuracy across both datasets. It outperformed other
models, including the individual ANN and LSTM models, by yield-
ing the lowest RMSE, MAE, and MAPE, while providing a high R-
squared value. The model’s ability to combine the strengths of both
ANN and LSTM allows it to effectively capture both short-term
and long-term dependencies in stock market data. While the PINN
model included physical constraints to improve the interpretability
of the results, it did not perform as well as the hybrid approach,
likely due to the challenges of incorporating such constraints in
stock market predictions. The findings highlight the potential of hy-
brid models, especially when combining deep learning techniques
such as ANN and LSTM, for improving stock market forecasting.
This research provides valuable insights for future developments
in financial time series prediction and presents a robust framework
for tackling the complexity of stock market behavior using machine
learning.
Despite its promising results, this research has some limitations.
The study focused only on closing prices, without incorporating
additional market factors like trading volume or macroeconomic
indicators, which could further enhance predictive accuracy. Addi-
tionally, the use of historical data from 2005–2024 may not fully
account for future market shifts or unprecedented events. Future
research could address these limitations by incorporating diverse
features, extending the training dataset, and exploring alternative
hybrid architectures or refinements to PINN-based approaches.
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