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ABSTRACT 
Image steganography, the technique of concealing information 

within digital images, faces challenges in achieving both 

security and imperceptibility. This paper presents 

STEGASHIELD, a novel image steganography system that 

combines diverse techniques to enhance these critical aspects. 

STEGASHIELD employs random embedding of secret pixels, 

AES encryption of secret data, and false image embedding to 

achieve a high level of security. Imperceptibility is improved 

through new algorithms for optimal seed and position 

calculation, along with pixel-by-pixel analysis for minimal 

distortion. To counter histogram attacks, the research 

introduces a histogram preservation technique that 

compensates for tonal value losses resulting from secret image 

embedding. Experimental results demonstrate that 

STEGASHIELD significantly outperforms the plain LSB 

method in both imperceptibility and security, as evidenced by 

improved PSNR values and histogram comparison tests. This 

research contributes to the field of information hiding by 

providing a robust steganographic solution that effectively 

balances the dual requirements of security and undetectability 

in digital image steganography. 
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1. INTRODUCTION 
Steganography is the art of hiding data in a cover media in such 

a way that others do not notice it. The different digital carriers 

that are used to embed secret data helps differentiate the five 

different types of steganographic approaches: (i) Text 

Steganography – to hide secret messages or information within 

ordinary text documents or other textual data, ii) Image 

Steganography – to hide secret data in an image file, (iii) Audio 

Steganography – to hide secret data in an audio file, (iv) Video 

Steganography – to hide secret data in a video file and (v) 

Network Steganography – to modify a single network protocol 

through a protocol data unit for highly secure and robust 

communication. While any digital carrier mentioned above can 

be used for steganography, this work uses Image 

Steganography for hiding the secret data in digital images. 

While hiding the secret data into an image, it is also needed to 

ensure that large amounts of data do not distort the quality of 

the cover image making the existence of secret message inside 

the cover image suspicious. For this reason, the steganographic 

method used for hiding secret data is expected to have the 

following characteristics: 

Successful steganographic systems rely on five key properties: 

imperceptibility, which ensures the hidden message is visually 

undetectable; robustness, which allows the message to 

withstand distortions during transmission; security, which 

protects against unauthorized extraction even if detected; 

capacity, which determines the maximum amount of data that 

can be embedded while maintaining imperceptibility; and 

computational complexity, which considers the processing cost 

of embedding and extracting data. These properties collectively 

determine the effectiveness and efficiency of a steganographic 

technique in concealing and protecting secret information 

within cover media. This work mainly concentrates on 

enhancing the security and imperceptibility factors of 

steganography. 

Image steganography techniques are broadly categorized into 

spatial domain and transform domain methods. Spatial domain 

techniques, such as Least Significant Bit (LSB) substitution, 

directly modify pixel intensities, offering larger embedding 

capacity but risking slight quality deterioration. LSB 

substitution, the most common spatial technique, replaces the 

least significant bits of cover image pixels with secret data, 

causing minimal visible distortion. However, it’s vulnerable to 

attacks, and embedding large amounts of data can degrade 

image quality and alter histograms. Transform domain 

techniques, like Discrete Wavelet Transform and Discrete 

Fourier Transform, utilize transformed coefficients for 

message hiding, potentially offering better security but with 

lower capacity. 

There are many shortcomings of the simple LSB substitution 

method discussed and researchers have enhanced these 

limitations through a variety of advanced algorithms that keep 

up with the quality of the cover image with increased 

embedding capacity. This project introduces STEGASHIELD, 

a system that leverages state-of-the-art steganographic 

algorithms to produce high-quality steganographic images, 

ensuring minimum distortion to the cover image while 

maintaining a high level of security. 

2. RELEVANT WORK 
Researchers have developed methods to improve LSB 

steganography’s resistance to attacks by avoiding direct 

message embedding. [1] introduced a technique where the 

binary addition of n-image pixel bits reveals the secret data, 

improving imperceptibility, robustness, and capacity. Swain 

[2] combined LSB substitution on two LSBs with quotient 

value differencing (QVD) on the remaining six bits. Authors in 

[3] proposed the ILSB technique, providing enhanced security 

without complex mathematical functions. To counter 

unauthorized extraction, recent LSB techniques employ 

random pixel selection. [4] proposed an algorithm based on 

chaos theory, using chaotic random number generators to 
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determine embedding locations and color channels. [5] 

suggested distributing secret data across multiple cover images. 

[6] achieved randomness through double scrambling of the 

cover image before secret bit insertion, significantly improving 

steganographic security. Several studies aim to reduce pixel 

distortions after message embedding. [7] introduced a series of 

evaluations, scored bit rotations, and inversion operations to 

minimize distortion. Their approach uses extra bits in RGB 

bytes to indicate rotation position and inversion status. [9] 

proposed a simple technique of flipping all message bits if more 

than 50% of affected pixels would change due to LSB 

embedding. 

Recent works have focused on enhancing steganography 

security by incorporating strong encryption techniques. Ajib 

[10] combined cryptography with steganography, encrypting 

secret data before embedding. [11] proposed an efficient 

cryptographic algorithm combining RC4 Stream cipher and 

RGB pixel shuffling. Muhammed et al. [12] introduced a secure 

color image steganographic approach using a stego key-

directed adaptive LSB substitution method and multi-level 

cryptography. This method employs a two-level encryption 

algorithm (TLEA) for the stego key and a multi-level 

encryption algorithm (MLEA) for the secret data before 

embedding using adaptive LSB substitution. Rustad et al. [13] 

developed an inverted LSB image steganography method using 

adaptive patterns to improve imperceptibility by adapting the 

embedding process based on image characteristics. [14] 

introduced a hybrid cryptography and steganography method 

for secure data transmission in IoT. This approach combines 

LSB techniques with cryptographic methods to enhance overall 

security in Internet of Things applications. As digital 

communication security remains crucial, LSB steganography 

continues to adapt and improve, offering more robust and 

efficient methods for hiding sensitive information within 

digital images. 

3. STEGANOGRAPHY TECHNIQUES 
The success of steganography is to ensure that the secret 

message or image embedded within the container image is not 

detected by the warden who maybe closely monitoring the 

communication channel. Even if the presence of an embedded 

message is detected the adversary should not be able to extract 

the secret message/image and decode it. The main idea of this 

research was to design and build a steganographic system that 

encompasses the advantages of multiple techniques employed 

by various researchers and individually proven to be effective. 

The different concepts for improving the security and 

imperceptibility of steganography were explored and few were 

chosen to be incorporated into the STEGASHIELD image 

steganography system.                                                                                          

3.1 False Image Embedding 

This steganographic technique embeds both a secret image and 

a false image in the cover image. The false image, easily 

detectable using simple LSB substitution, is designed to 

mislead adversaries into believing they’ve discovered the 

hidden message, potentially halting further analysis. This 

approach, inspired by Marek and Katarzyna [14], enhances 

security by concealing the true secret image. While the false 

image is embedded using direct LSB substitution, making it 

vulnerable to statistical attacks like histogram comparison, the 

actual secret image is secured using multiple techniques 

including encryption, random embedding, and pixel distortion 

minimization. This multi-layered approach significantly 

increases the difficulty of detecting and extracting the genuine 

secret image. 

3.1 Encryption of Secret Image 
Encryption of secret image offers confidentiality of the secret 

even if steganography is detected and adversary is successful 

enough to extract the embedded bits from the cover image. The 

developed image steganography uses the NIST certified 

Advanced Encryption Algorithm (AES-128) to encrypt the 

secret image. The AES encryption has proven to be the most 

secure symmetric key encryption standards. Its large key length 

makes brute force attack and exhaustive search of key space 

impossible. Its carefully designed 10 rounds of sub operations 

ensures complete diffusion of input bits, giving absolutely no 

scope for differential or linear cryptanalysis. The key used for 

AES encryption is only known to the sender and receiver which 

makes the decryption of the cipher impossible to the adversary. 

3.2 Random Embedding 
Another major vulnerability of the plain LSB method is the 

deterministic sequential embedding strategy. This weakness 

can be easily exploited by attackers extracting messages from 

suspected cover images. Inspired by the work in [1], 

STEGASHIELD uses the ‘Random embedding’ technique for 

embedding the secret image thereby spreading the secret image 

into random pixels within the cover image. Extracting the 

secret data bits from the cover image, reordering them and 

reconstructing the actual secret image becomes impossible for 

the attackers. On the other hand, since the false image is 

embedded using classical LSB substitution, all the secret bits 

are embedded sequentially, that makes extraction and 

reconstruction of false image easy. 

Below techniques raise the imperceptibility of steganography:  

3.3 Histogram Preservation 
Histogram attack is a common attack against steganography 

with the attacker analyzing the histogram of cover image and 

detecting anomalies. Color histogram is a graphical 

representation of the tonal distribution in a digital image. It 

plots the number of pixels for each tonal value. The horizontal 

axis of the graph represents the (0-255) tonal variations for red, 

green and blue planes, while the vertical axis represents the 

number of pixels in that particular tone. The original tone of a 

cover image pixel is changed to a new tone because of 

modifications in LSBs of the cover image pixel when 

embedding the secret image bits. As the color tones in the cover 

image pixels get affected due to LSB substitution of secret 

image on cover image, histogram differences arise on the cover 

image. Histogram preservation technique tries to modify some 

extra bits to compensate for the tonal changes thereby 

preserving the histogram shape from being changed. 

3.4 Reducing Pixel Distortion 
Imperceptibility is the most important characteristic of 

steganography, that differentiates it from cryptography. In 

order to achieve imperceptibility, it is needed to ensure that 

only a minimal number of cover image pixel bits are affected 

by the LSB substitution. For ensuring this, three major 

optimizations are implemented in this steganography design: 

1. Finding the optimal position to embed with Sequence 

matching. 

2. Finding the optimal seed for randomization 

3. Pixel-by-Pixel Distortion Analysis 

These optimizations try to parse through the cover image bits 

that would get replaced by the encrypted secret image bits to 

find the optimal seed for shuffling the cover image and optimal 

pixel position to start embedding the secret image that yields 

the minimal bit distortions in the cover pixels. Pixel-by-Pixel 
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Distortion analysis is an analysis to reduce the bit distortions at 

pixel level granularity by flipping the secret bits. This concept 

was inspired from the work of Erna Zuni Astuti et al in [13] 

where they were flipping the entire secret image if the total 

number of bit distortions were more than 50%. 

4 DETAILED DESIGN 
STEGASHIELD, the novel image steganography system 

developed in this research, utilizes 24-bit color images with 

dimensions of 512x512 pixels as cover images for data 

concealment. The 24-bit image pixels are composed of RGB 

values with each of these colors having 8-bits for its tone 

representation. The Secret and False Images considered in this 

implementation are 8-bit Grayscale images. This 

implementation of steganography, AES encryption, the 

Graphical User interface and evaluation metrics that include 

PSNR and histogram analysis is in Java. Considering here is an 

application where the intention is to transfer the secret image 

with utmost security, but the quality of the image retrieval is 

not of much concern. Hence, only 4 MSB bits of the 8-bit 

grayscale secret image is embedded into the cover image and 

reconstruction of secret image happens with those 4 MSB bits. 

Thus, the recovered image is of lesser quality than the original 

image, but the communication security is guaranteed.  

4.1 False image embedding 
The false image considered in these experiments is a grayscale 

of 189x182 size. The embedding is done by extracting the 4 

MSB bits of the 8-bit secret image pixel and placing that onto 

the 4 LSB bits of the 24-bit cover pixel. This affects the blue 

tone of the cover pixels. As the false image size is smaller than 

the cover image, only a portion of cover image is used up for 

the false image. The remaining part of the cover image is used 

up for hiding the secret image. 

4.2 AES Encryption of secret image 
Advanced Encryption Standard (AES) algorithm is 

implemented to encrypt secret images. The process involves 

converting the image into 128-bit blocks, generating a 256-bit 

encryption key, and applying the AES encryption algorithm. 

AES applies 10 rounds of transformations to each block of the 

secret image data. Each round involves several steps: 

a.SubBytes: Substitution of each byte using a fixed table. 

b.ShiftRows: Shifting the rows of the state array. 

c.MixColumns: Mixing the data within each column. 

d. AddRoundKey: XORing the data with the round key. 

 The resulting encrypted image appears as random noise, 

concealing the original content while allowing for decryption 

by authorized parties possessing the key. 

4.3 Random Embedding using Cover Image 

Shuffling 
To embed secret bits randomly in the cover image, first all 

pixels in the cover image after the last pixel, where false image 

was embedded, are shuffled using the Fisher-Yates algorithm. 

The secret image bits are then sequentially embedded into the 

shuffled cover image. Further, upon un-shuffling the cover 

image, the secret bits would be randomly distributed in the 

cover image. Fisher-Yates shuffle produces a uniform shuffle 

of an array in which each permutation of the array elements is 

equally likely to be produced. Unlike other inefficient 

algorithms, which do over shuffling of elements resulting in 

biased permutations, in Fisher Yates algorithm each element is 

only considered for a random swap once. Fisher Yates shuffle 

uses a random number generator to select random pixels for 

swapping. Fisher Yates shuffle uses a seeded random number 

generator to select random pixels for swapping. 

Implementation involves copying pixels after the false image 

embedding to an ArrayList and passing it with the seeded 

random number generator to the FisherYatesShuffle function, 

effectively randomizing secret bit placement while maintaining 

retrievability. 

4.4 Reducing Pixel Distortion 

4.4.1Finding optimal seed for cover image 

shuffling 
Seed used for shuffling the cover image can be randomly 

chosen. The optimal seed strategy aims at minimizing the pixel 

bit distortions by finding the seed for shuffling the cover image 

that yields the least bit differences in the cover image pixels. 

The search algorithm tries all seed values between 0 and 1000 

for shuffling the cover image starting from the position where 

false image embedding has been ended and calculates the total 

number of pixel bit differences when embedding the 256x256 

encrypted secret image pixels on the shuffled cover image 

portion with each seed. The seed that produces the minimum 

pixel bit differences is considered as the optimal seed and is 

used for actual shuffling of the cover image. The “optimal 

seed” is also passed to the receiver for retrieval of the secret 

message from steg image.  

4.4.2 Finding optimal position through Bit 

Sequence Matching 
The optimal pixel in the shuffled part of the cover image to start 

embedding encrypted secret image bits is found with bit 

sequence matching. The 4 MSB bits from all the encrypted 

secret image pixels are extracted and written into an array 

‘secretbits’. The 2 LSB bits from the green plane of the cover 

pixel and 2 LSB bits from the blue plane of the cover pixel are 

concatenated and written into another array ‘coverbits’. Bit 

sequence matching of these two arrays is performed by shifting 

the ‘secretbits’ array through the length of the ‘coverbits’ array 

and calculating the total number of bit matches. The cover pixel 

index at which there is maximum bit match is identified as the 

‘optimal position’ for embedding the encrypted secret image in 

the shuffled cover image. Figure 1 demonstrates the bit 

sequence matching approach with start positions 1 and 2. In this 

example the maximum match is obtained at start position 9 with 

13-bit matches. 

 

 

Figure 1: Bit Sequence Matching 

 

 

4.5 Pixel by Pixel Distortion Analysis 
In an effort to reduce the bit distortions further, this work 

introduces another technique of distortion analysis at each pixel 
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level. Secret bits to be embedded in each pixel are compared 

with the cover pixel bits before embedding. When embedding 

the 4 secret bits in the Green and Blue LSB bits of a cover pixel, 

if the bit difference is found to be greater than 2, then the secret 

bits are flipped before embedding and the flipping is indicated 

by setting the LSB of the red plane 8bits. To reduce bit 

distortions in each pixel. 

• G1 G0 B1 B0 in cover pixels are compared with S7 S6 S5 

S4 bits of encrypted secret bits to be embedded. 

• If the bit difference is > 2, flip the secret bits and indicate 

that with ‘1’ in Red LSB R0. 

• If the bit difference is <= 2, retain the secret bits and 

indicate that with ‘0’ in Red LSB R0. 

This flipping technique can limit the maximum bit deviation 

per pixel after embedding the secret bits to 3 bits in the worst 

case. 

• 0 bits matching between cover pixel and secret pixel ➔ 

Flipping secret bits ➔ Ends in 4 same, 1 different OR 5 

same bits 

• 1-bit matching between cover pixel bits and secret pixel bits 

➔ Flipping secret bits ➔ Ends in 3 same and 2 different 

OR 4 same and 1 different bits 

• 2 bits matching between cover pixel bits and secret pixel 

bits ➔ No Flipping of secret bits ➔ Ends in 2 same and 3 

different OR 3 same and 2 different bits 

• 3 bits matching between cover pixel bits and secret pixel 

bits ➔ No Flipping of secret bits ➔ Ends in 3 same and 2 

different OR 4 same and 1 different bits 

• 4 bits matching between cover pixel bits and secret pixel 

bits ➔ No Flipping of secret bits ➔ Ends in 4 same and 1 

different OR 5 same bits 

 

This shows the scenario where the difference between secret 

and cover pixel is only 1 bit:  

Secret pixel 11011100 

Cover Pixel 10101100 11100110 00110001 

10 01 if changed to 11 01 ➔ Only 1 bit difference, so retain the 

secret bits and indicate no flip with 0 in Red LSB 

Cover Pixel after embedding 10101100 11100111 00110001 

 

Figure 2: Histogram Preservation 

This shows the scenario where the difference between secret 

and cover pixel is 3 bits: 

Secret pixel - 00101100 

Cover pixel - 10101101 11100110 00110001 

10 01 if changed to 00 10 ➔ 3-bit differences, so flip the secret 

bits to “1101” so that the bit difference reduces to 1 and indicate 

the flip with 1 in Red LSB. 

Cover Pixel after embedding 10101101 11100111 00110001  

4.6 Histogram Preservation 
Color histogram is a graphical representation of the tonal 

distribution in a digital image. It plots the number of pixels for 

each tonal value. The horizontal axis of the graph represents the 

(0-255) tonal variations for red, green and blue planes, while 

the vertical axis represents the number of pixels in that 

particular tone. Histogram differences always exist between 

cover and stego images, even with flip, optimal seed or optimal 

position strategies applied. When modified secret bits (after the 

flipping) are embedded into the cover pixel, the original tone is 

replaced with a new tone because of change in LSBs of the red, 

green and blue plane. Histogram Attack is a common 

Steganalysis attack for LSB steganography. Anomalies in 

Histogram shape can be identified and steganalysts thereby 

detect steganography. 

The original color tone is replaced with a new tone when secret 

bits are embedded into the cover pixel. To prevent staganalysis 

through histogram attack, this work introduces a technique to 

preserve the histogram shape by compensating for lost tones 

during the secret embedding process. This preservation 

technique can only be applied when part of the cover image 

remains unused even after embedding the secret bits and false 

image bits, which is possible only when the secret and false 

images are smaller than cover image. In this experimentation, 

a 512x512 pixel cover image and a 256x256 pixel secret image 

and a 189x182 pixel false image are used. To preserve the 

histogram, a pixel in the unused part of the cover image is 

identified that contains the new tone value after the secret 

image pixel embedding. This will result in the total count of the 

pixels with the original tone and the new tone remains 

unaffected. The tone swapping steps are performed separately 

in each color planes (R, G and B). In the example shown in 

Figure 2, when secret bits 11 need to be embedded onto a pixel 

with G value 125, it will be changed to 127. Thus, a pixel with 

a tone value of 125 is lost and a pixel with a tonal value 127 is 

gained. Many pixel changes in this manner would result in 

histogram shape distortion. To compensate for the lost 125 tone 

and the gained 125 tone due to secret embedding, the 

Histogram preservation algorithm searches in the unused part 

of the image for another pixel with value 127 and replaces that 

with 125. Thus, the total number of pixels with tone value 125 

and 127 remains the same retaining the histogram shape. 

5 EMBEDDING AND DE-EMBEDDING 

5.1 Embedding Process 
The embedding process as shown in Figure 3 starts with the 

user providing in cover image, false image and secret image 

files as inputs. The 16-character password that acts as the key 

for AES encryption of secret image is also provided as input by 

the user in the GUI. The ten separate 16-byte keys for the 10 

rounds of AES are calculated from the initial 16-byte key 

provided by the user. Then the secret image is encrypted using 

AES encryption. The false image is embedded into the top part 

of the cover image using classical LSB substitution. The cover 

image and encrypted secret image are fed into the Optimal Seed 

search algorithm to find out the seed, for shuffling the 

remaining part of the cover image, that causes minimal bit 

distortions in cover image. The optimal seed found out is then 

fed into the Fisher Yates shuffling algorithm which shuffles the 

remaining part of the cover image on which the secret image is 

going to be embedded. Further, the shuffled cover image pixels 

and encrypted secret image pixels are fed into an Optimal 

Position Search algorithm to find out the optimal position in the 

shuffled cover image to start embedding the secret image. The 
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optimal position is the pixel index in the shuffled cover image, 

where beginning the embedding process results in the fewest 

bit distortions. The calculated optimal position pixel index is 

fed into the Modified LSB embedding algorithm which embeds 

the secret bits on to the shuffled cover image pixels sequentially 

starting from the optimal pixel index. The modified LSB 

substitution algorithm embeds secret bits onto cover pixels by 

performing a Pixel-by-Pixel distortion analysis and Histogram 

preservation. Finally, the shuffled cover image with embedded 

secret bits is unshuffled to obtain the Steg image that visually 

resembles the cover image. 

 

Figure 3: Embedding Process 

5.2 Embedding Process Workflow 
The Embedding Process workflow in Figure 5 shows the 

control flow of the java program to implement the diverse 

security and imperceptibility enhancement techniques for 

embedding secret image on cover image. The workflow starts 

with reading the cover image, false image and secret image. 

The 16-character key is also read from the GUI. The AES 

encryption of secret image is performed by only considering 

the 4 MSB bits of each pixel in the secret image. The optimal 

seed and optimal position algorithms are run. The optimal seed 

found out is used for Fisher yates shuffling algorithm on part 

of cover image. The false image is then embedded in the 

unshuffled topmost part of the cover image. The secret image 

is then embedded from the optimal pixel position in the 

shuffled cover image. During the embedding process, pixel-by-

pixel distortion analysis and histogram preservation are carried 

out. Finally, the shuffled part of the cover image is unshuffled 

to obtain the stego image. 

Figure 4: De-embedding Process 

 

Figure 5: Embedding Process Design Workflow 

5.3 De-Embedding Process 
The de-embedding process as shown in Figure 4 starts with the 

user providing the stego image as input. In addition to stego 

image, the 16-character password used as the AES key, the 

optimal seed and optimal position used for shuffling and 

embedding the secret bits need to be passed to the receiver to 

be able to successfully extract the secret image. False image 

extraction does not need any of this secret information. The 

extraction of false image is carried out by extracting the 4 LSB 

bits of the 24-bit pixels in the top of cover image and then 

recreating another image with each of the 4 bits becoming the 

4 MSB bits of the secret image pixels. The optimal seed 

information is then fed into the Fisher yates shuffling 

algorithm. The optimal position information is fed into LSB 

extraction algorithm which extracts the 2 LSBs from the green 

plane of the pixel and 2 LSBs from the red plane of the pixel, 

concatenate them and store them as the 4 MSB bits of the 8-bit 

pixels. This extraction for all the 256x256 pixels recovers the 

encrypted secret image. The encrypted secret image is then 

decrypted using AES decryption algorithm by passing the 16-

character password as the 128-bit initial key for the AES. The 

retrieved secret image represents the actual secret image with a 

decent quality as shown in Figure 10. 

5.4 Graphical User Interface 

The graphical user interface of this novel secure steganography 

tool STEGASHIELD is as given in Figure 6. ‘Hide’ button 

press will start the embedding process and ‘Unhide’ button 

press will start the de- embedding process. For embedding, 

there are fields to provide the cover image, false image and 

secret image files. The JFileChooser API is used to prompt the 

user to choose a file or a directory. Additionally, the 16-

character key for AES encryption which will be only shared 

with the receiver can be entered in the key field. After 

embedding, the optimal seed and optimal position found out by 

the embedding algorithm are displayed in the Chosen Seed and 

Embed position fields. For de-embedding, there are fields in the 

GUI to choose the stego image file, seed to be used for shuffling 
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and the position of the secret image in stego image. 

 

Figure 6: Secure Image Steganography GUI 

6 RESULTS AND DISCUSSION 

6.1 Image Quality Assessment Metrics 
The goal of Image quality assessment is to quantitatively model 

the perception of image quality to human visual system (HVS). 

Full reference Image quality assessment (IQA) measures the 

relative quality of an image with respect to another image. 

Image steganography whose success depends on the 

imperceptibility of hidden data within the cover image, relies 

on the various full reference IQA metrics to assess the quality 

of the stego image with respect to the original cover image. 

6.1.1 PSNR Test 
Digital image steganography uses PSNR to evaluate the quality 

of stego images or the imperceptibility of steganography 

methods. PSNR (Peak Signal-to-noise ratio) test is commonly 

used in order to measure the difference between the two series 

of numbers, and it is based on the Mean Squared Error (MSE). 

MSE is computed by performing byte-by-byte comparisons of 

the cover and stego-image. PSNR is the difference between 

corresponding pixel values of the pre-algorithm to post-

algorithm image and represents a measure of the peak error. 

The higher the PSNR, the lesser is the difference in quality of 

the image. A good stego image has a PSNR value of at least 

40dB or greater and PSNR is calculated from the MSE as given 

below.  

𝑀𝑆𝐸 =
1

𝑁 ∗ 𝑀
∑ ∑(𝑋𝑖𝑗 − 𝑌𝑖𝑗)2

𝑁

𝑗=1

 𝑀

𝑖=1

 

𝑃𝑆𝑁𝑅 = 10 log (
𝑅2

𝑀𝑆𝐸
) (𝑑𝐵) 

R is the maximum fluctuation in the cover image data type. For 

example, if the cover image has a double-precision floating 

point data type, then R is 1. If it has an 8-bit unsigned integer 

data type, R is 255, etc. Table 1 compares the performance of 

PSNR and MSE for the different steganography techniques, 

and for different combinations of cover image and secret 

images. 

6.1.2 Histogram comparison 
An image histogram graphically represents the tonal 

distribution in a digital image, plotting pixel count against tonal 

values. For grayscale images, it spans from black (left) to white 

(right). In color images, separate histograms for red, green, and 

blue channels can be produced. In steganography, histogram 

similarity between cover and stego images indicates good 

quality steganography. However, histogram comparison is a 

statistical attack method that can reveal embedded messages by 

highlighting differences between cover and stego image 

histograms. For a 24-bit color image, 256 different intensities 

for each of the 3 channels (red, green, blue) are possible. 

Therefore, a histogram for each channel can be drawn 

separately, or an average histogram of all channels can be 

produced. Figure 7 is the histogram of the cover image, 

Baboon.jpg. From Figure 8, with Plain LSB embedding, the 

Histograms of cover and stego images look visually similar. 

But comparison of histograms shows that there is a difference 

in the histograms and thus it is prone to histogram attack. 

From Figure 9, with Pixel-by-Pixel Distortion analysis and 

‘finding the optimal position to embed' approach, a higher 

PSNR is achieved but histogram deviation is visible between 

cover and stego images. Therefore, though visual 

imperceptibility has increased, the approach is still prone to 

histogram steganalysis. From Figure 10, combining Optimal 

Seed/Optimal Position approach and Pixel by Pixel distortion 

analysis with Histogram preservation, the Histograms of cover 

and stego images are exactly similar with zero difference. This 

shows that all these techniques combined are completely robust 

against histogram attack. From Figure 11, with an additional 

security of adding False image to the cover image, a deviation 

is seen in the blue plane histogram as the secret bits of false 

image are only embedded in the blue plane. But if an interim 

person extracts out the false image and further analyzes the 

remaining part of the cover image, they will find zero histogram 

difference. This might assure them that there is no more 

embedded data within the cover image and thus prevent the 

interim person from further steganalysis and retrieving the 

secret image. 

7 CONCLUSION 
This work presents a multi-level steganography system, called 

STEGASHIELD that brings together different optimization 

techniques in order to build a highly secure and imperceptible 

steganography system. Algorithms to find the optimal shuffling 

seed and optimal position in cover image that gives minimum 

bit distortions during the sequential embedding of secret image, 

help in raising the imperceptibility of the stego image. Pixel by 

Pixel bit distortion analysis and flipping of secret bits to reduce 

pixel distortions with more than 2-bit distortions gives a finer 

level of granularity for the control of imperceptibility in 

steganography systems. AES encryption of secret image and 

random embedding of the secret bits in the cover image pixels 

enhances the confidentiality of the secret image to a great 

extent, by ensuring that deciphering of the secret is almost 

impossible to the adversary even if he/she detects the presence 

of steganography. Adding an easily retrievable false image 

along with the secret image raises the security aspect of 

steganography to a higher level with the aim of misguiding the 

adversary. Another great contribution of this work is to prevent 

the Histogram attack by implementing a Histogram 

preservation technique to retain the histogram shape of cover 

image even after embedding the secret image. 

STEGASHIELD’s high PSNR values and ability to maintain 

histogram integrity demonstrate its effectiveness in creating 

stego images that are both secure against various attacks and 

visually indistinguishable from their cover images. As digital 

communication continues to evolve, STEGASHIELD offers a 

promising foundation for developing even more sophisticated 

information hiding systems, potentially extending its 

applications beyond image steganography to other forms of 

digital media. 
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Table 1: PSNR Assessment 

Cover and Secret 

images 

Plain LSB Histogram 

Adjustment 

Pixel-by-Pixel 

Distortion Analysis + 

Optimal Position/Seed 

Pixel-by-Pixel Distortion 

Analysis + Optimal 

Position/Seed + 

Histogram Adjustment 

Pixel-by-Pixel Distortion 

Analysis + Optimal Seed + 

Histogram Adjustment + 

False Image Embedding 

Cover Image – 

Baboon.jpg 

Secret image – 

Barbara.jpg 

PSNR = 41.42 dB  

MSE = 4.68 

PSNR = 47.682 dB 

MSE =1.109  

Zero Histogram 

deviation 

PSNR =52.39 dB  

MSE = 0.374 

PSNR = 49.40 dB  

MSE = 0.745 

Zero Histogram deviation 

PSNR = 50.32 dB  

MSE = 0.604 

Zero Histogram deviation in 

secret embedded area 

Cover image – 

Peppers.jpg 

Secret image – 

Sailboat.jpg 

PSNR = 41.24 dB 

MSE = 4.87 

PSNR = 47.65 dB 

MSE = 1.116 

Zero Histogram 

deviation 

PSNR = 52.4 dB    

MSE = 0.374 

PSNR = 49.368 dB  

MSE = 0.752 

Zero Histogram deviation 

PSNR = 50.12 dB           

MSE = 0.633 

Zero Histogram deviation in 

secret embedded area 

Cover image – 

lena.jpg 

Secret image- 

peppers.jpg 

PSNR = 41.47 dB 

MSE = 4.63 

PSNR = 47.67 dB 

MSE = 1.112 

Zero Histogram 

deviation 

PSNR = 52.415 dB  

MSE = 0.373 

PSNR = 49.404  

MSE = 0.746 

Zero Histogram deviation 

PSNR = 50.41 dB           

MSE = 0.591 

Zero Histogram deviation in 

secret embedded area 

                                                      

Figure 7: Histogram of Cover image – Baboon.jpg 

  

Figure 8: Histogram of Stego image using Plain LSB Embedding and Histogram Comparison of Cover and Stego images, 

PSNR = 50.687 dB 

  

Figure 9: Histogram of Stego image using Plain LSB + Optimal Position Search + Pixel-by-Pixel Distortion analysis 

embedding, Histogram Comparison of Cover & Stego images, PSNR = 52.39 dB



International Journal of Computer Applications (0975 – 8887)  

Volume 186 – No.73, March 2025 

56 

 

Figure 10: Histogram of Stego image using Plain LSB + Optimal Seed search + Pixel-by-Pixel Distortion Analysis + Histogram 

Preservation embedding, Histogram Comparison of Cover & Stego images, PSNR = 49.4 dB

 

Figure 11: Histogram of Stego image using Plain LSB + Optimal Seed search + Pixel-by-Pixel Distortion Analysis + Histogram 

Preservation + False image embedding, Histogram Comparison of Cover & Stego images, PSNR = 49.39 dB 
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