
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

52

A Perspective-based Complexity Analysis Framework

for UML Behavioral Diagrams

Ann Wambui King’ori
Department of Information

Technology
Murang’a University of Technology

Kenya

Geoffrey Muchiri Muketha
Department of Computer Science
Murang’a University of Technology

Kenya

John Gichuki Ndia
Department of Information

Technology
Murang’a University of Technology

Kenya

ABSTRACT

Software designers are rapidly adopting UML behavioral

diagrams to communicate the dynamic behavior of software.

As is the case with many other software artefacts, these

diagrams tend to get more complex whenever they are modified

for either corrective or enhancement purposes thus

compromising on their quality. Several researchers have

proposed different measurement frameworks to assess the

quality of the various software artefacts. However, these

existing frameworks cannot be directly applied to assess UML

behavioral diagrams which come with unique complexity

perspectives not seen in traditional software. This paper,

therefore, proposes a perspective-based framework for

assessing the complexity of UML behavioral diagrams. The

proposed framework identifies three complexity perspectives,

namely, element, control-flow, and interaction perspective.

Each perspective in turn defines a set of measurable attributes.

The framework was validated using an expert opinion survey.

Because of the difficulty in getting UML experts, purposive

sampling was adopted to select eleven industry participants.

Descriptive statistics was used for data analysis. Findings

indicate that the proposed framework is effective and adequate

in form, which implies that it can be a good tool for defining

new complexity metrics for UML behavioral diagrams. Such

metrics can in turn be used to predict the behavioral quality of

software.

Keywords

Measurement Frameworks, Software Metrics, UML

Behavioral Diagrams, Software Complexity, Software Quality

Control

1. INTRODUCTION
Modeling is critical in many disciplines because it makes easier

the communication and construction of complex system from

minor parts [1]. The focus of software quality assurance is

shifting from system implementation towards system

modelling (model verification and validation). Models are

important in communicating the components of a system for

productive analysis [1]. The Unified Modeling Language,

(UML) is widely used by designers to develop analysis and

design models [2, 3]. It provides models to show the static

structure and the dynamic behavior of a system. The dynamic

behavior illustrates how the system changes at run time while

the static UML diagram focus on the structural components of

a system [2, 4].

As software systems become more complex and a necessity in

everyday activities, a lot of emphasis has been placed on

software quality. To assess software quality, measurement

process has been applied. Measurement can be defined as the

process of discovering, planning, executing and assessing

measurement of a project [5, 6]. Software measurement is

critical in software engineering since it allows system

developers to obtain reliable estimates concerning deadlines,

cost, and quality for the development of their systems. The

software measurement process is executed in all phases of

software development life cycle [7, 8]. This measurement

process is guided by use of metric measurement frameworks.

Metrics measurement frameworks provide a guide on how

metrics should be defined and validated. A number of

measurement frameworks have been proposed in the literature

to aid in assessing the different software quality attributes.

However, they do not consider all the measurable perspectives

of UML behavioral diagrams. Considering the problem, a

perspective-based complexity framework has been proposed by

establishing all measurable perspective of these behavioral

diagrams. In addition, the proposed framework is validated via

an expert opinion survey.

The rest sections are organized as follows. Section 2 covers an

overview of related work on software measurement and

measurement frameworks. Section 3 presents the proposed

perspective-based complexity framework. Section 4 resents the

methodology, section 5 presents the validation of the

framework, section 6 presents the discussion and finally the

conclusion and future works are presented in section 7.

2. RELATED WORK
This section presents related work on software measurement

and metrics measurement framework.

2.1 Measurement
Please Software measurement is the procedure of using

numbers or symbols to evaluate an aspect of an object [9].

Software measurement is established on models such as Goal

Attribute Measure (GAM), Goal Question Metric (GQM),

Balanced Scorecard (BSC) and the Entity Attribute Metrics

Model (EAM).

Goal-Attribute Measure (GAM) focuses on product, processes

and resources [10]. To derive measures in GAM, first identify

the measurement customers and their goals, and then identify

their attributes, their driving attributes, and measurement

objects. Lastly, attributes are further divided into measurable

sub attributes from which metrics are defined [10]. In GAM,

the scope of goals is on measurement objects while focus is on

the structuring and definition of attributes.

The Balanced Scorecard (BSC) [11] is used to assess how an

organization is making progress in achieving their goals. In

BSC, an organization recognizes its mission and vision. Also,

the drivers to aid in realizing their goals are identified. In

addition, indicators for each driver are obtained. BSC provides

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

53

four perspectives namely, financial perspective (shareholders’

view), customer perspective (value-adding view), internal

perspective (process-based view), and learning and growth

perspective (future view). The first step in deriving BSC

metrics starts with the analysis of the mission and vision of the

organization. The second step is the definition of goals for

financial and other perspectives. The next step defines drivers

that aid in accomplishing the goals. Finally, indicators for each

driver are defined [11].

The GQM by Basili [12] is the most used framework. GQM

defines a measurement model on three levels: Conceptual level

(Goal) where a goal is defined for an object for a number of

reasons, Operational level (Question) where a collection of

questions is used to define models of the object under study to

realize a specific goal and, Quantitative level (Metric) where a

set of measures are based on the models, and are linked with

every question in order to answer it in a measurable way [12].

The GQM is built on the assumption that in order to evaluate

in an objective way, an organization must specify goals,

identify them by means of questions pointing their important

attributes and give measurements to answer these questions

[12].

The Entity Attribute Model by Fenton & Pfleeger [9, 13]

focuses on three steps which include identification of a

measurable entity, identification of entity measurable attributes

and definition of new measures to assess each of the identified

attributes [9, 13]. An entity is an item such as a piece of

software module while an attribute is a measurable feature of

the entity. Entities are categorized into three, namely process,

products and resource. A process is an activity undertaken to

develop a software, a product is the object produced during

software development and a resource is the hardware or

software required for the process [9, 13].

2.2 Metrics Measurement Frameworks
Software metrics frameworks are used by researchers to aid in

selecting metrics at a particular situation. Several frameworks

have been proposed in the literature. For instance, Yue and Li

[14] proposed an MOF-Based Framework to formally specify

a number of quality measurements (completeness, correctness,

redundancy) for MOF-based modelling languages. The

framework enables definition of metrics at different complexity

levels varying from coarse-grained metrics to fine-grained ones

thus covering the whole metamodel. The framework defines

metrics using a language’s metamodel, enabling access to the

details of the language’s concepts and their relations [14]. The

MOF framework enables the selection of metamodel subset

that should be examined for each metric. In addition, the

framework allows the allocation of weights on the metamodel

details for the purpose of emphasizing the significance of these

details. The framework has been validated by defining a set of

metrics to evaluate UML state machines, class and sequence

diagrams. However, it is not adequate since it does not provide

a use interface support for defining metrics that are independent

of the syntax or semantics of any MOF-based language. In

addition, the framework has been used to only generate metrics

for UML metamodel and other MOF-based metamodels has not

been considered [14].

Macharial et al [15] proposed a metrics measurement

framework by the name Metrics-Based Maintainability

Estimation Framework for Object-Oriented software

(MEFOOS) that assesses systems maintainability. Although

MEFOOS has been validated on real life application and shown

to be promising, it overlooks important attributes such as code

complexity, polymorphism, abstraction and class complexity.

Amara et.al [16] proposed a reliability measurement

framework to aid in producing reliable software. The

framework includes models, tools, techniques and metrics

which are incorporated in all phases of software development

life cycle (SDLC). The framework enhances the measurement

of reliability and minimize the cost and effort needed for

corrections and improvements. The reliability measurement

framework is not adequate since it has not been evaluated and

validated in real applications [16].

Tempero & Ralph [17] proposed a framework for defining

coupling metrics. The framework is language independent and

aids in finding out the extent to which two or more coupling

metrics measure the same thing. The framework enables

unambiguous definitions of coupling metrics and comparable

metric definitions. In addition, the framework resolves issues

due to incomplete metric definitions, such as different language

features [17]. The framework has been tested on its

applicability of defining existing coupling metrics such as

Chidamber and Kemerer’s CBO. Even so, the framework is

specific for coupling. In addition, not all non-coupling metrics

can be defined naturally e.g. size, metrics do not fit.

Deraman et al. [18] proposed a software ageing measurement

framework. The framework adopts the basic GQM structure to

determine the various issues affecting the software ageing

process. Also, it represents various objectives of measurement

and list all the possible measurable metrics that could be

captured from the real environment [8]. The framework is

limited since it has not been evaluated and validated in real

applications.

Basili et al. [12] GQM+ Strategies framework. The GQM+

Strategies is an extension of the GQM approach. It provides

mechanisms for explicitly linking software measurement goals

to higher-level goals for the software organization, and further

to goals and strategies at the level of the entire business [12].

The entire model provides an organization with a mechanism

not only to define measurement consistent with larger, upper-

level organizational concerns, but also to interpret and roll up

the resulting measurement data at each level. The framework is

limited since it does not provide a guide that a measurement

program responsible could take to communicate and elicit

information from relevant stakeholders beyond the presentation

of the definition and concepts, as well as the final result [19].

In addition, the framework lacks tool support that are important

to make the approach more practicable and utilizable [20].

3. PROPOSED FRAMEWORK
The perspective-based complexity framework is proposed as

follows, (Figure 1). The framework identifies different

measurable perspectives that behavioral diagrams display

during execution of behavior. Three types of perspectives were

identified including, element, control flow and interaction. In

addition, the framework classifies the identified perspectives

into different categories. For instance, the element perspective

is subdivided into measurable attributes such as action state,

state and messages. The control flow is subdivided into

sequential, decision, repetitive and parallel while interaction

perspective is subdivided into incoming interaction and

outgoing interaction.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

54

Fig 1: A perspective-based complexity framework for UML behavioral diagrams

3.1 Element Perspective
The structural element perspective is based on the building

elements of the behavioral diagram. Each diagram has unique

elements that compose it. When the size of this elements

increase, the complexity of these diagrams increase. For

example, the building elements of a statechart diagram are a

state, event and a transition. A state depicts a situation where

the object satisfies some condition, performs some activity, or

waits for some event. A state is represented using a rounded

rectangle. A transition connects two states and is represented

by an arrow. Events cause transitions of states in state

machines. Events can be illustrated externally by transitions

and are written as text strings. Figure 2 shows elements a

statechart diagram.

Fig 2: Elements of a statechart diagram

A sequence diagram is made up of a group of objects and

messages. Objects are represented by lifelines while messages

are represented by arrows among the objects. Messages show

an association among the objects. Figure 3 shows a sequence

diagram. A vertical rectangle represents a lifeline and arrows

represent messages.

State Action State
Message

Statechart

diagram
Activity

diagram

Sequence

diagram

UML behavioral

diagrams

UML behavioral

complexity

Examples

Use of continuous

arrows, messages

etc.

Examples

Use of loops,

return messages

etc.

Examples

Use of

alternative paths

Examples

Use of forks,

orthogonal, par,

horizontal lines etc.

Examples

Use of

links/edges

/transition

etc.

Examples

AWMOL,

AWMIL etc.

Examples

AWNS etc.

Examples

WNSA etc.

Examples

Use of

links/edges

/transition etc.

Sequence Repetitive Decision Parallel

Incoming

interaction

Outgoing

interaction

Control flow

perspective

Interaction

perspective
Element

perspective

State 1

Transition

Final

state

Event [guard]

State 2

State 3

Initial

state

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

55

Fig 3: Elements of a sequence diagram

An activity diagram is a flowchart that illustrates the flow from

one activity to another. An activity diagram is composed of an

action state, edge, initial and final state. Action state represent

the behavior of an object while an activity edge is a connection

between two action states. Figure 4 illustrates the building

elements of an activity diagram.

Fig 4: Elements of an activity diagram

3.2 Control Flow Perspective
Control flow in a software is the order in which instructions are

executed. The control flow perspective is the behavior flow

from one object to another. The perspective borrows from the

traditional aspect of control flow structure of a software. They

include: Sequential control flow: This control flow represents

execution of behavior one after the another e.g. execution of

signals one after the other; Decision control flow: It analyses

the types of alternative paths that a system follows when

executing behavior; Repetitive control flow: It is based on the

analysis of how a system repeats a certain behavior a number

of times; Parallel control flow: It is based on the analysis of the

activities that happen simultaneously during execution of

behavior. Figure 5 shows the different types of control

structures in behavioral diagrams.

Fig 5: Control flows in behavioral diagrams

3.3 Interaction Perspective
Interaction occurs when an element/ object such as state, an

action state or a lifeline of a UML behavioral diagram

communicates to another element/ object. Interaction is

illustrated by use of edges, links, transitions or messages which

are elements of different behavioral diagrams. An object/

element with the highest number of links, messages, transitions

or edges is said to interact more. High interaction of an object

is associated with more complexity. This perspective can be

further subdivided into; Incoming interaction which is based on

the number of incoming edges, links, transitions or messages to

an element/ object and outgoing interaction. It is based on

the number of outgoing edges, links, transitions or messages

from an element/object.

For instance, In Figure 6 below, the state named Checking has

3 outgoing transition, the waiting state has 2 outgoing

transitions and the dispatching state has 1 transition. Therefore,

the checking state interacts more than other states thus

contributing to more complexity.

Object 1 Object 2 Object 3

Return

Message

Lifeline

 edge

Action

state 1
Action

state 2

Action

state 3

Final

state

Initial

state

Sequential

control flow
Repetitive control

flow

Parallel control

flow

Pre-test

Post-test

Decision

control

flow

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

56

Fig 6: Order processing statechart diagram

4. METHODOLOGY
The study involved carrying out an expert opinion to establish

whether the proposed framework is inclusive and can be

adopted by software engineers for practice as a complexity

taxonomy for UML behavioral diagrams.

Research design: The study employed a mixed method

approach namely, qualitative and quantitative

approaches for the evaluation of the framework.

 Population: To validate the perspective-based complexity

framework, the target population selected for this research were

industry experts in UML modeling within Kenya.

Sampling strategy and sample size: The research employed

purposive sampling method to get a sample size of 11 UML

experts for validation of the framework. Purposive sampling

was employed because the researcher was only interested with

UML modeling experts.

Pilot study: The expert opinion survey questionnaire was

pretested by involving 5 UML experts. The pretest was carried

out to help the researcher improve the questionnaire's

reliability. Feedback from the pilot study was used to

restructure the questionnaire before the final study.

Data collection instrument: The data collection tool used for

the study was a structured questionnaire for the expert opinion

survey. The questionnaire used a five-point Likert scale with a

view to uninformed opinions. The questionnaire focused on

aspects namely, reliability, inclusivity, and adoptability.

Reliability of the research instrument: To ensure the validity

of the research instrument, a pretesting was done using

Cronbach’s alpha reliability test. In addition, pilot study

responses were analyzed and the required modifications were

made on the questionnaire to improve its validity.

Data analysis: Descriptive statistics was applied to analyze the

data collected included frequencies. Mean and standard

deviation. Frequencies were used to analyze the distribution of

expert responses while the mean calculated the overall opinions

of the experts. The standard deviation measured the variations,

ensuring consistency in expert opinions.

5. RESULTS

5.1 Reliability of the Research Instrument
Reliability of the questionnaire was carried out on the relevance

and inclusiveness of the framework to ensure consistent results

are achieved when different persons are using the same

instrument. As shown in Table 1, the inclusiveness of the

element perspective obtained a Cronbach’s alpha of 0.794,

inclusiveness of control flow complexity achieved a

Cronbach’s alpha of 0.714 while interaction perspective

obtained a Cronbach’s alpha of 1.0. Therefore, the instrument

is reliable since it exceeded the considered threshold of 0.7 [19,

20].

Table 1. Framework inclusiveness reliability statistics

Scale Cronbach’s Alpha

Inclusiveness of the

element perspective

0.794

Inclusiveness of the control

flow perspective

0.714

Inclusiveness of the

interaction perspective

1.0

5.2 Results from the Questionnaire

Data from the respondents was received and checked for

completeness. All the questionnaires were duly filled. For that

reason, all were accepted for data analysis.

First, the researcher inquired the characteristics of the

respondents such as the level of education, number of years

served in the software industry and the level of knowledge in

modeling with UML diagrams.

Respondents were asked to state their highest level of academic

qualification. The results show that 8 (72.7 %) of the

respondents had attained a bachelor’s degree while the

remaining 3 (27.3 %) had attained a master’s degree. The

results indicate that all the UML experts involved in this study

had attained a bachelor’s degree and therefore they could study

the provided framework and respond appropriately as

illustrated in Figure 7.

Fig 7: Level of Education

The researcher also established the number of years the

respondents had served in the software industry. Results reveal

that 2 (18.2 %) respondents had served for 4-5 years, 3 (27.3

Respondents’ level of education

Bachelors Degree Masters Degree

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

57

%) had served for 6-7 years while 6 (54.5%) had served for 8

and above years. The results reveal that the respondents had

experience in the software engineering field thus considered

experts. Figure 8 shows this information.

Fig 8: Years served in the industry

The level of knowledge in modeling with UML diagrams was

also established as shown in Table 2. (9.1 %) respondent had

moderate knowledge in UML modeling, 7 (63.6 %) had high

knowledge in UML while 3 (27.3 %) had extremely high

knowledge in modeling with UML. Analysis suggest that the

responded can be trusted in the validation of the framework.

Table 2. Knowledge in UML modeling

Knowledge in

UML Modeling

Frequency Percent (%)

Moderate 1 9.1

High 7 63.6

Extremely High 3 27.3

The researcher investigated whether the developed perspective-

based framework was relevant for the software industry experts

in analyzing the complexity of UML behavioral diagrams.

Analysis reveal that the framework is relevant with a mean of

4.55 which lies between agree and strongly agree. Also, the

standard deviation 0.688 which is less than 1 indicates that the

respondents did not differ from one another. These information

is represented in Table 3.

Table 3. Relevance of the perspective based framework

 Relevance of the

framework

Mean 4.55

Standard deviation 0.688

Also, Table 4 shows that the majority (63.6%) respondents

strongly agree that the framework is relevant implying that the

proposed framework is useful in analyzing the complexity of

UML behavioral diagrams.

Table 4. Relevance of the framework in percentage

Likert Scale Frequency Percent (%)

Neither agree 1 9.1

Agree 3 27.3

Strongly agree 7 63.6

Findings indicate that the element perspective is inclusive. The

state attribute obtained a mean of 4.45 and a standard deviation

of 0.522, the action state attribute had a mean of 4.45 and a

standard deviation of 0.522 while the message attribute had a

mean of 4.27 and a standard deviation of 0.65. The mean values

of the element perspective ranges between agree and strongly

agree while the standard deviations of the element perspective

indicate that the responds opinions did not differ. These

information is represented in Table 5.

Table 5. Inclusiveness of the element perspective

Element

Attributes

Mean Standard

deviation

State 4.45 0.522

Action state 4.45 0.522

Message 4.27 0.65

Table 6 shows the percentage of respondents based on their

level of rating on the inclusiveness of the element perspective.

Majority of the respondents (54.4 %) agree and (45.5 %)

strongly agree that the state and action state attributes

contribute to complexity of these diagrams while 54.5 %

respondents and 36.4% agree and strongly agree respectively

on the inclusiveness of the message attribute. Therefore, the

element perspective can be relied on analyzing the complexity

of UML behavioral diagrams

Table 6. Rating of the inclusiveness of element perspective

 State Action state Message

Likert Scale Frequency Percent (%) Frequency Percent

(%)

Frequency Percent

(%)

Neither agree ___ ___ ___ ___ 1 9.1

Agree 6 54.4 6 54.4 6 54.5

Strongly agree 5 45.5 5 45.5 4 36.4

Analysis of the control flow perspective indicated that the

perspective is inclusive. The sequence obtained a mean of 4.55,

decision a mean 0f 4.64 while the repetitive and parallel

obtained a mean of 4.73 and 4.64 respectively. The standard

deviations computed were 0.69 for the sequence attribute, 0.67

for decision, and 0.65 for repetitive attribute while the parallel

attribute obtained a standard deviation of 0.50 as shown in

Table 7.

0

2

4

6

8

4 to 5 6 to 7 8 and above

Years served in the Industry

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

58

Table 7. Inclusiveness of the control-flow perspective

Control-flow

Attributes

Mean Standard

deviation

Sequence 4.55 0.69

Decision 4.64 0.67

Parallel 4.73 0.65

Repetitive 4.64 0.50

In addition, Table 8 shows that the majority (72.7 %)

respondents strongly agree that the sequence and decision

control flow contribute to complexity of behavioral diagrams.
81.8 % and 63.6 % of the respondents strongly agree on the

inclusiveness of the repetitive and parallel control flow

respectively implying that the control flow can be relied on in

analyzing the complexity of UML behavioral diagrams.

Table 8. Rating of the inclusiveness of element perspective

 Sequence Decision Repetitive Repetitive

Likert

Scale

Frequency Percent

(%)

Frequency Percent

(%)

Frequency Percent

(%)

Frequency Percent

(%)

Neither

agree

1 9.1 1 9.1 1 9.1 ___ ___

Agree 3 18.2 2 18.2 1 9.1 4 36.4

Strongly

agree

7 72.7 8 72.7 9 81.8 7 63.6

In addition, the analysis of interaction perspective reveals that

the interaction perspective contributes to complexity of UML

behavioral diagrams. The incoming interaction obtained a

mean of 4.09 and a standard deviation of 0.7 while the outgoing

interaction obtained a mean of 4.09 and a standard deviation of

0.7 as shown in Table 9.

Table 9. Inclusiveness of the interaction perspective

Interaction

Attributes

Mean Standard

deviation

Incoming interaction 4.09 0.700

Outgoing interaction 4.09 0.700

Table 10 shows the percentage of respondents based on their

level of rating on the inclusiveness of the interaction

perspective. 54.5 % of the respondents agree while 27.3 % of

the respondents strongly agree that the incoming and outgoing

interaction contribute to complexity of UML behavioral

diagrams.

Table 10. Rating of the inclusiveness of interaction

perspective

 Incoming interaction Outgoing interaction

Likert

Scale

Frequency Percent

(%)

Frequency Percent

(%)

Neither

agree

2 18.2 2 18.2

Agree 6 54.5 6 54.5

Strongly

agree

3 27.3 3 27.3

Finally, the respondents were asked to rank the extent to which

they agree the perspective based framework can be adopted for

practice as a complexity taxonomy for UML behavioral

diagrams. Analysis indicate that the framework can be adopted

for practice with a mean of 4.55 and a standard deviation of

0.69 as shown in Table 11.

Table 11. Adoption of the perspective based framework

 Relevance of the

Framework

Mean 4.55

Standard deviation 0.69

Also, Table 12 shows that the majority (63.6%) respondents

strongly agree that the proposed framework can be adopted by

software engineers for practice as a complexity taxonomy for

UML behavioral diagrams.

Table 12. Rating on the adoption of the framework

Likert

Scale

Frequency Percent (%)

Neither

agree

1 9.1

Agree 3 27.3

Strongly

agree

7 63.6

6. DISCUSSION
63.6% of the respondents strongly agree respondents that the

framework is relevant, 27.3 % agreed with this statement. This

means that the framework is appropriate in analyzing the

complexity of UML behavioral diagrams. Also, majority

(54.4%) of the respondents agreed that the state, action state

and message contribute to complexity of statechart, activity and

sequence diagram respectively. This means that the element

perspective attributes cause complexity in UML behavioral

diagrams and should not be overlooked.

It is noted that majority 72.7 % strongly agree that the sequence

and decision control flows contribute to complexity of

behavioral diagram while 81.1 % and 63.6 % strongly agree

that the repetitive and parallel control flows cause complexity

of behavioral diagrams. This implies that the control flow

perspective can be relied on in analyzing the complexity of

UML behavioral diagrams.

Analysis also indicate that 54.4 % of the respondents strongly

agree that the interaction perspective is well represented while

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.71, February 2025

59

27.3 % respondents agreed with the inclusiveness of outgoing

and incoming interaction. Further, on the issue of adoptability

of the framework, 63.6 % strongly agree that framework can be

adopted by software modelers, 27.3% agreed with this

statement. This implies that the proposed framework can be

relied on as a taxonomy for classifying the complexity of UML

behavioral diagrams.

7. CONCLUSION AND FUTURE

WORKS
In this study, a new perspective based complexity framework

was proposed to analyze the complexity of UML behavioral

diagrams. The identified perspectives were element, control

flow and interaction. The perspectives were further subdivided

into measurable attributes. The element perspective was

categorized into state, action state and message. The control-

flow perspective was subdivided into sequence, decision,

repetitive and parallel while the interaction was categorized

into incoming and outgoing interaction. The proposed

framework was validated through an expert’s opinion survey

and the respondents agree that the framework is relevant and

inclusive hence it can be adopted for practice as a taxonomy of

complexity for UML behavioral diagrams.

This study proposes an extension of the perspective-based

framework to include other behavioral diagrams not captured

under the element perspective such as use case, interaction, and

timing diagrams. Future work should incorporate these

diagrams and identify attributes relevant to their structure.

Although the framework has been validated through an expert

opinion survey, future work should focus on further validation

with real-life software engineering scenarios to test its practical

adaptability.

8. REFERENCES
[1] Alshayeb, M., Mumtaz, H., Mahmood, S., & Niazi, M.

(2020). Improving the security of UML sequence diagram

using genetic algorithm. IEEE Access, 8, 62738-62761.

[2] Estivill-Castro, V., & Hexel, R. (2019, February). The

Understandability of Models for Behaviour.

In International Conference on Model-Driven

Engineering and Software Development (pp. 50-75).

Springer, Cham.

[3] Fitsilis, P., Gerogiannis, V. C., & Anthopoulos, L. (2013).

Role of unified modelling language in software

development in Greece–results from an exploratory

study. IET software, 8(4), 143-153.

[4] Shailesh, T., Nayak, A., & Prasad, D. (2022).

Transformation of sequence diagram to timed Petri net

using Atlas Transformation Language metamodel

approach. Journal of Software: Evolution and Process,

34(1), e2412.

[5] Aloysius, A., & Arockiam, L. (2012). Coupling complexity

metric: A cognitive approach. International Journal of

Information Technology and Computer Science

(IJITCS), 4(9), 29-35.

[6] Unterkalmsteiner, M., Gorschek, T., Islam, A. M., Cheng,

C. K., Permadi, R. B., & Feldt, R. (2011). Evaluation and

measurement of software process improvement—a

systematic literature review. IEEE Transactions on

Software Engineering, 38(2), 398-424.

[7] Gencel, C., Petersen, K., Mughal, A. A., & Iqbal, M. I.

(2013). A decision support framework for metrics

selection in goal-based measurement programs: GQM-

DSFMS. Journal of Systems and Software, 86(12), 3091-

3108.

[8] Hatzivasilis, G., Papaefstathiou, I., & Manifavas, C. (2016).

Software security, privacy, and dependability: Metrics and

measurement. IEEE Software, 33(4), 46-54.

[9] Fenton, N., & Bieman, J. (2014). Software metrics: a

rigorous and practical approach. CRC press.

[10] Nilsson, A.T and Rise, J.L. (1996). “Performance

Measurements, Procedure to Design Measures – Goal

Attribute Measure (GAM)”, Ericsson Quality Institute,

LME/Q-93:332, Rev.E, (Internal Publication).

[11] Martinsons, M., Davison, R., & Tse, D. (1999). The

balanced scorecard: a foundation for the strategic

management of information systems. Decision support

systems, 25(1), 71-88.

[12] Basili, V., Heidrich, J., Lindvall, M., Münch, J., Regardie,

M., Rombach, D., ... & Trendowicz, A. (2014). GQM+

Strategies: A comprehensive methodology for aligning

business strategies with software measurement. arXiv

preprint arXiv:1402.0292.

[13] Fenton N., and Pfleeger, S. L (1997). “Software Metrics:

A Rigorous and Practical Approach”, 2nd Edition, IT

Publishing Company.

[14] Yue, T., & Ali, S. (2014, July). A MOF-Based Framework

for Defining Metrics to Measure the Quality of Models. In

European Conference on Modelling Foundations and

Applications (pp. 213-229). Springer, Cham.

[15]Macharia, E, “A Metrics-based Framework forEstimating

the Maintainability of Object-Oriented Software,” J. Inf.

Eng. Appl., vol. 9, no. 4, pp. 12–24, 2019, doi:

10.7176/jiea/9-4-02.

[16] Amara, D., & Rabai, L. B. A. (2017). Towards a new

framework of software reliability measurement based on

software metrics. Procedia Computer Science, 109, 725-

730.

[17] Tempero, E., & Ralph, P. (2018). A framework for

defining coupling metrics. Science of Computer

Programming, 166, 214-230.

[18] Deraman, A., Yahaya, J. H., Abidin, Z. N. Z., & Ali, N.

M. (2014). Software Ageing Measurement Framework

Based on GQM Structure. Journal of Software and

Systems Development, 2014, 1.

[19] Nunnally, J. C. (2008)., Psychometric theory (2nd ed.).

New York: McGrawHill.

[20] Doğaner, A. (2021). The approaches and expectations of

the health sciences students towards artificial

intelligence. Karya Journal of Health Science, 2(1), 5-11.

IJCATM : www.ijcaonline.org

