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ABSTRACT 
This paper proposes a new mathematical model for the 

preemptive multi-objective multi-mode resource-constrained 

project scheduling problem (P-MOMRCPSP) that focuses on 

two objectives: minimizing the makespan and maximizing the 

net present value (NPV). The model allows multiple execution 

modes for each project activity and permits activities to be 

preempted at any appropriate time and resumed later. This 

problem is classified as NP-hard, necessitating the use of the 

Simulated Annealing (SA) algorithm to achieve either a global 

optimal solution or a satisfactory one. The SA algorithm offers 

significantly shorter computation times compared to exact 

methods, making it well-suited for solving large-scale 

problems. Finally, the model is validated through a numerical 

example. 
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1. INTRODUCTION 
The resource-constrained project scheduling problem (RCPSP) 

aims to schedule project activities to ensure the shortest 

possible project duration, subject to precedence and resource 

constraints. Precedence constraints specify that no activity can 

start until all its predecessors are completed. An extension of 

this problem is the multi-mode resource-constrained project 

scheduling problem (MRCPSP), where each activity can be 

executed in one of several modes. Each mode is characterized 

by specific durations and resource requirements. In the non-

preemptive case, once an activity starts, it must run to 

completion without interruption. On the other hand, the 

preemptive resource-constrained project scheduling problem 

(PRCPSP) allows activities to be preempted at any integer time 

point and resumed later at no additional cost [49]. This paper 

focuses on the preemptive case, where activities can be 

interrupted multiple times. As a generalization of the RCPSP, 

the preemptive multi-mode resource-constrained project 

scheduling problem (P-MRCPSP) integrates multiple 

execution modes with preemptive scheduling and is classified 

as NP-hard [3]. 

Many studies have explored the multi-objective MRCPSP and 

the use of SA; however, the present study advances this 

research by incorporating preemptive scheduling with 

renewable and non-renewable resources to develop a model 

that more accurately reflects real-world challenges. 

Furthermore, the SA algorithm is enhanced through the 

implementation of dynamic cooling schedules and advanced 

strategies for generating new solutions. These upgrades make 

it faster and more effective, especially when dealing with large, 

complex problems. 

The objectives for the project scheduling problem can generally 

be divided into two major types: regular and irregular. The 

performance objectives of a non-decreasing function with 

respect to activity start time are regular performance objectives. 

Some representative objectives that minimize the Makespan, 

project cost, and project delay time are discussed. All these 

target values can be improved by advancing the start or 

completion time of an activity. In contrast, changing the start 

or completion time of an activity does not affect target values 

like maximizing the NPV and addressing the resource leveling 

problem, which are considered irregular performance 

objectives [16]. The objectives of the model presented in this 

paper are: (1) minimizing the total makespan of the project and 

(2) maximizing the NPV. 

The rest of this paper is structured as follows: Section 2 reviews 

the related literature on resource-constrained project 

scheduling problems. Section 3 describes the problem and 

introduces the mathematical model for the preemptive multi-

mode resource-constrained project scheduling problem (P-

MOMRCPSP). Section 4 provides an overview of the SA 

method, followed by the algorithm’s steps for solving P-

MOMRCPSP in Section 5. A numerical example is discussed 

in Section 6, and the results of sensitivity analysis and 

performance evaluation are presented in Section 7. Finally, 

Section 8 concludes the paper with key takeaways and 

suggestions for future research. 

2. LITERATURE REVIEW  
The basic RCPSP assumes that an activity cannot be interrupted 

once it has started. However, Bianco et al. [6], Brucker and 

Knust [10], Debels and Vanhoucke [14], Demeulemeester and 

Herroelen [15], and Nudtasomboon and Randhawa [34] allow 

activity preemption at discrete points in time, meaning an 

activity can be interrupted after each integer unit of its 

processing time. Franck et al. [20] propose a calendar concept 

for project scheduling that includes preemptive scheduling. A 

calendar is defined as a binary function that determines for each 

period whether activity execution is possible or if a break 

occurs during which an activity may not be started or 

continued.  

Later, Zare et al. [54, 55] developed a mathematical model for 

the P-MRCPSP. This model introduces multiple execution 

modes for each activity and permits activities to be interrupted 

and restarted at any time without incurring additional costs. 

This level of flexibility makes the model highly applicable to 

complex, real-world project management scenarios. 

Alcaraz et al. [3], Bouleimen and Lecocq [8], Hartmann [21], 

Jarboui et al. [25], Jozefowska et al. [26], Ozdamar [35], Pesch 

[36], and Varma et al. [48] discuss multi-mode problems 

without nonrenewable resources. Multi-mode problems with 
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generalized precedence constraints have been considered by 

Barrios et al. [5], Brucker and Knust [10], Calhoun et al. [11], 

Reyck and Herroelen [41], Drexl et al. [17], Heilmann [23, 24], 

Nonobe and Ibaraki [33], and Sabzehparvar and Seyed 

Hosseini [42]. Zhu et al. [58] employ a multi-mode problem 

with generalized resource constraints. Salewski et al. [43] 

extend the multi-mode RCPSP by introducing so-called mode 

identity constraints. Schultmann and Rentz [44] present a case 

study that demonstrates how the multi-mode RCPSP can be 

applied to projects involving the dismantling of buildings. 

Voß and Witt [50] utilize the multi-mode RCPSP with an 

objective function that integrates makespan, weighted 

tardiness, and setup costs, facilitating activity batching. 

Słowinski [45] is credited as the first to outline the framework 

of the multi-objective resource-constrained project scheduling 

problem (MORCPSP) and list various objectives. Subsequent 

research on MORCPSP identifies primary objectives such as 

makespan, activity tardiness, NPV, resource investment (RI), 

and robustness. Wang and Zheng [53] propose a multi-

objective Drosophila optimization algorithm aimed at 

minimizing makespan and total cost. Tirkolaee et al. [47] 

solved the multi-objective multi-mode resource-constrained 

project scheduling problem to maximize NPV while 

minimizing completion time. Al-Fawzan and Haouari [4] 

merge makespan minimization with maximization of total free 

slack into a unified objective. Dealing with multiple objectives, 

another approach is to generate Pareto-optimal schedules, as 

has been done by Davis et al. [13], who have demonstrated the 

minimization of makespan and renewable resource 

overutilization simultaneously. 

Various meta-heuristic and heuristic algorithms have been 

developed for solving RCPSP and MRCPSP. Meta-heuristic 

algorithms improve upon heuristic algorithms by drawing on 

concepts from different disciplines and abstracting them to 

form general algorithms, independent of specific problem 

structures and frameworks. Heuristics can be used to generate 

the initial solutions required by meta-heuristic algorithms. 

Kolisch and Drexl [27] initiated a local search procedure for 

non-preemptive resource-constrained project scheduling 

problems, where activity durations are discrete functions of 

committed renewable and nonrenewable resources. Their 

methodology begins with an initial solution and iteratively 

improves it by moving the mode assignments of activities in 

order to create the best feasible schedule. Hartmann [21] 

developed a GA that included single and multi-pass 

improvements in the local search component. Another variant 

of a GA for the MRCPSP was proposed by Alcaraz et al. [3], 

where solution representation was based on forward/backward 

genes and had a new fitness function to improve performance. 

Peteghem and Vanhoucke [37, 38] introduced GA to 

preemptive and non-preemptive versions of MRCPSP with 

considerations of resource availability to improve solution 

robustness. Słowinski et al. [46], Boctor [7], Jozefowska et al. 

[26], and Bouleimen and Lecocq [8] have developed several 

SA algorithms to find the near-optimal solution for MRCPSP 

using probabilistic search. Zhang et al. [57] and Jarboui et al. 

[25] proposed the use of particle swarm optimization (PSO) in 

solving the MRCPSP for global optimization with the help of 

swarm intelligence. Coelho and Vanhoucke [12] provide a two-

step approach to the MRCPSP involving mode assignment and 

the RCPSP. This basically decomposes the complexity of the 

problem at hand. Wang and Fang [52] developed a shuffled 

frog-leaping algorithm for MRCPSP, utilizing virtual frogs and 

a multi-mode serial schedule generation scheme to efficiently 

explore and exploit the search space. Elloumi et al. [19] 

addressed MRCPSP with different execution modes of tasks 

and proposed an evolutionary algorithm coupled with a reactive 

multi-objective heuristic in a bid to deal with complex 

objectives and constraints. Zoraghi et al. [59] considered 

MRCPSP with material ordering and presented three hybrid 

meta-heuristic algorithms for near-optimum solutions. Bredael 

and Vanhoucke [9] propose a new genetic algorithm for solving 

the resource-constrained multi-project scheduling problem. 

Other metaheuristics to solve MRCPSP have been proposed by 

other authors, such as Elloumi and Fortemps [18], Lova et al. 

[28], Lova et al. [29], Mori and Tseng [31], Muritiba et al. [32] 

Nonobe and Ibaraki [33], Zhang [56], Peteghem and 

Vanhoucke [39], and Voskresenskii et al. [51].   

3. PROBLEM DEFINITION 
The project is represented as an activity-on-the-node network 

G (N, A), where N is the set of activities and A is the set of pairs 

of activities between which a finish-start precedence 

relationship with a minimal time lag of 0 exists. A set of 

activities, numbered from 1 to ׀N׀ with a dummy start node 0 

and a dummy end node ׀N1 + ׀, is to be scheduled on a set R 

resources. Each activity i ϵ N is performed in a mode mi, which 

is chosen out of a set of  ׀Mi ׀ different execution modes 

Mi={1,…,. ׀Mi׀}. The duration of activity i, when executed in 

mode mi, is dim.  Each mode mi requires rim,k , nonrenewable 

resource units and rim,z renewable resource units. A schedule s 

is defined by a vector of activity start times si and a vector 

denoting their corresponding execution modes mi. A schedule 

is said to be feasible if all precedence and resource constraints 

are satisfied. In the P-MOMRCPSP, activities are allowed to be 

preempted at any time and restarted later at no additional cost. 

Therefore, each duration unit v of an activity i scheduled in 

mode mi (with v ϵ {0, …, dim −1) is assigned a starting time siv. 

The objectives of the P-MOMRCPSP are to minimize the 

makespan and maximize the NPV of the project.  

3.1  Mathematical Model 
In this section, a novel mathematical model is introduced for 

the preemptive multi-objective multi-mode resource-

constrained project scheduling problem (P-MOMRCPSP). 

 

3.1.1 Indices and parameters and variables 
𝑻: project time window 

𝑵: number of activities 
𝒊: index of activity 

𝟎: dummy start node 

𝒏 + 𝟏: dummy end node 

𝒎: Index of mode 

𝜶: Discount Rate 

𝑷𝒊: Positive cash flow for activity i 

𝑼𝒊𝒎: Negative cash flow for activity i in mode m 

𝑺𝒊,𝒍𝒎: start time of lth units of activity i in mode m where each 

activity i is broken into dim 

𝒅𝒊𝒎: duration of Activity i executed mode m 

𝒕: index for a period of time  

𝒌: index of nonrenewable resource 

Z: index of renewable resource 

𝒂𝒌: availability of each nonrenewable resource type k in each 

time period 

𝒂𝒛: availability of each renewable resource type z in each time 

period 
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𝒓𝒊𝒎,𝒌: each activity i in mode m requires k nonrenewable 

resource units  

𝒓𝒊𝒎,𝒛: each activity i in mode m requires z nonrenewable 

resource units  

E: a very large positive number 

 

𝒙𝒊𝒎 
1 if activity i is completed in mode m  

0 otherwise 

  

𝒚𝒊𝒉𝒕 
1 if ℎ𝑡ℎ units for activity i is executed in period t  

0 otherwise 

 

3.1.2 Proposed mathematical model 
The P-MOMRCPSP can be stated as follows: 

𝑚𝑖𝑛 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑚𝑖𝑛(𝑆𝑛+1,0)                                                (1) 

𝑚𝑎𝑥 𝑁𝑃𝑉 = ∑ 𝐶𝐹𝑖(1 + 𝛼)𝑁
𝑖=1

−(𝑆𝑛+1,0)
                                  (2) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑆0,0 = 0                                                                                  (3) 

𝑆𝑖,𝑑𝑖𝑚𝑚 ≤ 𝑆𝑗,1𝑚 + (1 − 𝑥𝑖𝑚)𝛦 + (1 − 𝑥𝑗𝑚)𝛦          

𝑚 = 1, . . . 𝑀,         𝑖 = 1, . . . , 𝑁                                               (4) 

𝑆𝑖,(𝑣−1)𝑚 + 1 ≤ 𝑆𝑖,𝑣𝑚 + (1 − 𝑥𝑖𝑚)𝛦        

 𝑚 = 1, . . . 𝑀,         𝑖 = 1, . . . , 𝑁,         𝑉 = 1, . . . , 𝑑𝑖                (5) 

𝑆𝑛+1,0 ≤ 𝑇                                                                             (6) 

∑ ∑ 𝑥𝑖𝑚
𝑀
𝑚=1 = 1𝑁

𝑖=1                                                                (7) 

∑ ∑ 𝑦𝑖ℎ𝑡
𝑇
𝑡=0 ≤ 1𝑁

𝑖=1                                                                 (8) 

∑ (𝑡 × 𝑦𝑖ℎ𝑡) − ∑ 𝑆𝑖𝑗𝑚
𝑀
𝑚=1 = 0𝑇

𝑡=0                                           (9) 

∑ ∑ 𝑟𝑖𝑚𝑖,𝑘𝑥𝑖𝑚
𝑀
𝑚=1 ≤ 𝑎𝑘

𝑁
𝑖=1                                                   (10) 

∑ ∑ 𝑦𝑖ℎ𝑡 × ∑ (𝑥𝑖𝑚 × 𝑟𝑖𝑚𝑧)𝑀
𝑚=1

𝑁
𝑖=1 ≤ 𝑎𝑍

𝑇
𝑡=0                          (11) 

𝑝𝑖 − ∑ ∑ 𝑢𝑖𝑚𝑥𝑖𝑚
𝑀
𝑚=1

𝑁
𝑖=1 = 𝐶𝐹𝑖                                           (12) 

𝑆𝑖,𝑣𝑚 ∈ 𝑖𝑛𝑡+                                                                         (13) 

The objective function (1) minimizes the total makespan of the 

project, and the objective function (2) maximizes the NPV. 

Constraint (3) ensures that the project starts at time zero. 

Constraint set (4) ensures that the earliest start time of an 

activity j cannot be earlier than the finish time of the last unit 

of duration of its predecessor i. Constraint set (5) guarantees 

that the start time for every time instance of an activity is at 

least one-time unit later than the start time of the previous unit 

of duration. Constraint set (6) ensures that the makespan does 

not exceed T. Every activity has to be executed exactly in one 

mode m, which is ensured by constraint (7). Constraints (8) and 

(9) determine the processing time of each activity section. 

Constraints (10) and (11) deal with the nonrenewable and 

renewable resource constraints, respectively. Constraint (12) 

guarantees a positive cash flow for every activity i. This net 

cash flow may be simply expressed as the difference between 

the income and the expenses related to activity i.  It is crucial 

to note that the income generated from performing each activity 

is independent of how the activity is carried out. In other words, 

the modes and resources used to execute an activity do not 

affect the income derived from the project. However, the 

expenses of each activity are directly related to how the activity 

is executed, and the optimal approach should be chosen for 

each activity to maximize the NPV added. Constraint (13) 

ensures that the start times of activities are nonnegative integer 

values. 

4. SIMULATED ANNEALING  
SA is a local search method inspired by the physical annealing 

process studied in statistical mechanics [1].  An SA algorithm 

repeats an iterative neighbor generation procedure and follows 

search directions that improve the objective function value. 

While exploring the solution space, the SA method offers the 

possibility to accept worse neighbor solutions in a controlled 

manner to escape from local minima. More precisely, in each 

iteration, for a current solution x characterized by an objective 

function value f(x), a neighbor x′ is selected from the 

neighborhood of x denoted N(x) and defined as the set of all its 

immediate neighbors. For each move, the objective 

difference         Δ=f(x′)−f(x) is evaluated. For minimization 

problems, x′ replaces x whenever Δ⩽0. Otherwise, x′ could 

also be accepted with a probability P  =  e(−Δ)/T. The acceptance 

probability is compared to a number yrandom ∈ [0,1] generated 

randomly and x′ is accepted whenever P>yrandom. 

The factors that influence acceptance probability are the degree 

of objective function value degradation Δ (smaller 

degradations induce greater acceptance probabilities) and the 

parameter T called temperature (higher values of T give higher 

acceptance probabilities). The temperature can be controlled by 

a cooling scheme specifying how it should be progressively 

reduced to make the procedure more selective as the search 

progresses toward neighborhoods of good solutions. There 

exist theoretical schedules guaranteeing asymptotic 

convergence toward the optimal solution. However, they 

require infinite computing time. In practice, much simpler 

schedules with finite computing times are preferred, even if 

they do not guarantee an optimal solution. 

A common finite time implementation of SA involves 

decreasing the temperature T in S steps, starting from an initial 

value T0 and using an attenuation factor β (0 < β <1). The 

initial temperature T0 is supposed to be high enough to allow 

acceptance of any new neighbor proposed in the first step. In 

each step S, the procedure generates a fixed number of neighbor 

solutions Nsol and evaluates them using the current temperature 

value Ts= β sT0. The whole process is commonly called 

“cooling chain”. Adapting SA to an optimization problem 

involves defining its specific components: a solution 

representation of the problem, a method for calculating the 

objective function value, a neighbor generation mechanism for 

exploring the solution space, and a cooling scheme including 

stopping criteria. These adaptation steps for our new 

adaptations of SA for P-MOMRCPSP are described below. 

5. SIMULATED ANNEALING ALGORITM 

FOR SOLVING P-MOMRCPSP  
Abbasi et al. [2], Bouleimen and Lecocq [8], Mika et al. [30], 

He et al. [22], Jozefowska et al. [26], and Rahimi et al. [40] 

have successfully used the SA algorithm for a significant 

number of project scheduling problems. In this section, the SA 

algorithm designed to solve the preemptive multi-objective 

multi-mode resource-constrained project scheduling problem 

(P-MOMRCPSP) is presented. 
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5.1 Step One: 
In this step, project information is read, and an initial solution 

is generated to start the SA algorithm. A feasible list of activity 

sequences is determined as the initial solution to initiate the SA 

procedure. The choice of an appropriate initial solution 

significantly affects the convergence speed and the quality of 

the final solution of the SA algorithm. Various methods exist 

for generating a feasible schedule (a feasible list of activity 

sequences) from project activities. In the present study, the 

following method is applied to generate the initial solution: 

5.1.1 Obtaining the initial solution: 
In the first stage, the project activities are entered into a table, 

similar to Table 1, based on their precedence relationships. 

Table 1. Sample Table for Determining the Initial Solution 

precedence activities 𝒓𝒊𝒎 𝒅𝒊𝒎 activity 

      1 

      2 

0 0 2 1   3 

      

 .... 

 

In the right column of the table, the precedence activities for 

each activity are listed. For instance, in the table above, 

activities 1 and 2 are precedence activities for activity 3. It 

should be noted that, to obtain a feasible initial solution, only 

the data related to one of the activities is used. 

In the second stage the early time matrix is formed. This matrix 

is 𝑖 × 2, where the number of rows is equal to the number of 

existing activities. For each activity, the earliest start time and 

the earliest finish time are recorded in the matrix. 

𝐸𝐹 𝐸𝑆 

0 0 

 ... 

 ... 

0 0 

 

In the third stage, to complete the early time matrix, which 

currently has all its elements set to zero, the earliest start time 

and the earliest finish time for each activity is calculated. This 

task is performed as follows: 

𝑓𝑜𝑟  𝑖 = 1 𝑡𝑜 𝑠𝑖𝑧𝑒(𝐷, 1) 

𝑖𝑓  𝑝𝑟𝑒(𝑖, 1) = 0 𝑡ℎ𝑒𝑛 

𝐸𝑆 = 0 

𝐸𝐹 = 0 + 𝑑𝑖 𝑒𝑙𝑠𝑒 

𝑓𝑜𝑟  𝑗 = 1, . . . 𝐽 

𝐸𝑆 = 𝑚𝑎𝑥(𝐸𝐹𝑗 + 1) 

𝐸𝐹 = 𝐸𝑆 + 𝑑𝑖 

𝑒𝑛𝑑 

 

in the fourth stage, the split matrix is constructed to account for 

the preemption of activities in order to obtain a feasible 

solution. The split matrix is 𝑖 × 𝑇 matrix, where the number of 

columns is equal to the project's time horizon. The elements of 

this matrix are defined as follows 

𝑓𝑜𝑟  𝑖 = 1 𝑡𝑜 𝑠𝑖𝑧𝑒(𝐷, 1) 

𝑓𝑜𝑟  𝑗 = 𝐸𝑆 𝑡𝑜 𝐸𝐹 

𝑠𝑝𝑙𝑖𝑡 (𝑖, 𝑗) = 1 

 

In the fifth stage, the resource consumption matrix is generated. 

This matrix is obtained by multiplying each "one" in the row 

corresponding to activity i by the resource consumption of that 

activity. 

In the sixth stage, the R matrix is constructed. This matrix is 

obtained by summing the rows of the resource consumption 

matrix. This matrix shows the amount of resource R used each 

day. To level resources and ensure that the daily consumption 

of each resource does not exceed the available capacity, the 

largest element in the matrix is first identified. If this value 

exceeds the available capacity, the following steps are 

performed: 

1. Identify the day on which the maximum R occurs  

2. Randomly select activity X. If the entry corresponding to 

variable x on that day in the split matrix is 1, change the 

last written 1 plus 1 to 1 and change the initial 1 to 0. 

This effectively delays the activity by one day to level 

the resources. 

3. If variable x has value of zero in split matrix, select 

another random activity and repeat all the above steps for 

that activity. 

The solution of the previous six stages provides an initial 

feasible solution that satisfies all constraints. It should be noted 

that after every stage, the early time matrix, the split matrix, the 

resource consumption matrix, and the R matrix are updated. 

The stages to obtain the initial solution are illustrated in figure 

1. 

5.2 Step Two: 
The list of activities generated in step one is considered the best 

list of activity sequences (best-list), and the completion time of 

the nth activity is regarded as the best value of the objective 

function (best-obj). In addition to minimizing the project 

completion time, this study also aims to maximize the net 

present value (NPV). To combine these two objective 

functions, the daily project cost is calculated. It is assumed that 

a penalty of n dollars is incurred for each day of project delay; 

therefore, the monetary value of each day is set to n dollars. 

Furthermore, the second objective function is multiplied by a 

negative value to transform it into a minimization problem. 

This allows the two objective functions to be combined into a
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 single objective. The list of activity sequences obtained at the 

end of each iteration is referred to as the current list (current-

list), and the corresponding value of the objective function for 

this list is referred to as the current objective (current-obj). In 

the first iteration, the current list is assigned as the best list, after 

which the procedure proceeds to step three. 

5.3 Step Three:  
In this step, the parameters of the SA algorithm are determined. 

1. The initial temperature is considered a multiple of the 

objective function value (𝑇𝑠 = 𝑘 ∗ 𝑏𝑒𝑠𝑡 − 𝑜𝑏𝑗), which in 

this project is set to 100. 

2. The maximum number of iterations for stopping the 

algorithm is set to 10,000.  

3. Boltzmann's constant kB is assumed to be 1. 

4. The final temperature for stopping the algorithm is set to 

0.01 (Tf = 0.01). 

5. The iteration counter is set to 0 (iterate = 0). 

6. The temperature is set to the starting temperature (T = TS). 

5.4 Step Four: 
In this step, the optimal solution is sought using the SA 

algorithm. the iteration counter is increased by setting interat = 

interat + 1, then a new neighborhood is generated for the 

current point. To move to a neighboring point in this study, the 

state of an activity is modified and all feasibility steps as 

explained in the initial solution determination section are 

applied. This will result in a feasible neighboring point. From 

the neighborhood list, calculate the objective function value 

and assume the obtained value as the objective function value 

of the neighborhood (nbr - obj). The procedure then proceeds 

to step five. 

5.5 Step Five: 
 In this step, the changes in the objective function is calculated. 

The changes in the objective function in each iteration are equal 

to the difference between the objective function in this iteration 

and the previous iteration, defined as follows: 

𝛥𝑜𝑏𝑗 = (𝑛𝑏𝑟 − 𝑜𝑏𝑗) − (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑜𝑏𝑗) 

 

If Δobj<0, it means an improvement in the objective function, 

and the procedure proceeds to step seven. 

If Δobj=>0, it means there is no improvement in the objective 

function, and the procedure proceeds to step six.  

5.6 Step Six:  
A random number between 0 and 1 is generated and considered 

as 𝑝𝑟
′ . The value of exp(-Δobj/T) is calculated and denoted by 

𝑝𝑟. If  𝑝𝑟 > 𝑝𝑟
′  , the procedure then proceeds to Step Seven; 

otherwise, it advances to step eight. 

5.7 Step Seven:  
The best value of the objective function is updated to match the 

objective function value of the generated neighborhood. he 

following changes are applied before proceeding to step nine . 

𝑏𝑒𝑠𝑡 − 𝑜𝑏𝑗 = 𝑛𝑏𝑟 − 𝑜𝑏𝑗 

𝑏𝑒𝑠𝑡 − 𝑙𝑖𝑠𝑡 = 𝑛𝑏𝑟 − 𝑙𝑖𝑠𝑡 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑜𝑏𝑗 = 𝑛𝑏𝑟 − 𝑜𝑏𝑗 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑙𝑖𝑠𝑡 = 𝑛𝑏𝑟 − 𝑙𝑖𝑠𝑡 

 

Retrieve information related to the activities 

form the early time matrix 

form the split matrix 

z> a maxR If 

iEF= 0 + d       ES= 0 

change split (x,k ) to 0 and change the element after the 

last 1 in that row to 1." 

If split(x,k)=1  

form the resource consumption matrix 

Print the final solution 

If pre (i,1) =0 

Select a random activity x 

+1)jES= max (EF 

iEF= ES + d 

 

form the R matrix 

Yes 

Yes 

Yes 

No 

No 

No 

Fig 1: Initial solution generation algorithm 
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5.8 Step Eight:  
The following changes are applied, and the procedure proceeds 

to Step Nine. 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑜𝑏𝑗 = 𝑛𝑏𝑟 − 𝑜𝑏𝑗 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑙𝑖𝑠𝑡 = 𝑛𝑏𝑟 − 𝑙𝑖𝑠𝑡 

5.9 Step Nine: Cooling chain 
At this stage, the temperature is reduced according to the 

cooling schedule, and the procedure proceeds to step ten. In this 

study, a cooling schedule is applied in which the temperature 

decreases according to the equation T= β *T. 

5.10 Step Ten: Re-annealing 
To avoid being trapped in a local optimum after accepting some 

new points, the temperature is increased back to the initial 

temperature, and an attempt is made again at higher 

temperatures by use of search algorithm. In this research, if the 

best value for the objective function remains constant for 50 

consecutive iterations, re-annealing is performed, and the 

temperature is set to the initial temperature (T=TS), Then, the 

procedure proceeds to step eleven.  

5.11 Step Eleven: Algorithm Stopping 

Conditions 
Here, two conditions for stopping the algorithm have been 

defined: 

• Condition One: If the number of iterations equals the 

maximum determined iterations. 

• Condition Two: If the temperature equals the final 

temperature (Tf). 

If any one of these conditions holds, then the algorithm stops 

otherwise it goes back to step four. 

The stages of the SA algorithm for solving the project 

scheduling problem are shown in figure (2) 

6. NUMERICAL EXAMPLE 
In this section of the research to verify the accuracy of the 

proposed model, a numerical example is presented. This 

problem involves a network with six activities numbered from 

0 to 5, where activities 0 and 5 are dummy activities (Figure 

(3)). In this problem, one renewable resource with 11 available 

Fig 2: Simulated annealing algorithm for solving the P-MOMRCPSP 

Move to the neighboring point and 

calculate the value of Z for it (Z= nbr-obj) 

Set S as an initial solution 

Obtain the value of Z for this solution 

best- list = S, best- obj= Z 

= 1 β β = 0.9, k, = 0.01f = 100, T sT 

Max iteration = 10000 

iterate = 0 

If Z < best- obj 

A random number between 0 and 1 is 

generated and considered as 𝑝´ 

iterate = iterate +1 

T = β * T 

 ΔZ/T-<e 𝑝´if  

fIf T < T 

best- list = S, best- obj= Z 

iterate = iterate +1 

 

If iterate = 

Max iteration 

Print the values of best-list and best-obj 

If iterate = 

Max iteration 

No 

Yes 
No 

No 

Yes 

Yes 

Yes 

Yes 

No 

No 
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units and one non-renewable resource with 10 available units 

are considered. 

The activities in this project are preemptive and have two 

execution modes. The relevant information, including resource 

consumption and precedence relationships of the activities for 

mode m=1, is provided in table 2, and for mode m=2, in table 

3. This is a simple example of a project scheduling problem, 

with its network depicted in the following figure: 

 

Table 2. information of project for m=1 

Activities id
 kir ,1  zir ,1  

Prerequisites 

0 0 0 0 1, 2 

1 3 3 3 4 

2 4 4 5 3 

3 2 7 5 5 

4 1 1 7 5 

5 0 0 0 - 
 

Table 3. information of project for m=2 

Activities id
 kir ,2  zir ,2  

Prerequisites 

0 0 0 0 1, 2 

1 2 5 4 4 

2 3 2 4 3 

3 1 4 4 5 

4 2 3 2 5 

5 0 0 0 - 
 

The project time horizon is equal to 10 time units, and the 

discount rate is 15%. If the project is delayed, the contractor is 

fined 7000 monetary units per day. The cost of using resources 

per unit time is 100 monetary units with both types costing 

similar amount. Table 4 presents the revenue generated by 

activities. 

Table 4. Income generated from activities 

Activities 1 2 3 4 

Income 5000 2000 3500 1800 

 

The model was coded in MATLAB to be solved by the SA 

algorithm. Tables 5 and 6 show the results obtained from 

running the numerical example by the SA algorithm with max 

iteration =1000, 𝑇𝑆 = 100, 𝑇𝑓 = 0.001, 𝛽 = 0.95. 

Table 5. Initial results 

Makespan =5 NPV= 14281 

111 =x
 

012 =x
 

121 =x
 

022 =x  131 =x
 

032 =x
 

141 =x
 

042 =x
 

Initial Energy =14526 
 

Table 6. Final results 

Makespan =5 NPV= 14281 

011 =x
 

112 =x
 

021 =x
 

122 =x
 

031 =x
 

132 =x
 

141 =x
 

042 =x
 

Final Energy =10349
  

7. SENSITIVITY ANALYSIS 
To examine the sensitivity of the solution obtained from this 

algorithm to Ts, the temperature values are set to 50, 100, 200, 

300 and 400. The graph showing the changes in energy is 

similar to the graph in Chart 1, and the graph showing the 

changes in the solution time of the problem is similar to the 

graph in Chart 2. 

 

 
 

As seen in charts 1 and 2, with an increase in the value of TS, 

the Z values either decrease (better) or increase (worse). This 

means that the change in the TS parameter has a slight effect on 

the objective function value. However, changing the parameter 

TS significantly affects the solution time, indicating a direct 

relationship. 

Next, to examine the sensitivity of the solution obtained from 

this algorithm to Tf, the Tf values are sets to 0.001, 0.01, 0.1, 1 

and 5. The graph showing the changes in energy is similar to 

the graph in chart 3, and the graph showing the changes in the 

solution time of the problem is similar to the graph in chart 4. 
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As seen in charts 3 and 4, with an increase in the value of Tf, 

the Z values either decrease (better) or increase (worse). This 

indicates that changing the parameter Tf has a slight effect on 

the objective function value. However, changing the parameter 

Tf significantly affects the solution time of the problem, 

indicating an inverse relationship. 

Finally, to examine the sensitivity of the solution obtained from 

this algorithm to β, the β values are set to 0.5, 0.6, 0.7, 0.8 and 

0.9. The graph showing the changes in energy is similar to the 

graph in chart 5, and the graph showing the changes in the 

solution time of the problem is similar to the graph in chart 6. 

 

 

As seen in charts 5 and 6, with an increase in the value of β, the 

Z values decrease (better), and the solution time of the problem 

generally increases (worse).  

Based on the results, it can be concluded that the solution 

values are highly sensitive to the β parameter, which has a 

direct relationship with the objective function value and an 

inverse relationship with the solution time. These findings 

indicate that the performance of the SA algorithm is strongly 

influenced by its initial parameters. Adjustments to these 

parameters can lead to either improved or suboptimal solutions. 

8. CONCLUSION  
The project scheduling problem with resource constraints is 

diverse due to the possibility of considering various constraints 

and different solution methods. Therefore, it has always 

attracted the attention of researchers, and numerous studies 

have been conducted to present various models and solve the 

models of previous researchers. This study proposed a new 

mathematical model for the P-MOMRCPSP. In this project 

scheduling problem, two objectives were to be optimized. The 

first objective, considered in most existing studies, was to 

minimize project completion time. However, in this study, 

another goal, which is of particular importance in today's 

world, was examined: maximizing the NPV. Objectives that 

discuss the project's cash flow were very important and had not 

been considered in many studies. By incorporating various 

constraints, the problem was formulated to better reflect real-

world conditions and enhance its practical applicability. 

 

Additionally, since it is feasible in practice to assign more than 

one execution mode to activities, the activities of this study are 

multi-mode. In the above example, two execution modes were 

assigned to each activity. Besides being multi-mode, the 

activities of the proposed model are interruptible. Although this 

restriction has been addressed less frequently in previous 

studies, it is not uncommon to encounter in practical projects, 

where, for certain activities, it might be useful to preempt the 

activity. Preemption of activities introduces problem 

complexity to the scheduling problem but can result in 

improved solutions. In most of the existing models, resource 

constraints are renewable or non-renewable. In real projects, 

however, both resources are typically available. Thus, the 

proposed model considers both renewable and non-renewable 

resources in the development of the resource constraint. 

As the model proposed is a hard problem, a metaheuristic 

algorithm was used to find solutions within a reasonable 

computation time, especially for large instances. The SA 

algorithm was used to solve the problem and implemented on 

the model. One of the primary reasons for choosing this 

algorithm is that it can find solutions close to the optimal 

solution. 

For future research, the activity durations can be modeled as 

probabilistic rather than deterministic. Further, while this study 

optimized two objective functions with equal importance, 

future models can assign higher importance to one objective 

function compared to the other using weighting methods. Since 

the proposed model is entirely novel, it has not yet been solved 

by any other algorithms. Consequently, future work can 

investigate using other metaheuristic algorithms and measuring 

performance on the basis of gained results during the progress 

of present work. 
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