
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.73, March 2025

49

STEGASHIELD – A Multi-Technique Image

Steganography for Enhanced Security and

Undetectability

Athira Varma Jayakumar
Virginia Commonwealth University

Richmond, Virginia, USA

ABSTRACT
Image steganography, the technique of concealing information

within digital images, faces challenges in achieving both

security and imperceptibility. This paper presents

STEGASHIELD, a novel image steganography system that

combines diverse techniques to enhance these critical aspects.

STEGASHIELD employs random embedding of secret pixels,

AES encryption of secret data, and false image embedding to

achieve a high level of security. Imperceptibility is improved

through new algorithms for optimal seed and position

calculation, along with pixel-by-pixel analysis for minimal

distortion. To counter histogram attacks, the research

introduces a histogram preservation technique that

compensates for tonal value losses resulting from secret image

embedding. Experimental results demonstrate that

STEGASHIELD significantly outperforms the plain LSB

method in both imperceptibility and security, as evidenced by

improved PSNR values and histogram comparison tests. This

research contributes to the field of information hiding by

providing a robust steganographic solution that effectively

balances the dual requirements of security and undetectability

in digital image steganography.

General Terms

Security, Image processing

Keywords
Image Steganography, LSB Substitution, Security, AES

Encryption, Fisher Yates Shuffle, False Image Embedding,

Histogram Preservation

1. INTRODUCTION
Steganography is the art of hiding data in a cover media in such

a way that others do not notice it. The different digital carriers

that are used to embed secret data helps differentiate the five

different types of steganographic approaches: (i) Text

Steganography – to hide secret messages or information within

ordinary text documents or other textual data, ii) Image

Steganography – to hide secret data in an image file, (iii) Audio

Steganography – to hide secret data in an audio file, (iv) Video

Steganography – to hide secret data in a video file and (v)

Network Steganography – to modify a single network protocol

through a protocol data unit for highly secure and robust

communication. While any digital carrier mentioned above can

be used for steganography, this work uses Image

Steganography for hiding the secret data in digital images.

While hiding the secret data into an image, it is also needed to

ensure that large amounts of data do not distort the quality of

the cover image making the existence of secret message inside

the cover image suspicious. For this reason, the steganographic

method used for hiding secret data is expected to have the

following characteristics:

Successful steganographic systems rely on five key properties:

imperceptibility, which ensures the hidden message is visually

undetectable; robustness, which allows the message to

withstand distortions during transmission; security, which

protects against unauthorized extraction even if detected;

capacity, which determines the maximum amount of data that

can be embedded while maintaining imperceptibility; and

computational complexity, which considers the processing cost

of embedding and extracting data. These properties collectively

determine the effectiveness and efficiency of a steganographic

technique in concealing and protecting secret information

within cover media. This work mainly concentrates on

enhancing the security and imperceptibility factors of

steganography.

Image steganography techniques are broadly categorized into

spatial domain and transform domain methods. Spatial domain

techniques, such as Least Significant Bit (LSB) substitution,

directly modify pixel intensities, offering larger embedding

capacity but risking slight quality deterioration. LSB

substitution, the most common spatial technique, replaces the

least significant bits of cover image pixels with secret data,

causing minimal visible distortion. However, it’s vulnerable to

attacks, and embedding large amounts of data can degrade

image quality and alter histograms. Transform domain

techniques, like Discrete Wavelet Transform and Discrete

Fourier Transform, utilize transformed coefficients for

message hiding, potentially offering better security but with

lower capacity.

There are many shortcomings of the simple LSB substitution

method discussed and researchers have enhanced these

limitations through a variety of advanced algorithms that keep

up with the quality of the cover image with increased

embedding capacity. This project introduces STEGASHIELD,

a system that leverages state-of-the-art steganographic

algorithms to produce high-quality steganographic images,

ensuring minimum distortion to the cover image while

maintaining a high level of security.

2. RELEVANT WORK
Researchers have developed methods to improve LSB

steganography’s resistance to attacks by avoiding direct

message embedding. [1] introduced a technique where the

binary addition of n-image pixel bits reveals the secret data,

improving imperceptibility, robustness, and capacity. Swain

[2] combined LSB substitution on two LSBs with quotient

value differencing (QVD) on the remaining six bits. Authors in

[3] proposed the ILSB technique, providing enhanced security

without complex mathematical functions. To counter

unauthorized extraction, recent LSB techniques employ

random pixel selection. [4] proposed an algorithm based on

chaos theory, using chaotic random number generators to

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.73, March 2025

50

determine embedding locations and color channels. [5]

suggested distributing secret data across multiple cover images.

[6] achieved randomness through double scrambling of the

cover image before secret bit insertion, significantly improving

steganographic security. Several studies aim to reduce pixel

distortions after message embedding. [7] introduced a series of

evaluations, scored bit rotations, and inversion operations to

minimize distortion. Their approach uses extra bits in RGB

bytes to indicate rotation position and inversion status. [9]

proposed a simple technique of flipping all message bits if more

than 50% of affected pixels would change due to LSB

embedding.

Recent works have focused on enhancing steganography

security by incorporating strong encryption techniques. Ajib

[10] combined cryptography with steganography, encrypting

secret data before embedding. [11] proposed an efficient

cryptographic algorithm combining RC4 Stream cipher and

RGB pixel shuffling. Muhammed et al. [12] introduced a secure

color image steganographic approach using a stego key-

directed adaptive LSB substitution method and multi-level

cryptography. This method employs a two-level encryption

algorithm (TLEA) for the stego key and a multi-level

encryption algorithm (MLEA) for the secret data before

embedding using adaptive LSB substitution. Rustad et al. [13]

developed an inverted LSB image steganography method using

adaptive patterns to improve imperceptibility by adapting the

embedding process based on image characteristics. [14]

introduced a hybrid cryptography and steganography method

for secure data transmission in IoT. This approach combines

LSB techniques with cryptographic methods to enhance overall

security in Internet of Things applications. As digital

communication security remains crucial, LSB steganography

continues to adapt and improve, offering more robust and

efficient methods for hiding sensitive information within

digital images.

3. STEGANOGRAPHY TECHNIQUES
The success of steganography is to ensure that the secret

message or image embedded within the container image is not

detected by the warden who maybe closely monitoring the

communication channel. Even if the presence of an embedded

message is detected the adversary should not be able to extract

the secret message/image and decode it. The main idea of this

research was to design and build a steganographic system that

encompasses the advantages of multiple techniques employed

by various researchers and individually proven to be effective.

The different concepts for improving the security and

imperceptibility of steganography were explored and few were

chosen to be incorporated into the STEGASHIELD image

steganography system.

3.1 False Image Embedding

This steganographic technique embeds both a secret image and

a false image in the cover image. The false image, easily

detectable using simple LSB substitution, is designed to

mislead adversaries into believing they’ve discovered the

hidden message, potentially halting further analysis. This

approach, inspired by Marek and Katarzyna [14], enhances

security by concealing the true secret image. While the false

image is embedded using direct LSB substitution, making it

vulnerable to statistical attacks like histogram comparison, the

actual secret image is secured using multiple techniques

including encryption, random embedding, and pixel distortion

minimization. This multi-layered approach significantly

increases the difficulty of detecting and extracting the genuine

secret image.

3.1 Encryption of Secret Image
Encryption of secret image offers confidentiality of the secret

even if steganography is detected and adversary is successful

enough to extract the embedded bits from the cover image. The

developed image steganography uses the NIST certified

Advanced Encryption Algorithm (AES-128) to encrypt the

secret image. The AES encryption has proven to be the most

secure symmetric key encryption standards. Its large key length

makes brute force attack and exhaustive search of key space

impossible. Its carefully designed 10 rounds of sub operations

ensures complete diffusion of input bits, giving absolutely no

scope for differential or linear cryptanalysis. The key used for

AES encryption is only known to the sender and receiver which

makes the decryption of the cipher impossible to the adversary.

3.2 Random Embedding
Another major vulnerability of the plain LSB method is the

deterministic sequential embedding strategy. This weakness

can be easily exploited by attackers extracting messages from

suspected cover images. Inspired by the work in [1],

STEGASHIELD uses the ‘Random embedding’ technique for

embedding the secret image thereby spreading the secret image

into random pixels within the cover image. Extracting the

secret data bits from the cover image, reordering them and

reconstructing the actual secret image becomes impossible for

the attackers. On the other hand, since the false image is

embedded using classical LSB substitution, all the secret bits

are embedded sequentially, that makes extraction and

reconstruction of false image easy.

Below techniques raise the imperceptibility of steganography:

3.3 Histogram Preservation
Histogram attack is a common attack against steganography

with the attacker analyzing the histogram of cover image and

detecting anomalies. Color histogram is a graphical

representation of the tonal distribution in a digital image. It

plots the number of pixels for each tonal value. The horizontal

axis of the graph represents the (0-255) tonal variations for red,

green and blue planes, while the vertical axis represents the

number of pixels in that particular tone. The original tone of a

cover image pixel is changed to a new tone because of

modifications in LSBs of the cover image pixel when

embedding the secret image bits. As the color tones in the cover

image pixels get affected due to LSB substitution of secret

image on cover image, histogram differences arise on the cover

image. Histogram preservation technique tries to modify some

extra bits to compensate for the tonal changes thereby

preserving the histogram shape from being changed.

3.4 Reducing Pixel Distortion
Imperceptibility is the most important characteristic of

steganography, that differentiates it from cryptography. In

order to achieve imperceptibility, it is needed to ensure that

only a minimal number of cover image pixel bits are affected

by the LSB substitution. For ensuring this, three major

optimizations are implemented in this steganography design:

1. Finding the optimal position to embed with Sequence

matching.

2. Finding the optimal seed for randomization

3. Pixel-by-Pixel Distortion Analysis

These optimizations try to parse through the cover image bits

that would get replaced by the encrypted secret image bits to

find the optimal seed for shuffling the cover image and optimal

pixel position to start embedding the secret image that yields

the minimal bit distortions in the cover pixels. Pixel-by-Pixel

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.73, March 2025

51

Distortion analysis is an analysis to reduce the bit distortions at

pixel level granularity by flipping the secret bits. This concept

was inspired from the work of Erna Zuni Astuti et al in [13]

where they were flipping the entire secret image if the total

number of bit distortions were more than 50%.

4 DETAILED DESIGN
STEGASHIELD, the novel image steganography system

developed in this research, utilizes 24-bit color images with

dimensions of 512x512 pixels as cover images for data

concealment. The 24-bit image pixels are composed of RGB

values with each of these colors having 8-bits for its tone

representation. The Secret and False Images considered in this

implementation are 8-bit Grayscale images. This

implementation of steganography, AES encryption, the

Graphical User interface and evaluation metrics that include

PSNR and histogram analysis is in Java. Considering here is an

application where the intention is to transfer the secret image

with utmost security, but the quality of the image retrieval is

not of much concern. Hence, only 4 MSB bits of the 8-bit

grayscale secret image is embedded into the cover image and

reconstruction of secret image happens with those 4 MSB bits.

Thus, the recovered image is of lesser quality than the original

image, but the communication security is guaranteed.

4.1 False image embedding
The false image considered in these experiments is a grayscale

of 189x182 size. The embedding is done by extracting the 4

MSB bits of the 8-bit secret image pixel and placing that onto

the 4 LSB bits of the 24-bit cover pixel. This affects the blue

tone of the cover pixels. As the false image size is smaller than

the cover image, only a portion of cover image is used up for

the false image. The remaining part of the cover image is used

up for hiding the secret image.

4.2 AES Encryption of secret image
Advanced Encryption Standard (AES) algorithm is

implemented to encrypt secret images. The process involves

converting the image into 128-bit blocks, generating a 256-bit

encryption key, and applying the AES encryption algorithm.

AES applies 10 rounds of transformations to each block of the

secret image data. Each round involves several steps:

a.SubBytes: Substitution of each byte using a fixed table.

b.ShiftRows: Shifting the rows of the state array.

c.MixColumns: Mixing the data within each column.

d. AddRoundKey: XORing the data with the round key.

 The resulting encrypted image appears as random noise,

concealing the original content while allowing for decryption

by authorized parties possessing the key.

4.3 Random Embedding using Cover Image

Shuffling
To embed secret bits randomly in the cover image, first all

pixels in the cover image after the last pixel, where false image

was embedded, are shuffled using the Fisher-Yates algorithm.

The secret image bits are then sequentially embedded into the

shuffled cover image. Further, upon un-shuffling the cover

image, the secret bits would be randomly distributed in the

cover image. Fisher-Yates shuffle produces a uniform shuffle

of an array in which each permutation of the array elements is

equally likely to be produced. Unlike other inefficient

algorithms, which do over shuffling of elements resulting in

biased permutations, in Fisher Yates algorithm each element is

only considered for a random swap once. Fisher Yates shuffle

uses a random number generator to select random pixels for

swapping. Fisher Yates shuffle uses a seeded random number

generator to select random pixels for swapping.

Implementation involves copying pixels after the false image

embedding to an ArrayList and passing it with the seeded

random number generator to the FisherYatesShuffle function,

effectively randomizing secret bit placement while maintaining

retrievability.

4.4 Reducing Pixel Distortion

4.4.1Finding optimal seed for cover image

shuffling
Seed used for shuffling the cover image can be randomly

chosen. The optimal seed strategy aims at minimizing the pixel

bit distortions by finding the seed for shuffling the cover image

that yields the least bit differences in the cover image pixels.

The search algorithm tries all seed values between 0 and 1000

for shuffling the cover image starting from the position where

false image embedding has been ended and calculates the total

number of pixel bit differences when embedding the 256x256

encrypted secret image pixels on the shuffled cover image

portion with each seed. The seed that produces the minimum

pixel bit differences is considered as the optimal seed and is

used for actual shuffling of the cover image. The “optimal

seed” is also passed to the receiver for retrieval of the secret

message from steg image.

4.4.2 Finding optimal position through Bit

Sequence Matching
The optimal pixel in the shuffled part of the cover image to start

embedding encrypted secret image bits is found with bit

sequence matching. The 4 MSB bits from all the encrypted

secret image pixels are extracted and written into an array

‘secretbits’. The 2 LSB bits from the green plane of the cover

pixel and 2 LSB bits from the blue plane of the cover pixel are

concatenated and written into another array ‘coverbits’. Bit

sequence matching of these two arrays is performed by shifting

the ‘secretbits’ array through the length of the ‘coverbits’ array

and calculating the total number of bit matches. The cover pixel

index at which there is maximum bit match is identified as the

‘optimal position’ for embedding the encrypted secret image in

the shuffled cover image. Figure 1 demonstrates the bit

sequence matching approach with start positions 1 and 2. In this

example the maximum match is obtained at start position 9 with

13-bit matches.

Figure 1: Bit Sequence Matching

4.5 Pixel by Pixel Distortion Analysis
In an effort to reduce the bit distortions further, this work

introduces another technique of distortion analysis at each pixel

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.73, March 2025

52

level. Secret bits to be embedded in each pixel are compared

with the cover pixel bits before embedding. When embedding

the 4 secret bits in the Green and Blue LSB bits of a cover pixel,

if the bit difference is found to be greater than 2, then the secret

bits are flipped before embedding and the flipping is indicated

by setting the LSB of the red plane 8bits. To reduce bit

distortions in each pixel.

• G1 G0 B1 B0 in cover pixels are compared with S7 S6 S5

S4 bits of encrypted secret bits to be embedded.

• If the bit difference is > 2, flip the secret bits and indicate

that with ‘1’ in Red LSB R0.

• If the bit difference is <= 2, retain the secret bits and

indicate that with ‘0’ in Red LSB R0.

This flipping technique can limit the maximum bit deviation

per pixel after embedding the secret bits to 3 bits in the worst

case.

• 0 bits matching between cover pixel and secret pixel ➔

Flipping secret bits ➔ Ends in 4 same, 1 different OR 5

same bits

• 1-bit matching between cover pixel bits and secret pixel bits

➔ Flipping secret bits ➔ Ends in 3 same and 2 different

OR 4 same and 1 different bits

• 2 bits matching between cover pixel bits and secret pixel

bits ➔ No Flipping of secret bits ➔ Ends in 2 same and 3

different OR 3 same and 2 different bits

• 3 bits matching between cover pixel bits and secret pixel

bits ➔ No Flipping of secret bits ➔ Ends in 3 same and 2

different OR 4 same and 1 different bits

• 4 bits matching between cover pixel bits and secret pixel

bits ➔ No Flipping of secret bits ➔ Ends in 4 same and 1

different OR 5 same bits

This shows the scenario where the difference between secret

and cover pixel is only 1 bit:

Secret pixel 11011100

Cover Pixel 10101100 11100110 00110001

10 01 if changed to 11 01 ➔ Only 1 bit difference, so retain the

secret bits and indicate no flip with 0 in Red LSB

Cover Pixel after embedding 10101100 11100111 00110001

Figure 2: Histogram Preservation

This shows the scenario where the difference between secret

and cover pixel is 3 bits:

Secret pixel - 00101100

Cover pixel - 10101101 11100110 00110001

10 01 if changed to 00 10 ➔ 3-bit differences, so flip the secret

bits to “1101” so that the bit difference reduces to 1 and indicate

the flip with 1 in Red LSB.

Cover Pixel after embedding 10101101 11100111 00110001

4.6 Histogram Preservation
Color histogram is a graphical representation of the tonal

distribution in a digital image. It plots the number of pixels for

each tonal value. The horizontal axis of the graph represents the

(0-255) tonal variations for red, green and blue planes, while

the vertical axis represents the number of pixels in that

particular tone. Histogram differences always exist between

cover and stego images, even with flip, optimal seed or optimal

position strategies applied. When modified secret bits (after the

flipping) are embedded into the cover pixel, the original tone is

replaced with a new tone because of change in LSBs of the red,

green and blue plane. Histogram Attack is a common

Steganalysis attack for LSB steganography. Anomalies in

Histogram shape can be identified and steganalysts thereby

detect steganography.

The original color tone is replaced with a new tone when secret

bits are embedded into the cover pixel. To prevent staganalysis

through histogram attack, this work introduces a technique to

preserve the histogram shape by compensating for lost tones

during the secret embedding process. This preservation

technique can only be applied when part of the cover image

remains unused even after embedding the secret bits and false

image bits, which is possible only when the secret and false

images are smaller than cover image. In this experimentation,

a 512x512 pixel cover image and a 256x256 pixel secret image

and a 189x182 pixel false image are used. To preserve the

histogram, a pixel in the unused part of the cover image is

identified that contains the new tone value after the secret

image pixel embedding. This will result in the total count of the

pixels with the original tone and the new tone remains

unaffected. The tone swapping steps are performed separately

in each color planes (R, G and B). In the example shown in

Figure 2, when secret bits 11 need to be embedded onto a pixel

with G value 125, it will be changed to 127. Thus, a pixel with

a tone value of 125 is lost and a pixel with a tonal value 127 is

gained. Many pixel changes in this manner would result in

histogram shape distortion. To compensate for the lost 125 tone

and the gained 125 tone due to secret embedding, the

Histogram preservation algorithm searches in the unused part

of the image for another pixel with value 127 and replaces that

with 125. Thus, the total number of pixels with tone value 125

and 127 remains the same retaining the histogram shape.

5 EMBEDDING AND DE-EMBEDDING

5.1 Embedding Process
The embedding process as shown in Figure 3 starts with the

user providing in cover image, false image and secret image

files as inputs. The 16-character password that acts as the key

for AES encryption of secret image is also provided as input by

the user in the GUI. The ten separate 16-byte keys for the 10

rounds of AES are calculated from the initial 16-byte key

provided by the user. Then the secret image is encrypted using

AES encryption. The false image is embedded into the top part

of the cover image using classical LSB substitution. The cover

image and encrypted secret image are fed into the Optimal Seed

search algorithm to find out the seed, for shuffling the

remaining part of the cover image, that causes minimal bit

distortions in cover image. The optimal seed found out is then

fed into the Fisher Yates shuffling algorithm which shuffles the

remaining part of the cover image on which the secret image is

going to be embedded. Further, the shuffled cover image pixels

and encrypted secret image pixels are fed into an Optimal

Position Search algorithm to find out the optimal position in the

shuffled cover image to start embedding the secret image. The

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.73, March 2025

53

optimal position is the pixel index in the shuffled cover image,

where beginning the embedding process results in the fewest

bit distortions. The calculated optimal position pixel index is

fed into the Modified LSB embedding algorithm which embeds

the secret bits on to the shuffled cover image pixels sequentially

starting from the optimal pixel index. The modified LSB

substitution algorithm embeds secret bits onto cover pixels by

performing a Pixel-by-Pixel distortion analysis and Histogram

preservation. Finally, the shuffled cover image with embedded

secret bits is unshuffled to obtain the Steg image that visually

resembles the cover image.

Figure 3: Embedding Process

5.2 Embedding Process Workflow
The Embedding Process workflow in Figure 5 shows the

control flow of the java program to implement the diverse

security and imperceptibility enhancement techniques for

embedding secret image on cover image. The workflow starts

with reading the cover image, false image and secret image.

The 16-character key is also read from the GUI. The AES

encryption of secret image is performed by only considering

the 4 MSB bits of each pixel in the secret image. The optimal

seed and optimal position algorithms are run. The optimal seed

found out is used for Fisher yates shuffling algorithm on part

of cover image. The false image is then embedded in the

unshuffled topmost part of the cover image. The secret image

is then embedded from the optimal pixel position in the

shuffled cover image. During the embedding process, pixel-by-

pixel distortion analysis and histogram preservation are carried

out. Finally, the shuffled part of the cover image is unshuffled

to obtain the stego image.

Figure 4: De-embedding Process

Figure 5: Embedding Process Design Workflow

5.3 De-Embedding Process
The de-embedding process as shown in Figure 4 starts with the

user providing the stego image as input. In addition to stego

image, the 16-character password used as the AES key, the

optimal seed and optimal position used for shuffling and

embedding the secret bits need to be passed to the receiver to

be able to successfully extract the secret image. False image

extraction does not need any of this secret information. The

extraction of false image is carried out by extracting the 4 LSB

bits of the 24-bit pixels in the top of cover image and then

recreating another image with each of the 4 bits becoming the

4 MSB bits of the secret image pixels. The optimal seed

information is then fed into the Fisher yates shuffling

algorithm. The optimal position information is fed into LSB

extraction algorithm which extracts the 2 LSBs from the green

plane of the pixel and 2 LSBs from the red plane of the pixel,

concatenate them and store them as the 4 MSB bits of the 8-bit

pixels. This extraction for all the 256x256 pixels recovers the

encrypted secret image. The encrypted secret image is then

decrypted using AES decryption algorithm by passing the 16-

character password as the 128-bit initial key for the AES. The

retrieved secret image represents the actual secret image with a

decent quality as shown in Figure 10.

5.4 Graphical User Interface

The graphical user interface of this novel secure steganography

tool STEGASHIELD is as given in Figure 6. ‘Hide’ button

press will start the embedding process and ‘Unhide’ button

press will start the de- embedding process. For embedding,

there are fields to provide the cover image, false image and

secret image files. The JFileChooser API is used to prompt the

user to choose a file or a directory. Additionally, the 16-

character key for AES encryption which will be only shared

with the receiver can be entered in the key field. After

embedding, the optimal seed and optimal position found out by

the embedding algorithm are displayed in the Chosen Seed and

Embed position fields. For de-embedding, there are fields in the

GUI to choose the stego image file, seed to be used for shuffling

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.73, March 2025

54

and the position of the secret image in stego image.

Figure 6: Secure Image Steganography GUI

6 RESULTS AND DISCUSSION

6.1 Image Quality Assessment Metrics
The goal of Image quality assessment is to quantitatively model

the perception of image quality to human visual system (HVS).

Full reference Image quality assessment (IQA) measures the

relative quality of an image with respect to another image.

Image steganography whose success depends on the

imperceptibility of hidden data within the cover image, relies

on the various full reference IQA metrics to assess the quality

of the stego image with respect to the original cover image.

6.1.1 PSNR Test
Digital image steganography uses PSNR to evaluate the quality

of stego images or the imperceptibility of steganography

methods. PSNR (Peak Signal-to-noise ratio) test is commonly

used in order to measure the difference between the two series

of numbers, and it is based on the Mean Squared Error (MSE).

MSE is computed by performing byte-by-byte comparisons of

the cover and stego-image. PSNR is the difference between

corresponding pixel values of the pre-algorithm to post-

algorithm image and represents a measure of the peak error.

The higher the PSNR, the lesser is the difference in quality of

the image. A good stego image has a PSNR value of at least

40dB or greater and PSNR is calculated from the MSE as given

below.

𝑀𝑆𝐸 =
1

𝑁 ∗ 𝑀
∑ ∑(𝑋𝑖𝑗 − 𝑌𝑖𝑗)2

𝑁

𝑗=1

 𝑀

𝑖=1

𝑃𝑆𝑁𝑅 = 10 log (
𝑅2

𝑀𝑆𝐸
) (𝑑𝐵)

R is the maximum fluctuation in the cover image data type. For

example, if the cover image has a double-precision floating

point data type, then R is 1. If it has an 8-bit unsigned integer

data type, R is 255, etc. Table 1 compares the performance of

PSNR and MSE for the different steganography techniques,

and for different combinations of cover image and secret

images.

6.1.2 Histogram comparison
An image histogram graphically represents the tonal

distribution in a digital image, plotting pixel count against tonal

values. For grayscale images, it spans from black (left) to white

(right). In color images, separate histograms for red, green, and

blue channels can be produced. In steganography, histogram

similarity between cover and stego images indicates good

quality steganography. However, histogram comparison is a

statistical attack method that can reveal embedded messages by

highlighting differences between cover and stego image

histograms. For a 24-bit color image, 256 different intensities

for each of the 3 channels (red, green, blue) are possible.

Therefore, a histogram for each channel can be drawn

separately, or an average histogram of all channels can be

produced. Figure 7 is the histogram of the cover image,

Baboon.jpg. From Figure 8, with Plain LSB embedding, the

Histograms of cover and stego images look visually similar.

But comparison of histograms shows that there is a difference

in the histograms and thus it is prone to histogram attack.

From Figure 9, with Pixel-by-Pixel Distortion analysis and

‘finding the optimal position to embed' approach, a higher

PSNR is achieved but histogram deviation is visible between

cover and stego images. Therefore, though visual

imperceptibility has increased, the approach is still prone to

histogram steganalysis. From Figure 10, combining Optimal

Seed/Optimal Position approach and Pixel by Pixel distortion

analysis with Histogram preservation, the Histograms of cover

and stego images are exactly similar with zero difference. This

shows that all these techniques combined are completely robust

against histogram attack. From Figure 11, with an additional

security of adding False image to the cover image, a deviation

is seen in the blue plane histogram as the secret bits of false

image are only embedded in the blue plane. But if an interim

person extracts out the false image and further analyzes the

remaining part of the cover image, they will find zero histogram

difference. This might assure them that there is no more

embedded data within the cover image and thus prevent the

interim person from further steganalysis and retrieving the

secret image.

7 CONCLUSION
This work presents a multi-level steganography system, called

STEGASHIELD that brings together different optimization

techniques in order to build a highly secure and imperceptible

steganography system. Algorithms to find the optimal shuffling

seed and optimal position in cover image that gives minimum

bit distortions during the sequential embedding of secret image,

help in raising the imperceptibility of the stego image. Pixel by

Pixel bit distortion analysis and flipping of secret bits to reduce

pixel distortions with more than 2-bit distortions gives a finer

level of granularity for the control of imperceptibility in

steganography systems. AES encryption of secret image and

random embedding of the secret bits in the cover image pixels

enhances the confidentiality of the secret image to a great

extent, by ensuring that deciphering of the secret is almost

impossible to the adversary even if he/she detects the presence

of steganography. Adding an easily retrievable false image

along with the secret image raises the security aspect of

steganography to a higher level with the aim of misguiding the

adversary. Another great contribution of this work is to prevent

the Histogram attack by implementing a Histogram

preservation technique to retain the histogram shape of cover

image even after embedding the secret image.

STEGASHIELD’s high PSNR values and ability to maintain

histogram integrity demonstrate its effectiveness in creating

stego images that are both secure against various attacks and

visually indistinguishable from their cover images. As digital

communication continues to evolve, STEGASHIELD offers a

promising foundation for developing even more sophisticated

information hiding systems, potentially extending its

applications beyond image steganography to other forms of

digital media.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.73, March 2025

55

Table 1: PSNR Assessment

Cover and Secret

images

Plain LSB Histogram

Adjustment

Pixel-by-Pixel

Distortion Analysis +

Optimal Position/Seed

Pixel-by-Pixel Distortion

Analysis + Optimal

Position/Seed +

Histogram Adjustment

Pixel-by-Pixel Distortion

Analysis + Optimal Seed +

Histogram Adjustment +

False Image Embedding

Cover Image –

Baboon.jpg

Secret image –

Barbara.jpg

PSNR = 41.42 dB

MSE = 4.68

PSNR = 47.682 dB

MSE =1.109

Zero Histogram

deviation

PSNR =52.39 dB

MSE = 0.374

PSNR = 49.40 dB

MSE = 0.745

Zero Histogram deviation

PSNR = 50.32 dB

MSE = 0.604

Zero Histogram deviation in

secret embedded area

Cover image –

Peppers.jpg

Secret image –

Sailboat.jpg

PSNR = 41.24 dB

MSE = 4.87

PSNR = 47.65 dB

MSE = 1.116

Zero Histogram

deviation

PSNR = 52.4 dB

MSE = 0.374

PSNR = 49.368 dB

MSE = 0.752

Zero Histogram deviation

PSNR = 50.12 dB

MSE = 0.633

Zero Histogram deviation in

secret embedded area

Cover image –

lena.jpg

Secret image-

peppers.jpg

PSNR = 41.47 dB

MSE = 4.63

PSNR = 47.67 dB

MSE = 1.112

Zero Histogram

deviation

PSNR = 52.415 dB

MSE = 0.373

PSNR = 49.404

MSE = 0.746

Zero Histogram deviation

PSNR = 50.41 dB

MSE = 0.591

Zero Histogram deviation in

secret embedded area

Figure 7: Histogram of Cover image – Baboon.jpg

Figure 8: Histogram of Stego image using Plain LSB Embedding and Histogram Comparison of Cover and Stego images,

PSNR = 50.687 dB

Figure 9: Histogram of Stego image using Plain LSB + Optimal Position Search + Pixel-by-Pixel Distortion analysis

embedding, Histogram Comparison of Cover & Stego images, PSNR = 52.39 dB

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.73, March 2025

56

Figure 10: Histogram of Stego image using Plain LSB + Optimal Seed search + Pixel-by-Pixel Distortion Analysis + Histogram

Preservation embedding, Histogram Comparison of Cover & Stego images, PSNR = 49.4 dB

Figure 11: Histogram of Stego image using Plain LSB + Optimal Seed search + Pixel-by-Pixel Distortion Analysis + Histogram

Preservation + False image embedding, Histogram Comparison of Cover & Stego images, PSNR = 49.39 dB

8 REFERENCES
[1] Datta, Biswajita, Upasana Mukherjee, and Samir Kumar

Bandyopadhyay. "LSB layer independent robust

steganography using binary addition." Procedia Computer

Science 85 (2016): 425-432.

[2] Swain, Gandharba. "Very high capacity image

steganography technique using quotient value

differencing and LSB substitution." Arabian Journal for

Science and Engineering 44.4 (2019): 2995-3004.

[3] Senarathne, A., and Kasun De Zoysa. "ILSB: indexing

with least significant bit algorithm for effective data

hiding." Int J Comput Appl 161.5 (2017): 28-42.

[4] Tutuncu, Kemal, and Baris Demirci. "Adaptive LSB

Steganography Based on Chaos Theory and Random

Distortion." Advances in Electrical and Computer

Engineering 18.3 (2018): 15-22.

[5] Gowda, Shreyank N., and Sumit Sulakhe. "Block Based

Least Significant Bit Algorithm For Image

Steganography." Annual Int'l Conference on Intelligent

Computing, Computer Science & Information Systems

(ICCSIS-16). 2016.

[6] Mukherjee, Srilekha, and Goutam Sanyal. "A multi level

image steganography methodology based on adaptive

PMS and block based pixel swapping." Multimedia Tools

and Applications (2019): 1-16.

[7] Subong, Ryan A., Arnel C. Fajardo, and Yoon Joong Kim.

"LSB Rotation and Inversion Scoring Approach to Image

Steganography." 2018 15th International Joint Conference

on Computer Science and Software Engineering (JCSSE).

IEEE, 2018.

[8] Astuti, Erna Zuni, et al. "Flipping the Message Bits to

Increase Imperceptibility in the Least Significant Bit

Image Steganography." Journal of Physics: Conference

Series. Vol. 1201. No. 1. IOP Publishing, 2019.

[9] Susanto, Ajib, et al. "Dual Security Method for Digital

Image using HBV Encryption and Least Significant Bit

Steganography." Journal of Physics: Conference Series.

Vol. 1201. No. 1. IOP Publishing, 2019.

[10] Abood, May H. "An efficient image cryptography using

hash-LSB steganography with RC4 and pixel shuffling

encryption algorithms." 2017 Annual Conference on New

Trends in Information & Communications Technology

Applications (NTICT). IEEE, 2017.

[11] Muhammad, Khan, et al. "CISSKA-LSB: color image

steganography using stego key-directed adaptive LSB

substitution method." Multimedia Tools and Applications

76.6 (2017): 8597-8626.

[12] Rustad, Supriadi, Abdul Syukur, and Pulung Nurtantio

Andono. "Inverted LSB image steganography using

adaptive pattern to improve imperceptibility." Journal of

King Saud University-Computer and Information

Sciences 34.6 (2022): 3559-3568.

[13] Ray, Atrayee Majumder, et al. "Hybrid Cryptography and

Steganography Method to Provide Safe Data

Transmission in IoT." International Conference on Data

Analytics & Management. Singapore: Springer Nature

Singapore, 2023.

[14] Ogiela, Marek R., and Katarzyna Koptyra. "False and

multi-secret steganography in digital images." Soft

Computing 19.11 (2015): 3331-3339.

IJCATM : www.ijcaonline.org

