
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

19

A Simulated Annealing Algorithm for the Preemptive

Multi-Objective Multi-Mode Resource-Constrained

Project Scheduling Problem

Zahra Zare
Wright State University

Dayton, OH, 45435, USA

Maysam Ashrafzadeh
Islamic Azad University

Najafabad, Iran

ABSTRACT
This paper proposes a new mathematical model for the

preemptive multi-objective multi-mode resource-constrained

project scheduling problem (P-MOMRCPSP) that focuses on

two objectives: minimizing the makespan and maximizing the

net present value (NPV). The model allows multiple execution

modes for each project activity and permits activities to be

preempted at any appropriate time and resumed later. This

problem is classified as NP-hard, necessitating the use of the

Simulated Annealing (SA) algorithm to achieve either a global

optimal solution or a satisfactory one. The SA algorithm offers

significantly shorter computation times compared to exact

methods, making it well-suited for solving large-scale

problems. Finally, the model is validated through a numerical

example.

Keywords
Project scheduling, preemption, multi-objective, multi-mode,

Metaheuristic, Simulated Annealing (SA) algorithm.

1. INTRODUCTION
The resource-constrained project scheduling problem (RCPSP)

aims to schedule project activities to ensure the shortest

possible project duration, subject to precedence and resource

constraints. Precedence constraints specify that no activity can

start until all its predecessors are completed. An extension of

this problem is the multi-mode resource-constrained project

scheduling problem (MRCPSP), where each activity can be

executed in one of several modes. Each mode is characterized

by specific durations and resource requirements. In the non-

preemptive case, once an activity starts, it must run to

completion without interruption. On the other hand, the

preemptive resource-constrained project scheduling problem

(PRCPSP) allows activities to be preempted at any integer time

point and resumed later at no additional cost [49]. This paper

focuses on the preemptive case, where activities can be

interrupted multiple times. As a generalization of the RCPSP,

the preemptive multi-mode resource-constrained project

scheduling problem (P-MRCPSP) integrates multiple

execution modes with preemptive scheduling and is classified

as NP-hard [3].

Many studies have explored the multi-objective MRCPSP and

the use of SA; however, the present study advances this

research by incorporating preemptive scheduling with

renewable and non-renewable resources to develop a model

that more accurately reflects real-world challenges.

Furthermore, the SA algorithm is enhanced through the

implementation of dynamic cooling schedules and advanced

strategies for generating new solutions. These upgrades make

it faster and more effective, especially when dealing with large,

complex problems.

The objectives for the project scheduling problem can generally

be divided into two major types: regular and irregular. The

performance objectives of a non-decreasing function with

respect to activity start time are regular performance objectives.

Some representative objectives that minimize the Makespan,

project cost, and project delay time are discussed. All these

target values can be improved by advancing the start or

completion time of an activity. In contrast, changing the start

or completion time of an activity does not affect target values

like maximizing the NPV and addressing the resource leveling

problem, which are considered irregular performance

objectives [16]. The objectives of the model presented in this

paper are: (1) minimizing the total makespan of the project and

(2) maximizing the NPV.

The rest of this paper is structured as follows: Section 2 reviews

the related literature on resource-constrained project

scheduling problems. Section 3 describes the problem and

introduces the mathematical model for the preemptive multi-

mode resource-constrained project scheduling problem (P-

MOMRCPSP). Section 4 provides an overview of the SA

method, followed by the algorithm’s steps for solving P-

MOMRCPSP in Section 5. A numerical example is discussed

in Section 6, and the results of sensitivity analysis and

performance evaluation are presented in Section 7. Finally,

Section 8 concludes the paper with key takeaways and

suggestions for future research.

2. LITERATURE REVIEW
The basic RCPSP assumes that an activity cannot be interrupted

once it has started. However, Bianco et al. [6], Brucker and

Knust [10], Debels and Vanhoucke [14], Demeulemeester and

Herroelen [15], and Nudtasomboon and Randhawa [34] allow

activity preemption at discrete points in time, meaning an

activity can be interrupted after each integer unit of its

processing time. Franck et al. [20] propose a calendar concept

for project scheduling that includes preemptive scheduling. A

calendar is defined as a binary function that determines for each

period whether activity execution is possible or if a break

occurs during which an activity may not be started or

continued.

Later, Zare et al. [54, 55] developed a mathematical model for

the P-MRCPSP. This model introduces multiple execution

modes for each activity and permits activities to be interrupted

and restarted at any time without incurring additional costs.

This level of flexibility makes the model highly applicable to

complex, real-world project management scenarios.

Alcaraz et al. [3], Bouleimen and Lecocq [8], Hartmann [21],

Jarboui et al. [25], Jozefowska et al. [26], Ozdamar [35], Pesch

[36], and Varma et al. [48] discuss multi-mode problems

without nonrenewable resources. Multi-mode problems with

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

20

generalized precedence constraints have been considered by

Barrios et al. [5], Brucker and Knust [10], Calhoun et al. [11],

Reyck and Herroelen [41], Drexl et al. [17], Heilmann [23, 24],

Nonobe and Ibaraki [33], and Sabzehparvar and Seyed

Hosseini [42]. Zhu et al. [58] employ a multi-mode problem

with generalized resource constraints. Salewski et al. [43]

extend the multi-mode RCPSP by introducing so-called mode

identity constraints. Schultmann and Rentz [44] present a case

study that demonstrates how the multi-mode RCPSP can be

applied to projects involving the dismantling of buildings.

Voß and Witt [50] utilize the multi-mode RCPSP with an

objective function that integrates makespan, weighted

tardiness, and setup costs, facilitating activity batching.

Słowinski [45] is credited as the first to outline the framework

of the multi-objective resource-constrained project scheduling

problem (MORCPSP) and list various objectives. Subsequent

research on MORCPSP identifies primary objectives such as

makespan, activity tardiness, NPV, resource investment (RI),

and robustness. Wang and Zheng [53] propose a multi-

objective Drosophila optimization algorithm aimed at

minimizing makespan and total cost. Tirkolaee et al. [47]

solved the multi-objective multi-mode resource-constrained

project scheduling problem to maximize NPV while

minimizing completion time. Al-Fawzan and Haouari [4]

merge makespan minimization with maximization of total free

slack into a unified objective. Dealing with multiple objectives,

another approach is to generate Pareto-optimal schedules, as

has been done by Davis et al. [13], who have demonstrated the

minimization of makespan and renewable resource

overutilization simultaneously.

Various meta-heuristic and heuristic algorithms have been

developed for solving RCPSP and MRCPSP. Meta-heuristic

algorithms improve upon heuristic algorithms by drawing on

concepts from different disciplines and abstracting them to

form general algorithms, independent of specific problem

structures and frameworks. Heuristics can be used to generate

the initial solutions required by meta-heuristic algorithms.

Kolisch and Drexl [27] initiated a local search procedure for

non-preemptive resource-constrained project scheduling

problems, where activity durations are discrete functions of

committed renewable and nonrenewable resources. Their

methodology begins with an initial solution and iteratively

improves it by moving the mode assignments of activities in

order to create the best feasible schedule. Hartmann [21]

developed a GA that included single and multi-pass

improvements in the local search component. Another variant

of a GA for the MRCPSP was proposed by Alcaraz et al. [3],

where solution representation was based on forward/backward

genes and had a new fitness function to improve performance.

Peteghem and Vanhoucke [37, 38] introduced GA to

preemptive and non-preemptive versions of MRCPSP with

considerations of resource availability to improve solution

robustness. Słowinski et al. [46], Boctor [7], Jozefowska et al.

[26], and Bouleimen and Lecocq [8] have developed several

SA algorithms to find the near-optimal solution for MRCPSP

using probabilistic search. Zhang et al. [57] and Jarboui et al.

[25] proposed the use of particle swarm optimization (PSO) in

solving the MRCPSP for global optimization with the help of

swarm intelligence. Coelho and Vanhoucke [12] provide a two-

step approach to the MRCPSP involving mode assignment and

the RCPSP. This basically decomposes the complexity of the

problem at hand. Wang and Fang [52] developed a shuffled

frog-leaping algorithm for MRCPSP, utilizing virtual frogs and

a multi-mode serial schedule generation scheme to efficiently

explore and exploit the search space. Elloumi et al. [19]

addressed MRCPSP with different execution modes of tasks

and proposed an evolutionary algorithm coupled with a reactive

multi-objective heuristic in a bid to deal with complex

objectives and constraints. Zoraghi et al. [59] considered

MRCPSP with material ordering and presented three hybrid

meta-heuristic algorithms for near-optimum solutions. Bredael

and Vanhoucke [9] propose a new genetic algorithm for solving

the resource-constrained multi-project scheduling problem.

Other metaheuristics to solve MRCPSP have been proposed by

other authors, such as Elloumi and Fortemps [18], Lova et al.

[28], Lova et al. [29], Mori and Tseng [31], Muritiba et al. [32]

Nonobe and Ibaraki [33], Zhang [56], Peteghem and

Vanhoucke [39], and Voskresenskii et al. [51].

3. PROBLEM DEFINITION
The project is represented as an activity-on-the-node network

G (N, A), where N is the set of activities and A is the set of pairs

of activities between which a finish-start precedence

relationship with a minimal time lag of 0 exists. A set of

activities, numbered from 1 to ׀N׀ with a dummy start node 0

and a dummy end node ׀N1 + ׀, is to be scheduled on a set R

resources. Each activity i ϵ N is performed in a mode mi, which

is chosen out of a set of ׀Mi ׀ different execution modes

Mi={1,…,. ׀Mi׀}. The duration of activity i, when executed in

mode mi, is dim. Each mode mi requires rim,k , nonrenewable

resource units and rim,z renewable resource units. A schedule s

is defined by a vector of activity start times si and a vector

denoting their corresponding execution modes mi. A schedule

is said to be feasible if all precedence and resource constraints

are satisfied. In the P-MOMRCPSP, activities are allowed to be

preempted at any time and restarted later at no additional cost.

Therefore, each duration unit v of an activity i scheduled in

mode mi (with v ϵ {0, …, dim −1) is assigned a starting time siv.

The objectives of the P-MOMRCPSP are to minimize the

makespan and maximize the NPV of the project.

3.1 Mathematical Model
In this section, a novel mathematical model is introduced for

the preemptive multi-objective multi-mode resource-

constrained project scheduling problem (P-MOMRCPSP).

3.1.1 Indices and parameters and variables
𝑻: project time window

𝑵: number of activities
𝒊: index of activity

𝟎: dummy start node

𝒏 + 𝟏: dummy end node

𝒎: Index of mode

𝜶: Discount Rate

𝑷𝒊: Positive cash flow for activity i

𝑼𝒊𝒎: Negative cash flow for activity i in mode m

𝑺𝒊,𝒍𝒎: start time of lth units of activity i in mode m where each

activity i is broken into dim

𝒅𝒊𝒎: duration of Activity i executed mode m

𝒕: index for a period of time

𝒌: index of nonrenewable resource

Z: index of renewable resource

𝒂𝒌: availability of each nonrenewable resource type k in each

time period

𝒂𝒛: availability of each renewable resource type z in each time

period

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

21

𝒓𝒊𝒎,𝒌: each activity i in mode m requires k nonrenewable

resource units

𝒓𝒊𝒎,𝒛: each activity i in mode m requires z nonrenewable

resource units

E: a very large positive number

𝒙𝒊𝒎
1 if activity i is completed in mode m

0 otherwise

𝒚𝒊𝒉𝒕
1 if ℎ𝑡ℎ units for activity i is executed in period t

0 otherwise

3.1.2 Proposed mathematical model
The P-MOMRCPSP can be stated as follows:

𝑚𝑖𝑛 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑚𝑖𝑛(𝑆𝑛+1,0) (1)

𝑚𝑎𝑥 𝑁𝑃𝑉 = ∑ 𝐶𝐹𝑖(1 + 𝛼)𝑁
𝑖=1

−(𝑆𝑛+1,0)
 (2)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑆0,0 = 0 (3)

𝑆𝑖,𝑑𝑖𝑚𝑚 ≤ 𝑆𝑗,1𝑚 + (1 − 𝑥𝑖𝑚)𝛦 + (1 − 𝑥𝑗𝑚)𝛦

𝑚 = 1, . . . 𝑀, 𝑖 = 1, . . . , 𝑁 (4)

𝑆𝑖,(𝑣−1)𝑚 + 1 ≤ 𝑆𝑖,𝑣𝑚 + (1 − 𝑥𝑖𝑚)𝛦

 𝑚 = 1, . . . 𝑀, 𝑖 = 1, . . . , 𝑁, 𝑉 = 1, . . . , 𝑑𝑖 (5)

𝑆𝑛+1,0 ≤ 𝑇 (6)

∑ ∑ 𝑥𝑖𝑚
𝑀
𝑚=1 = 1𝑁

𝑖=1 (7)

∑ ∑ 𝑦𝑖ℎ𝑡
𝑇
𝑡=0 ≤ 1𝑁

𝑖=1 (8)

∑ (𝑡 × 𝑦𝑖ℎ𝑡) − ∑ 𝑆𝑖𝑗𝑚
𝑀
𝑚=1 = 0𝑇

𝑡=0 (9)

∑ ∑ 𝑟𝑖𝑚𝑖,𝑘𝑥𝑖𝑚
𝑀
𝑚=1 ≤ 𝑎𝑘

𝑁
𝑖=1 (10)

∑ ∑ 𝑦𝑖ℎ𝑡 × ∑ (𝑥𝑖𝑚 × 𝑟𝑖𝑚𝑧)𝑀
𝑚=1

𝑁
𝑖=1 ≤ 𝑎𝑍

𝑇
𝑡=0 (11)

𝑝𝑖 − ∑ ∑ 𝑢𝑖𝑚𝑥𝑖𝑚
𝑀
𝑚=1

𝑁
𝑖=1 = 𝐶𝐹𝑖 (12)

𝑆𝑖,𝑣𝑚 ∈ 𝑖𝑛𝑡+ (13)

The objective function (1) minimizes the total makespan of the

project, and the objective function (2) maximizes the NPV.

Constraint (3) ensures that the project starts at time zero.

Constraint set (4) ensures that the earliest start time of an

activity j cannot be earlier than the finish time of the last unit

of duration of its predecessor i. Constraint set (5) guarantees

that the start time for every time instance of an activity is at

least one-time unit later than the start time of the previous unit

of duration. Constraint set (6) ensures that the makespan does

not exceed T. Every activity has to be executed exactly in one

mode m, which is ensured by constraint (7). Constraints (8) and

(9) determine the processing time of each activity section.

Constraints (10) and (11) deal with the nonrenewable and

renewable resource constraints, respectively. Constraint (12)

guarantees a positive cash flow for every activity i. This net

cash flow may be simply expressed as the difference between

the income and the expenses related to activity i. It is crucial

to note that the income generated from performing each activity

is independent of how the activity is carried out. In other words,

the modes and resources used to execute an activity do not

affect the income derived from the project. However, the

expenses of each activity are directly related to how the activity

is executed, and the optimal approach should be chosen for

each activity to maximize the NPV added. Constraint (13)

ensures that the start times of activities are nonnegative integer

values.

4. SIMULATED ANNEALING
SA is a local search method inspired by the physical annealing

process studied in statistical mechanics [1]. An SA algorithm

repeats an iterative neighbor generation procedure and follows

search directions that improve the objective function value.

While exploring the solution space, the SA method offers the

possibility to accept worse neighbor solutions in a controlled

manner to escape from local minima. More precisely, in each

iteration, for a current solution x characterized by an objective

function value f(x), a neighbor x′ is selected from the

neighborhood of x denoted N(x) and defined as the set of all its

immediate neighbors. For each move, the objective

difference Δ=f(x′)−f(x) is evaluated. For minimization

problems, x′ replaces x whenever Δ⩽0. Otherwise, x′ could

also be accepted with a probability P = e(−Δ)/T. The acceptance

probability is compared to a number yrandom ∈ [0,1] generated

randomly and x′ is accepted whenever P>yrandom.

The factors that influence acceptance probability are the degree

of objective function value degradation Δ (smaller

degradations induce greater acceptance probabilities) and the

parameter T called temperature (higher values of T give higher

acceptance probabilities). The temperature can be controlled by

a cooling scheme specifying how it should be progressively

reduced to make the procedure more selective as the search

progresses toward neighborhoods of good solutions. There

exist theoretical schedules guaranteeing asymptotic

convergence toward the optimal solution. However, they

require infinite computing time. In practice, much simpler

schedules with finite computing times are preferred, even if

they do not guarantee an optimal solution.

A common finite time implementation of SA involves

decreasing the temperature T in S steps, starting from an initial

value T0 and using an attenuation factor β (0 < β <1). The

initial temperature T0 is supposed to be high enough to allow

acceptance of any new neighbor proposed in the first step. In

each step S, the procedure generates a fixed number of neighbor

solutions Nsol and evaluates them using the current temperature

value Ts= β sT0. The whole process is commonly called

“cooling chain”. Adapting SA to an optimization problem

involves defining its specific components: a solution

representation of the problem, a method for calculating the

objective function value, a neighbor generation mechanism for

exploring the solution space, and a cooling scheme including

stopping criteria. These adaptation steps for our new

adaptations of SA for P-MOMRCPSP are described below.

5. SIMULATED ANNEALING ALGORITM

FOR SOLVING P-MOMRCPSP
Abbasi et al. [2], Bouleimen and Lecocq [8], Mika et al. [30],

He et al. [22], Jozefowska et al. [26], and Rahimi et al. [40]

have successfully used the SA algorithm for a significant

number of project scheduling problems. In this section, the SA

algorithm designed to solve the preemptive multi-objective

multi-mode resource-constrained project scheduling problem

(P-MOMRCPSP) is presented.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

22

5.1 Step One:
In this step, project information is read, and an initial solution

is generated to start the SA algorithm. A feasible list of activity

sequences is determined as the initial solution to initiate the SA

procedure. The choice of an appropriate initial solution

significantly affects the convergence speed and the quality of

the final solution of the SA algorithm. Various methods exist

for generating a feasible schedule (a feasible list of activity

sequences) from project activities. In the present study, the

following method is applied to generate the initial solution:

5.1.1 Obtaining the initial solution:
In the first stage, the project activities are entered into a table,

similar to Table 1, based on their precedence relationships.

Table 1. Sample Table for Determining the Initial Solution

precedence activities 𝒓𝒊𝒎 𝒅𝒊𝒎 activity

 1

 2

0 0 2 1 3

In the right column of the table, the precedence activities for

each activity are listed. For instance, in the table above,

activities 1 and 2 are precedence activities for activity 3. It

should be noted that, to obtain a feasible initial solution, only

the data related to one of the activities is used.

In the second stage the early time matrix is formed. This matrix

is 𝑖 × 2, where the number of rows is equal to the number of

existing activities. For each activity, the earliest start time and

the earliest finish time are recorded in the matrix.

𝐸𝐹 𝐸𝑆

0 0

 ...

 ...

0 0

In the third stage, to complete the early time matrix, which

currently has all its elements set to zero, the earliest start time

and the earliest finish time for each activity is calculated. This

task is performed as follows:

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑠𝑖𝑧𝑒(𝐷, 1)

𝑖𝑓 𝑝𝑟𝑒(𝑖, 1) = 0 𝑡ℎ𝑒𝑛

𝐸𝑆 = 0

𝐸𝐹 = 0 + 𝑑𝑖 𝑒𝑙𝑠𝑒

𝑓𝑜𝑟 𝑗 = 1, . . . 𝐽

𝐸𝑆 = 𝑚𝑎𝑥(𝐸𝐹𝑗 + 1)

𝐸𝐹 = 𝐸𝑆 + 𝑑𝑖

𝑒𝑛𝑑

in the fourth stage, the split matrix is constructed to account for

the preemption of activities in order to obtain a feasible

solution. The split matrix is 𝑖 × 𝑇 matrix, where the number of

columns is equal to the project's time horizon. The elements of

this matrix are defined as follows

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑠𝑖𝑧𝑒(𝐷, 1)

𝑓𝑜𝑟 𝑗 = 𝐸𝑆 𝑡𝑜 𝐸𝐹

𝑠𝑝𝑙𝑖𝑡 (𝑖, 𝑗) = 1

In the fifth stage, the resource consumption matrix is generated.

This matrix is obtained by multiplying each "one" in the row

corresponding to activity i by the resource consumption of that

activity.

In the sixth stage, the R matrix is constructed. This matrix is

obtained by summing the rows of the resource consumption

matrix. This matrix shows the amount of resource R used each

day. To level resources and ensure that the daily consumption

of each resource does not exceed the available capacity, the

largest element in the matrix is first identified. If this value

exceeds the available capacity, the following steps are

performed:

1. Identify the day on which the maximum R occurs

2. Randomly select activity X. If the entry corresponding to

variable x on that day in the split matrix is 1, change the

last written 1 plus 1 to 1 and change the initial 1 to 0.

This effectively delays the activity by one day to level

the resources.

3. If variable x has value of zero in split matrix, select

another random activity and repeat all the above steps for

that activity.

The solution of the previous six stages provides an initial

feasible solution that satisfies all constraints. It should be noted

that after every stage, the early time matrix, the split matrix, the

resource consumption matrix, and the R matrix are updated.

The stages to obtain the initial solution are illustrated in figure

1.

5.2 Step Two:
The list of activities generated in step one is considered the best

list of activity sequences (best-list), and the completion time of

the nth activity is regarded as the best value of the objective

function (best-obj). In addition to minimizing the project

completion time, this study also aims to maximize the net

present value (NPV). To combine these two objective

functions, the daily project cost is calculated. It is assumed that

a penalty of n dollars is incurred for each day of project delay;

therefore, the monetary value of each day is set to n dollars.

Furthermore, the second objective function is multiplied by a

negative value to transform it into a minimization problem.

This allows the two objective functions to be combined into a

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

23

 single objective. The list of activity sequences obtained at the

end of each iteration is referred to as the current list (current-

list), and the corresponding value of the objective function for

this list is referred to as the current objective (current-obj). In

the first iteration, the current list is assigned as the best list, after

which the procedure proceeds to step three.

5.3 Step Three:
In this step, the parameters of the SA algorithm are determined.

1. The initial temperature is considered a multiple of the

objective function value (𝑇𝑠 = 𝑘 ∗ 𝑏𝑒𝑠𝑡 − 𝑜𝑏𝑗), which in

this project is set to 100.

2. The maximum number of iterations for stopping the

algorithm is set to 10,000.

3. Boltzmann's constant kB is assumed to be 1.

4. The final temperature for stopping the algorithm is set to

0.01 (Tf = 0.01).

5. The iteration counter is set to 0 (iterate = 0).

6. The temperature is set to the starting temperature (T = TS).

5.4 Step Four:
In this step, the optimal solution is sought using the SA

algorithm. the iteration counter is increased by setting interat =

interat + 1, then a new neighborhood is generated for the

current point. To move to a neighboring point in this study, the

state of an activity is modified and all feasibility steps as

explained in the initial solution determination section are

applied. This will result in a feasible neighboring point. From

the neighborhood list, calculate the objective function value

and assume the obtained value as the objective function value

of the neighborhood (nbr - obj). The procedure then proceeds

to step five.

5.5 Step Five:
 In this step, the changes in the objective function is calculated.

The changes in the objective function in each iteration are equal

to the difference between the objective function in this iteration

and the previous iteration, defined as follows:

𝛥𝑜𝑏𝑗 = (𝑛𝑏𝑟 − 𝑜𝑏𝑗) − (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑜𝑏𝑗)

If Δobj<0, it means an improvement in the objective function,

and the procedure proceeds to step seven.

If Δobj=>0, it means there is no improvement in the objective

function, and the procedure proceeds to step six.

5.6 Step Six:
A random number between 0 and 1 is generated and considered

as 𝑝𝑟
′ . The value of exp(-Δobj/T) is calculated and denoted by

𝑝𝑟. If 𝑝𝑟 > 𝑝𝑟
′ , the procedure then proceeds to Step Seven;

otherwise, it advances to step eight.

5.7 Step Seven:
The best value of the objective function is updated to match the

objective function value of the generated neighborhood. he

following changes are applied before proceeding to step nine .

𝑏𝑒𝑠𝑡 − 𝑜𝑏𝑗 = 𝑛𝑏𝑟 − 𝑜𝑏𝑗

𝑏𝑒𝑠𝑡 − 𝑙𝑖𝑠𝑡 = 𝑛𝑏𝑟 − 𝑙𝑖𝑠𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑜𝑏𝑗 = 𝑛𝑏𝑟 − 𝑜𝑏𝑗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑙𝑖𝑠𝑡 = 𝑛𝑏𝑟 − 𝑙𝑖𝑠𝑡

Retrieve information related to the activities

form the early time matrix

form the split matrix

z> a maxR If

iEF= 0 + d ES= 0

change split (x,k) to 0 and change the element after the

last 1 in that row to 1."

If split(x,k)=1

form the resource consumption matrix

Print the final solution

If pre (i,1) =0

Select a random activity x

+1)jES= max (EF

iEF= ES + d

form the R matrix

Yes

Yes

Yes

No

No

No

Fig 1: Initial solution generation algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

24

5.8 Step Eight:
The following changes are applied, and the procedure proceeds

to Step Nine.

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑜𝑏𝑗 = 𝑛𝑏𝑟 − 𝑜𝑏𝑗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑙𝑖𝑠𝑡 = 𝑛𝑏𝑟 − 𝑙𝑖𝑠𝑡

5.9 Step Nine: Cooling chain
At this stage, the temperature is reduced according to the

cooling schedule, and the procedure proceeds to step ten. In this

study, a cooling schedule is applied in which the temperature

decreases according to the equation T= β *T.

5.10 Step Ten: Re-annealing
To avoid being trapped in a local optimum after accepting some

new points, the temperature is increased back to the initial

temperature, and an attempt is made again at higher

temperatures by use of search algorithm. In this research, if the

best value for the objective function remains constant for 50

consecutive iterations, re-annealing is performed, and the

temperature is set to the initial temperature (T=TS), Then, the

procedure proceeds to step eleven.

5.11 Step Eleven: Algorithm Stopping

Conditions
Here, two conditions for stopping the algorithm have been

defined:

• Condition One: If the number of iterations equals the

maximum determined iterations.

• Condition Two: If the temperature equals the final

temperature (Tf).

If any one of these conditions holds, then the algorithm stops

otherwise it goes back to step four.

The stages of the SA algorithm for solving the project

scheduling problem are shown in figure (2)

6. NUMERICAL EXAMPLE
In this section of the research to verify the accuracy of the

proposed model, a numerical example is presented. This

problem involves a network with six activities numbered from

0 to 5, where activities 0 and 5 are dummy activities (Figure

(3)). In this problem, one renewable resource with 11 available

Fig 2: Simulated annealing algorithm for solving the P-MOMRCPSP

Move to the neighboring point and

calculate the value of Z for it (Z= nbr-obj)

Set S as an initial solution

Obtain the value of Z for this solution

best- list = S, best- obj= Z

= 1 β β = 0.9, k, = 0.01f = 100, T sT

Max iteration = 10000

iterate = 0

If Z < best- obj

A random number between 0 and 1 is

generated and considered as 𝑝´

iterate = iterate +1

T = β * T

 ΔZ/T-<e 𝑝´if

fIf T < T

best- list = S, best- obj= Z

iterate = iterate +1

If iterate =

Max iteration

Print the values of best-list and best-obj

If iterate =

Max iteration

No

Yes
No

No

Yes

Yes

Yes

Yes

No

No

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

25

units and one non-renewable resource with 10 available units

are considered.

The activities in this project are preemptive and have two

execution modes. The relevant information, including resource

consumption and precedence relationships of the activities for

mode m=1, is provided in table 2, and for mode m=2, in table

3. This is a simple example of a project scheduling problem,

with its network depicted in the following figure:

Table 2. information of project for m=1

Activities id
 kir ,1 zir ,1

Prerequisites

0 0 0 0 1, 2

1 3 3 3 4

2 4 4 5 3

3 2 7 5 5

4 1 1 7 5

5 0 0 0 -

Table 3. information of project for m=2

Activities id
 kir ,2 zir ,2

Prerequisites

0 0 0 0 1, 2

1 2 5 4 4

2 3 2 4 3

3 1 4 4 5

4 2 3 2 5

5 0 0 0 -

The project time horizon is equal to 10 time units, and the

discount rate is 15%. If the project is delayed, the contractor is

fined 7000 monetary units per day. The cost of using resources

per unit time is 100 monetary units with both types costing

similar amount. Table 4 presents the revenue generated by

activities.

Table 4. Income generated from activities

Activities 1 2 3 4

Income 5000 2000 3500 1800

The model was coded in MATLAB to be solved by the SA

algorithm. Tables 5 and 6 show the results obtained from

running the numerical example by the SA algorithm with max

iteration =1000, 𝑇𝑆 = 100, 𝑇𝑓 = 0.001, 𝛽 = 0.95.

Table 5. Initial results

Makespan =5 NPV= 14281

111 =x

012 =x

121 =x

022 =x 131 =x

032 =x

141 =x

042 =x

Initial Energy =14526

Table 6. Final results

Makespan =5 NPV= 14281

011 =x

112 =x

021 =x

122 =x

031 =x

132 =x

141 =x

042 =x

Final Energy =10349

7. SENSITIVITY ANALYSIS
To examine the sensitivity of the solution obtained from this

algorithm to Ts, the temperature values are set to 50, 100, 200,

300 and 400. The graph showing the changes in energy is

similar to the graph in Chart 1, and the graph showing the

changes in the solution time of the problem is similar to the

graph in Chart 2.

As seen in charts 1 and 2, with an increase in the value of TS,

the Z values either decrease (better) or increase (worse). This

means that the change in the TS parameter has a slight effect on

the objective function value. However, changing the parameter

TS significantly affects the solution time, indicating a direct

relationship.

Next, to examine the sensitivity of the solution obtained from

this algorithm to Tf, the Tf values are sets to 0.001, 0.01, 0.1, 1

and 5. The graph showing the changes in energy is similar to

the graph in chart 3, and the graph showing the changes in the

solution time of the problem is similar to the graph in chart 4.

14000

14500

15000

15500

16000

0 200 400 600

E
n
er

g
y

Initial Temperature

Chart 1: Sensitivity of Energy Values to Initial

Temperature

0

5

10

15

0 200 400 600

S
o

lu
ti

o
n
 T

im
e

Initial Temperature

Chart 2: Sensitivity of Solution Time to

Initial Temperature

0

5000

10000

15000

0 2 4 6

E
n
er

g
y

Final Temperature

Chart 3: Sensitivity of Energy Values to

Final Temperature

12

13

0 2 4 6

S
o

lu
ti

o
n
 T

im
e

Final Temperature

Chart 4: Sensitivity of Solution Time to

Final Temperature

Fig 3: Project Network

0

1 4

2 3

5

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

26

As seen in charts 3 and 4, with an increase in the value of Tf,

the Z values either decrease (better) or increase (worse). This

indicates that changing the parameter Tf has a slight effect on

the objective function value. However, changing the parameter

Tf significantly affects the solution time of the problem,

indicating an inverse relationship.

Finally, to examine the sensitivity of the solution obtained from

this algorithm to β, the β values are set to 0.5, 0.6, 0.7, 0.8 and

0.9. The graph showing the changes in energy is similar to the

graph in chart 5, and the graph showing the changes in the

solution time of the problem is similar to the graph in chart 6.

As seen in charts 5 and 6, with an increase in the value of β, the

Z values decrease (better), and the solution time of the problem

generally increases (worse).

Based on the results, it can be concluded that the solution

values are highly sensitive to the β parameter, which has a

direct relationship with the objective function value and an

inverse relationship with the solution time. These findings

indicate that the performance of the SA algorithm is strongly

influenced by its initial parameters. Adjustments to these

parameters can lead to either improved or suboptimal solutions.

8. CONCLUSION
The project scheduling problem with resource constraints is

diverse due to the possibility of considering various constraints

and different solution methods. Therefore, it has always

attracted the attention of researchers, and numerous studies

have been conducted to present various models and solve the

models of previous researchers. This study proposed a new

mathematical model for the P-MOMRCPSP. In this project

scheduling problem, two objectives were to be optimized. The

first objective, considered in most existing studies, was to

minimize project completion time. However, in this study,

another goal, which is of particular importance in today's

world, was examined: maximizing the NPV. Objectives that

discuss the project's cash flow were very important and had not

been considered in many studies. By incorporating various

constraints, the problem was formulated to better reflect real-

world conditions and enhance its practical applicability.

Additionally, since it is feasible in practice to assign more than

one execution mode to activities, the activities of this study are

multi-mode. In the above example, two execution modes were

assigned to each activity. Besides being multi-mode, the

activities of the proposed model are interruptible. Although this

restriction has been addressed less frequently in previous

studies, it is not uncommon to encounter in practical projects,

where, for certain activities, it might be useful to preempt the

activity. Preemption of activities introduces problem

complexity to the scheduling problem but can result in

improved solutions. In most of the existing models, resource

constraints are renewable or non-renewable. In real projects,

however, both resources are typically available. Thus, the

proposed model considers both renewable and non-renewable

resources in the development of the resource constraint.

As the model proposed is a hard problem, a metaheuristic

algorithm was used to find solutions within a reasonable

computation time, especially for large instances. The SA

algorithm was used to solve the problem and implemented on

the model. One of the primary reasons for choosing this

algorithm is that it can find solutions close to the optimal

solution.

For future research, the activity durations can be modeled as

probabilistic rather than deterministic. Further, while this study

optimized two objective functions with equal importance,

future models can assign higher importance to one objective

function compared to the other using weighting methods. Since

the proposed model is entirely novel, it has not yet been solved

by any other algorithms. Consequently, future work can

investigate using other metaheuristic algorithms and measuring

performance on the basis of gained results during the progress

of present work.

9. REFERENCES
[1] Aarts, E.H.L., & Korst, J.H.M. 1989. Simulated annealing

and boltzmann machines: A stochastic approach to

combinatorial optimization and neural computing, Wiley,

Chichester.

[2] Abbasi, B., Shadrokh, S., & Arkat, J. 2006. Bi-objective

resource constrained project scheduling with robustness

and makespan criteria, Applied Mathematics and

Computation. 180, 146–152.

[3] Alcaraz, J., Maroto, C., & Ruiz, R. 2003. Solving the

multi-mode resource constrained project scheduling

problem with genetic algorithms. Journal of the

Operational Research Society, 54(6), 614-626.

[4] Al-Fawzan, M., & Haouari, M. 2005. A bi-objective

model for robust resource-constrained project scheduling.

International Journal of Production Economics, 96(2),

175-187.

[5] Barrios, A., Ballestin, F., & Valls, V. 2011. A double

genetic algorithm for the MRCPSP/max. Computers and

Operations Research, 38(1), 33-43.

[6] Bianco, L., Caramia, M., & DellOlmo, P. 1999. Solving a

preemptive project scheduling problem with coloring

techniques. In Weglarz, 193, 135– 146.

[7] Boctor, F. 1996. An adaptation of the simulated annealing

for solving resource-constrained project scheduling

problems. International Journal of Production Research,

34, 2335–2351.

10200
10400
10600
10800

0 0.2 0.4 0.6 0.8 1

E
n
er

g
y

β

Chart 5: Sensitivity of Energy Values to β

12.5
13

13.5
14

14.5

0 0.2 0.4 0.6 0.8 1

S
o

lu
ti

o
n
 T

im
e

β

Chart 6: Sensitivity of Solution Time to β

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

27

[8] Bouleimen, K., & Lecocq, H. 2003. A new efficient

simulated annealing algorithm for the resource-

constrained project scheduling problem and its multiple

mode version. European Journal of Operational Research,

149(2), 268–281.

[9] Bredael, d., & Vanhoucke, M. 2024. A genetic algorithm

with resource buffers for the resource-constrained multi-

project scheduling problem. European Journal of

Operational Research, 315, 19–34.

[10] Brucker, P., & Knust, S. 2001. Resource-constrained

project scheduling and timetabling. Lecture Notes in

Computer Science, 2079, 277-293.

[11] Calhoun, K. M., Deckro, R. F., Moore, J. T., Chrissis, J.

W., & Hove, J. C. V. 2002. Planning and replanning in

project and production scheduling. Omega – The

international Journal of Management Science, 30(3), 155-

170.

[12] Coelho, J., & Vanhoucke, M. 2011. Multi-mode resource-

constrained project scheduling using RCPSP and SAT

solvers. European Journal of Operational Research,

213(1), 73–82.

[13] Davis, K. R., Stam, A., & Grzybowski, R. A. 1992.

Resource constrained project scheduling with multiple

objectives: A decision support approach. Computers and

Operations Research, 19(7), 657-669.

[14] Debels, D., & Vanhoucke, M. 2006. Pre-emptive resource

constrained project scheduling with setup times. Faculteit

Economie En Bedrijfskunde, 1-24.

[15] Demeulemeester, E. L., & Herroelen, W. S. 1996. An

efficient optimal solution procedure for the preemptive

resource-constrained project scheduling problem.

European Journal of Operational Research, 90(2), 334-

348.

[16] Ding, H., Zhuang, C., & Liu, J. 2023. Extensions of the

resource-constrained project scheduling problem.

Automation in Construction, 153, Article 104958.

[17] Drexl, A., Nissen, R., Patterson, J. H., & Salewski, F.

2000. Progen/px - an instance generator for resource-

constrained project scheduling problems with partially

renewable resources and further extensions. European

Journal of Operational Research. 125(1), 59-72.

[18] Elloumi, S., & Fortemps, P. 2010. A hybrid rank-based

evolutionary algorithm applied to multi-mode resource-

constrained project scheduling problem. European Journal

of Operational Research, 205(1), 31–41

[19] Elloumi, S., Fortemps, P., & Loukil, T. 2017. Multi-

objective algorithms to multi-mode resource-constrained

projects under mode change disruption. Computers and

Industrial Engineering, 106, 161–173.

[20] Franck, B., Neumann, K., & Schwindt, C. 2001. Project

scheduling with calendars. Or Spektrum, 23, 325- 334.

[21] Hartmann, S. 2001. Project scheduling with multiple

modes: A genetic algorithm. Annals of Operations

Research, 102(1–4), 111–135.

[22] He, Z., Wang, N., Jia, T., & Xu, Y. 2009. Simulated

annealing and tabu search for multimode project payment

scheduling, European Journal of Operational Research,

198, 688–696.

[23] Heilmann, R. 2001. Resource-constrained project

scheduling: a heuristic for the multi-mode case. Or

Spektrum, 23(3), 335-357.

[24] Heilmann, R. 2003. A branch-and-bound procedure for

the multi-mode resource-constrained project scheduling

problem with minimum and maximum time lags.

European Journal of Operational Research, 144(2), 348-

365.

[25] Jarboui, B., Damak, N., Siarry, P., & Rebai, A. 2008. A

combinatorial particle swarm optimization for solving

multi-mode resource-constrained project scheduling

problems. Applied Mathematics and Computation,

195(1), 299–308.

[26] Jozefowska, J., Mika, M., Rozycki, R., Waligora, G., &

Weglarz, J. 2001. Simulated annealing for multi-mode

resource-constrained project scheduling. Annals of

Operations Research, 102(1–4), 137–155.

[27] Kolisch, R., & Drexl, A. 1997. Local search for non-

preemptive multi-mode resource constrained project

scheduling. IIE Transactions, 25(5), 74–81.

[28] Lova, A., Tormos, P., & Barber, F. 2006. Multi-mode

resource constrained project scheduling: Scheduling

schemes, priority rules and mode selection rules.

Inteligencia Artificial Revista Iberoamericana De

Inteligencia Artificial, 10(30), 69–86.

[29] Lova, A., Tormos, P., Cervantes, M., & Barber, F. 2009.

An efficient hybrid genetic algorithm for scheduling

projects with resource constraints and multiple execution

modes. International Journal of Production Economics,

117(2), 302–316.

[30] Mika, M., Waligo´ra, G., & Weglarz, J. 2005. Simulated

annealing and tabu search for multi-mode resource

constrained project scheduling with positive discounted

cash flows and different payment models. European

Journal of Operational Research. 164, 639–668.

[31] Mori, M., & Tseng, C. C. 1997. A genetic algorithm for

multi-mode resource constrained project scheduling

problem. European Journal of Operational Research,

100(1), 134–141.

[32] Muritiba, A. E. F., Rodrigues, C. D., & Costa, F. A. D.

2018. A path-relinking algorithm for the multi-mode

resource-constrained project scheduling problem.

Computers and Operations Research. 92, 145-154.

[33] Nonobe, K., & Ibaraki, T. 2002. Formulation and tabu

search algorithm for the resource constrained project

scheduling problem. In C. C. Ribeiro and P. Hansen,

editors, Essays and Surveys in Metaheuristics, pages 557–

588. Kluwer Academic Publishers.

[34] Nudtasomboon, N., & Randhawa, S. U. 1997. Resource

constrained project scheduling with renewable and non-

renewable resources and time-resource tradeoffs.

Computers and Industrial Engineering, 32(1), 227-242.

https://www.sciencedirect.com/journal/automation-in-construction

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

28

[35] Ozdamar, L. 1999. A genetic algorithm approach to a

general category project scheduling problem. IEEE

Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, 29(1), 44-59.

[36] Pesch, E. 1999. Lower bounds in different problem classes

of project schedules with resource constraints. In Weglarz

, 53–76.

[37] Peteghem, V. V., & Vanhoucke, M. 2010. A genetic

algorithm for the preemptive and non-preemptive multi-

mode resource-constrained project scheduling problem.

European Journal of Operational Research, 201(2), 409–

418.

[38] Peteghem, V. V., & Vanhoucke, M. 2011. Using resource

scarceness characteristics to solve the multi-mode

resource-constrained project scheduling problem. Journal

of Heuristics, 17(6), 705–728.

[39] Peteghem, V. V., & Vanhoucke, M. 2014. An

experimental investigation of metaheuristics for the multi-

mode resource-constrained project scheduling problem on

new dataset instances. European Journal of Operational

Research, 235(1), 62–72.

[40] Rahimi, A., Karimi, H., & Afshar-Nadjafi, B. 2013. Using

meta-heuristics for project scheduling under mode identity

constraints, Applied Soft Computing. 13(4), 2124–2135.

[41] Reyck, B., & Herroelen, W. S. 1999. The multi-mode

resource-constrained project scheduling problem with

generalized precedence relations. European Journal of

Operational Research, 119(2), 538-556.

[42] Sabzehparvar, M., & Seyed Hosseini, S. M. 2008. A

mathematical model for the multi-mode resource

constrained project scheduling problem with mode

dependent time lags. Journal of Supercomputing, 44(3),

257-273.

[43] Salewski, F., Schirmer, A., & Drexl, A. 1997. Project

scheduling under resource and mode identity constraints:

Model, complexity, methods, and application. European

Journal of Operational Research, 102(1), 88-110.

[44] Schultmann, F., & Rentz, O. 2001. Environment-oriented

project scheduling for the dismantling of buildings. Or

Spectrum, 23(1), 51-78.

[45] Słowinski, R. 1981. Multi-objective network scheduling

with efficient use of renewable and nonrenewable

resources. European Journal of Operational Research.

7(3), 265–273.

[46] Słowinski, R., Soniewicki, B., & Weglarz, J. 1994. DSS

for multi-objective project scheduling. European Journal

of Operational Research, 79, 220–229.

[47] Tirkolaee, E.B., Goli, A., Hematian, M., Sangaiah, A.K.,

& Han, T. 2019. Multi-objective multi-mode resource

constrained project scheduling problem using Pareto-

based algorithms, Computing, 101(6), 547–570.

[48] Varma, V. A., Uzsoy, R., Pekny, J., & Blau, G. 2007.

Lagrangian heuristics for scheduling new product

development projects in the pharmaceutical industry.

Journal of Heuristics, 13(5), 403-433.

[49] Voß, S., & Witt, A. 2007. Hybrid flow shop scheduling as

a multi-mode multi-project scheduling problem with

batching requirements: A real-world application.

International Journal of Production Economics, Vol.

105(2), 445-458.

[50] Voskresenskii, A., Kovalchuk, M., Filatova, A., Nasonov,

D., & Lutsenko, A. 2023. Hybrid Algorithm for Multi-

Contractor, Multi-Resource Project Scheduling in the

Industrial Field. Procedia Computer Science, 229, 28-38.

[51] Wang, L., & Fang, C. 2012. An effective shuffled frog-

leaping algorithm for multi-mode resource-constrained

project scheduling problem. Information Sciences, 39(5),

890–901.

[52] Wang, L., & Zheng, X. 2018. A knowledge-guided multi-

objective fruit fly optimization algorithm for the multi-

skill resource constrained project scheduling problem.

Swarm and Evolutionary Computation, 38, 54–63.

[53] Zare, Z., Naddaf, A., & Salehi, M.R., 2012. Proposing a

Model on Preemptive Multi-Mode Resource-constrained

Project Scheduling Problem. International Journal of

Business and Social Science, 3(4), 126-130.

[54] Zare, Z., Naddaf, A., Ashrafzadeh, M., & Salehi, M.R.

2012. Preemption in multi-mode Resource-constrained

project scheduling problem. Interdisciplinary Journal of

Contemporary Research in Business, 3(9), 636-642.

[55] Zhang, H. 2012. Ant colony optimization for multimode

resource-constrained project scheduling. Journal of

Management in Engineering, 28(2), 150–159.

[56] Zhang, H., Tam, C. M., & Li, H. 2010. Multimode project

scheduling based on particle swarm optimization.

Computer-Aided Civil and Infrastructure Engineering,

21(2), 93–103.

[57] Zhu, G., Bard, J. F., & Yu, G. 2006. A branch-and-cut

procedure for the multimode resource-constrained

project-scheduling problem. INFORMS Journal on

Computing, 18(3), 377-390.

[58] Zoraghi, N., Shahsavar, A., Abbasi, B., & Peteghem, V.

V. 2017. Multi-mode resource-constrained project

scheduling problem with material ordering under bonus-

penalty policies. TOP: An Official Journal of the Spanish

Society of Statistics and Operations Research, 25(1), 1–

31.

IJCATM : www.ijcaonline.org

https://www.sciencedirect.com/journal/applied-soft-computing
https://www.sciencedirect.com/journal/procedia-computer-science
https://ideas.repec.org/s/spr/topjnl.html
https://ideas.repec.org/s/spr/topjnl.html

