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ABSTRACT
The coronavirus pandemic, caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), had an extensive global
impact, causing widespread disruptions to public health. The early
and accurate identification of the virus and its various strains is
imperative for safeguarding lives. Over the past few years, multi-
farious machine learning and deep learning techniques were used
to classify genomic sequences . However, existing methods face
several limitations. Many approaches struggle with dataset imbal-
ance, leading to biased and unreliable models. Traditional neural
network-based methods are computationally intensive, requiring
significant time and resources. Moreover, existing techniques often
fail to achieve consistently high classification accuracy across prop-
erly balanced datasets. To address these gaps, this article presents
an efficient method for classifying coronavirus variants’ DNA se-
quences using a combination of machine learning and signal pro-
cessing. The DNA sequences are first converted into numbers using
Electron-Ion Interaction Potential, Numeric, and Complex coding
techniques. After that signal processing methods; Discrete Cosine
Transform II, Discrete Cosine Transform III, Fast Fourier Trans-
form, Haar Wavelet Transform, and Coiflet Wavelet Transform are
applied to extract features from the coded data. The high dimen-
sionality is reduced using Linear Discriminant Analysis and Princi-
pal Component Analysis. For the classification task, machine learn-
ing models such as Decision Tree, Support Vector Classifier, and a
fusion of Light-Gradient Boosting Machine, AdaBoost, and Ran-

dom Forest are employed. The proposed approach achieves an im-
pressive accuracy of 99.8%, which surpasses the state of the art us-
ing a different combination of transformations with Numeric cod-
ing and Voting Classifier.

Keywords
Genomic Sequence Analysis, Signal Processing, Dimensionality
Reduction, Machine Learning.

1. INTRODUCTION
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2), the virus that caused the COVID-19 pandemic, has evolved fast
through various genetic alterations, resulting in the formation of
several unique viral strains known as variants. These genetic vari-
ants in the SARS-CoV-2 genome have a significant impact on es-
sential viral features such as transmissibility, immune response re-
sistance, and the severity of infection. This virus is made up of
Ribonucleic acid (RNA) which is transcribed into Deoxyribonu-
cleic acid (DNA) for stable sequencing, enabling consistent mu-
tation tracking and insights into viral evolution [1]. Among the
identified variants, five are of considerable public health impor-
tance because of increased transmissibility and immune evasion:
Alpha, Delta, Omicron, Beta, and Gamma [2]. Here Alpha, Delta,
and Omicron variants have been used for classification because
they have made a remarkable impact on human health and have
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influenced public health strategy.Various deep learning-based tech-
niques have identified these variants by analyzing complex genetic
data, hence providing automatic scalable identification from se-
quence data [3, 4]. Most such models are usually very demand-
ing computationally and need a great amount of computational re-
sources in terms of processing units and memory, hence very hard
to be deployed in resource-sensitive environments. Also, as much
as pre-trained models [5] reduce the burden of training a model
from scratch, their high demand with regard to computation ren-
ders their usage infeasible at large scale or in real time applica-
tions. In this regard, effective classification approach was intro-
duced that combines signal processing techniques with dimension-
ality reduction and machine learning classifiers, which will result
in accurate variant classification with less computational cost. Five
different signal processing techniques are utilized to extract mean-
ingful features from DNA sequence data, namely: Discrete Cosine
Transform II (DCT II), Discrete Cosine Transform III (DCT III),
Fast Fourier Transform (FFT), Haar wavelet, and Coiflet wavelet.
These methods capture the key sequence patterns by transform-
ing the DNA data into the frequency domain where key features
can be highlighted much better. Furthermore the efficiency was in-
creased in the classification process by performing a reduction in
dimensions with a view to optimize the dataset while maintain-
ing only critical variant information with minimal complexity.The
described approach of combining signal processing with dimen-
sional reduction, compared to other traditional deep learning mod-
els, provides an economically efficient solution; hence, large-scale
and real-time applications are feasible. Proposed methodology has
ensured that SARS-CoV-2 variants are reliably classified, espe-
cially in resource-constrained environments, by significantly reduc-
ing processing time and memory utilization.

2. RELATED WORK
This section discusses literature combining machine learning clas-
sifiers and signal processing techniques for SARS-CoV-2 classifi-
cation. Khodel et al. [6] used Singular Value Decomposition, lin-
ear predictive feature extraction, and z-curve mapping to achieve
99% accuracy with Support Vector Machine (SVM), showcasing
the potential of combining linear algebra techniques with machine
learning. Naeem et al. [7] transformed DNA sequences into the
frequency domain using Discrete Cosine and Fourier Transforms,
achieving 98.89% accuracy with a KNN model, highlighting the
efficacy of frequency-based feature extraction. Patel et al. [8] em-
ployed wavelet transformation and statistical analysis to distinguish
COVID-19-infected genes, providing approach based on genomic
signal analysis. Meng et al. [9] analyzed Wavelet Transform appli-
cations in DNA sequences for cancer studies, suggesting broader
applicability of wavelet techniques across various domains. Yadav
et al. [10] mapped DNA sequences to complex numbers, apply-
ing Short Time Ramanujan Fourier Transform for pattern extrac-
tion, enabling the identification of intricate sequence structures.
Chalco et al. [11] implemented Modified Gabor Wavelet Trans-
form for coding region identification, which is critical for under-
standing functional regions in viral genomes. Randhawa et al. [12]
combined supervised machine learning and digital signal process-
ing, achieving 98.1% accuracy in COVID-19 variant classifica-
tion, demonstrating the synergy between classical signal processing
and advanced machine learning algorithms. Muhammad et al. [13]
achieved 99.2% accuracy with eXtreme Gradient Boosting (XGB)
and faster computation with Light Gradient Boosting Machine
(LGBM), emphasizing the balance between accuracy and compu-
tational efficiency. Hammad et al. [14] used Frequency Chaos rep-

resentation and AlexNet for feature selection, achieving 99.71%
accuracy with KNN and Decision Trees, illustrating the integration
of deep learning architectures with traditional classifiers. Saha et al.
[15] developed COVID-DeepPredictor, delivering 100% accuracy
for classification with class imbalance issue, representing an inno-
vation in predictive modeling for SARS-CoV-2 analysis.Eldosuky
et al. [16] classified COVID-19 and influenza with 99% accuracy
using optimized deep neural networks, underlining the versatility
of neural networks in cross-disease classification.

3. METHODOLOGY
Our proposed methodology begins with data collection from the
NCBI Virus database, focusing on genomic information [17]. For
this study, 1,000 DNA sequences for each of three SARS-CoV-
2 variants was selected. After removing ambiguous sequences to
ensure data quality, the DNA sequences are encoded using Com-
plex, EIIP, and Numeric coding techniques to structure the data for
analysis. These encoded sequences are then transformed into the
frequency domain using methods such as DCT II, DCT III, FFT,
Haar Wavelet Transform, and Coiflet Wavelet Transform, which
help capture patterns and features. Subsequently, dimensionality
reduction is applied using Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA) to refine features rele-
vant to accurate predictions. The processed dataset is split into 70%
training and 30% testing sets, and various machine learning models
are trained and evaluated. Accuracy assessments of predictions are
conducted to compare the methodologies and their effectiveness in
identifying SARS-CoV-2 variants. Fig 1. illustrates the workflow.

3.1 Coding Methods
3.1.1 EIIP coding. The method that converts DNA nucleotide se-
quences into numbers based on Electron Potential is known as EIIP
coding. The method for these values’ calculation is the atoms’ po-
tentials for electron-ion interactions [18]. The nucleotides of DNA
have the following EIIP values:

• Adenine (A): 0.1260 • Guanine (G): 0.0806
• Thymine (T): 0.1335 • Cytosine (C): 0.1340

3.1.2 Complex coding. In this method, we assign 4 nucleotides
of DNA sequence to complex numbers, which involves comple-
mentary characteristics [19]:

• Adenine (A): 1 + i • Guanine (G): −1 + i
• Thymine (T): −1− i • Cytosine (C): 1− i

3.1.3 Numeric coding. In Numeric coding, we transform DNA
nucleotides into integers and it is a very fast and efficient approach.
Here’s how we can achieve it. [20].

• Adenine (A): 2 • Guanine (G): 3
• Thymine (T): 0 • Cytosine (C): 1

3.2 Signal Processing Methods
In our study, we use five linear transformations to take our data to
the frequency domain.A key tool for compressing digital signals is
the Discrete Cosine Transform II (DCT II). By concentrating signal
energy in a small number of coefficients, particularly in the lower
frequency components, it can express signals more succinctly. The
equation yields the (DCT II). [21]:

Xk =

N−1∑
n=0

xn · cos
(
π

N

(
n+

1

2

)
k

)
(1)
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Fig. 1: Proposed Methodology

Here, Xk is the DCT coefficient at index k, xn is the input se-
quence, N is the length of the sequence, and k ranges from 0 to
N − 1. The inverse of Discrete Cosine Transform II (DCT II) is
Discrete Cosine Transform III (DCT III) given by the equation [22]

Xk =

N−1∑
n=0

xn · cos
(
π

N

(
n+

1

2

)(
k +

1

2

))
(2)

.
An algorithmic method for quickly calculating the Discrete Fourier
Transform (DFT) and its inverse is the Fast Fourier Transform
(FFT). The DFT computation is substantially sped up by the FFT.
The FFT significantly speeds up the computation of the DFT, The
FFT is defined by the equation [23]

X[k] = &FFT
[
x[n]

]
=

1√
N

N−1∑
n=0

x[n]e−j(2π/N)kn (3)

.
Haar Wavelet is a simple wavelet function that is popularly used
in the field of Signal and Image processing due to piecewise linear
functionality. Haar Wavelet equation is given by [24]:

ψ(x) =


1, if 0 ≤ x < 1

2
,

−1, if 1
2
≤ x < 1,

0, otherwise.
(4)

where ψ(x) represents the associated scaling function.
Coiflet wavelet is a mathematical function that is designed to have
both properties; Vanishing Moments and Orthogonality. Vanishing
Moments make sure that the wavelet follows a polynomial trend
without affecting detailed coefficients. and Orthogonal property en-
sures that the inverse of this wavelet is proper. The equation is given
as [25].

ψ(x) =


(1/

√
2)× (ϕ(x)− ϕ(x− 3)), if 0 ≤ x < 3,

(1/
√
2)× (−ϕ(x− 1) + ϕ(x− 4)), if 3 ≤ x < 4,

0, otherwise.
(5)

where ψ(x) represents the associated scaling function.

3.3 Dimensionality Reduction
Our original data has a maximum length of 30,000 base pairs and
there are a total of 1000 DNA sequences for each variant. It can
be seen that the size of the data is very large, i.e., 1000 × 30, 000
columns for each variant class. Since there are a total of 3 different
variants, resulting in 3 categories for classification. During machine
learning operations, it was observed that computationally it takes
much more time to compute predictions due to the huge size of
the data. To speed up the computation we use two dimensionality
reduction techniques.

3.3.1 Principal Component Analysis. Principal Component
Analysis (PCA) is a dimensionality reduction technique that
reduces the size of a dataset while preserving as much variance
as possible. It basically transforms the raw data into a set of
uncorrelated variables which are known as principal components,
This is how it simplifies the complexity of dimension data. It
is observed that the first principal component has the highest
amount of variations which goes on decreasing while moving
further [26]. To calculate PCA, the eigenvalues and eigenvectors
of the covariance matrix χ has been calculated. The eigenvalues
ultimately represent the amount of variations explained by each
principal component, while the eigenvectors represent the direction
of these components. In our study, 60 principal components are
used for classification.

3.3.2 Linear Discriminant Analysis (LDA). Linear Discriminant
Analysis is used to maximize the ratio of between-class variance
to the within-class variance in any particular dataset, which leads
to maximal separability among classes. The Scatter matrices play a
vital role in this analysis which is defined as: [27].

SW =
k∑

i=1

Σ(x− µi)(x− µi)
T (6)

Here, x belongs to the particular class i.

SB =

k∑
i=1

Ni(µi − µ)(µi − µ)T (7)
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whereNi is the number of samples in class i, µi is the mean vector
of class i, and µ is the overall mean vector of the dataset. The last
step of LDA is to find a projection matrix W that maximizes the
ratio of the determinant of the between-class scatter matrix to the
determinant of the within-class scatter matrix [27]:

J(W ) =
|WTSBW |
|WTSWW |

(8)

The optimal projection matrix W can be found by solving the gen-
eralized eigenvalue problem [27]:

S−1
W SBW = ΛW (9)

where Λ is a diagonal matrix whose entries are the eigenvalues.
The eigenvectors corresponding to the largest eigenvalues form the
columns of the projection matrix W .

3.4 Machine Learning Methods
3.4.1 Voting Classifier. A voting classifier is an ensemble
method that combines the predictions of multiple machine learning
models to produce a single, more accurate prediction by leveraging
the strengths of diverse classifiers and mitigating their individual
weaknesses. We have used three models in our study to create a vot-
ing classifier, which are Light Gradient Boosting Machine(LGBM),
Random Forest, and AdaBoost.
LGBM is a highly robust and efficient model that utilizes a tech-
nique called gradient boosting to construct an ensemble of decision
trees. It combines the results or predictions of multiple weak learn-
ers to form a strong learner sequentially, and with each iteration,
the trees learn from the errors of the previous ones [28]. The fi-
nal prediction is the sum of the output of all the trees. Random
Forest is a strong supervised ensemble learning approach that is
frequently used for classification tasks. The working principle of
Random Forest is to create a large number of decision trees and
combine all of their predictions to increase accuracy and simulta-
neously decrease overfitting, and improve generalization. [29]. Ad-
aboost short for Adaptive Boosting is also one of the best algo-
rithms from the ensemble family. The main difference between the
Adaboost and other decision tree algorithms is that; Adaboost uses
stumps; which are nodes with two leaves to create the tree [30].

3.4.2 Decision Trees. Decision Tree is a supervised learning ma-
chine learning method that uses a tree-like structure and nodes for
options and leaves for outcomes, that produce decision rules based
on data properties. Data is divided in a binary way at each node in
accordance with predetermined rules in order to a construct deci-
sion tree. While building a decision tree a common practice is to
utilise the CART (Classification and Regression Trees) algorithm.
CART utilizes Gini impurity in classification issues to select the
best node for splitting. The number of times a randomly chosen
element from the dataset would be incorrectly classified if it were
labeled at random using the label distribution within that subset is
measured by the Gini impurity which is defined as [31]:

IG(t) = 1−
J∑

i=1

p2i (10)

where pi is the probability of class i at node t and J is the number
of classes.

3.4.3 Support Vector Classifier. Another kind of classification
technique in machine learning, Support Vector Classifiers(SVCs)
is well-known in the field for their efficiency when used for high-
dimensional data. SVCs try to find the best hyperplane in the fea-

ture space to divide the classes. The hyperplane that maximizes the
margin between the nearest data points of any class, or the support
vector, is the optimal one. Furthermore, in difficult classification
tasks, SVCs are particularly useful due to their ability to maximize
margin on top of that, they can also perform non-linear classifica-
tion effectively with the use of kernel strategies.

4. EXPERIMENTAL RESULTS
4.1 Results comparision for PCA

Table 1. : Experimental Results for Principal Component Analysis

Sr
No

Coding
Tech-
niques

Transformation ML Techniques Accuracy

1 EIIP DCT II Voting Classifier 96.2%
2 EIIP DCT III Voting Classifier 95.8%
3 EIIP FFT Voting Classifier 98.65%
4 EIIP Haar Wavelet Voting Classifier 86.86%
5 EIIP Coiflet Wavelet Voting Classifier 95.06%
6 Numeric DCT II Voting Classifier 95.95%
7 Numeric DCT III Voting Classifier 95.95%
8 Numeric FFT Voting Classifier 98.31%
9 Numeric Haar Wavelet Voting Classifier 99.21%
10 Numeric Coiflet Wavelet Voting Classifier 95.7%
11 Complex DCT II Voting Classifier 96.18%
12 Complex DCT III Voting Classifier 97.19%
13 Complex FFT Voting Classifier 97.5%
14 Complex Haar Wavelet Voting Classifier 80%
15 Complex Coiflet Wavelet Voting Classifier 80%
16 EIIP DCT II Decision Tree 64%
17 EIIP DCT II SVC 56%
18 Numeric DCT II Decision Tree 67%
19 Numeric DCT II SVC 64%
20 Complex DCT II Decision Tree 72%
21 Complex DCT II SVC 70%
22 EIIP DCT III Decision Tree 75%
23 EIIP DCT III SVC 89%
24 Numeric DCT III SVC 62%
25 Numeric DCT III Decision Tree 59%
26 Complex DCT III SVC 71%
27 Complex DCT III Decision Tree 70%
28 EIIP FFT Decision Tree 88%
29 EIIP FFT SVC 94%
30 Numeric FFT Decision Tree 77%
31 Numeric FFT SVC 93%
32 Complex FFT Decision Tree 81%
33 Complex FFT SVC 95%
34 EIIP Haar Wavelet Decision Tree 61%
35 EIIP Haar Wavelet SVC 50%
36 Numeric Haar Wavelet Decision Tree 86%
37 Numeric Haar Wavelet SVC 84%
38 Complex Haar Wavelet Decision Tree 57%
39 Complex Haar Wavelet SVC 50%
40 EIIP Coiflet Wavelet Decision Tree 65%
41 EIIP Coiflet Wavelet SVC 52%
42 Numeric Coiflet Wavelet Decision Tree 65%
43 Numeric Coiflet Wavelet SVC 63%
44 Complex Coiflet Wavelet Decision Tree 62%
45 Complex Coiflet Wavelet SVC 67%
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Table 1 summarizes the results on PCA for dimensionality reduc-
tion, highlighting the effect that machine learning algorithms, dif-
ferent transformations, and coding methods have on classification
accuracy. Using EIIP coding, for instance, the Voting Classifier
achieved maximum accuracy with FFT (98.65%), followed by DCT
II (96.2%) and a low accuracy value of 86.86% for Haar Wavelet.
Decision Tree and SVC showed lower accuracies, lying in ranges
from 61-88% and from 50–94%, respectively. For Numeric coding,
the Voting Classifier with Haar Wavelet gives the highest accuracy
of 99.21%, Coiflet Wavelet gives 95.57%, and both DCT II and
DCT III give consistently approximately 95.95%. Decision Tree
and SVC yield accuracies in the range of 65-77% and 62-93%, re-
spectively. With Complex coding, the Voting Classifier with FFT
gives the highest accuracy of 97.5%, followed by DCT III with
97.19%, while Haar Wavelet yields the lowest accuracy of 80%.
While Decision Tree and SVC give rather poor results with accura-
cies ranging from 57-81% and 50-95%, respectively. These results
indicate the large impact of transformation, coding, and choice of
algorithm on the accuracy in classification.

4.1.1 Performance Analysis of Signal Processing and Machine
Learning Models with EIIP coding for PCA . The accuracy of three
distinct machine learning algorithms—Voting Classifier, Decision
Tree, and SVC—when paired with EIIP coding and diverse signal
processing transformations is assessed in this section. The Voting
Classifier obtains a high accuracy of 96.2% with DCT II transfor-
mation, while the accuracies of Decision Tree and SVC are much
lower, at 64% and 56%, respectively. The Voting Classifier contin-
ues to perform well for DCT III, recording 95.8%; SVC follows it
closely with at 89%, while Decision Tree records 75%. The Voting
Classifier gives the best accuracies (98.65%, SVC 94%, and Deci-
sion Tree 88%) when the FFT transformation is used, demonstrat-
ing the efficacy of FFT. Besides this, all classifiers, including the
Voting Classifier (86.86%), Decision Tree (61%), and SVC (50%),
have much worse accuracy when the Haar Wavelet transformation
is applied. The Voting Classifier finally achieves 95.06% accuracy
after applying Coiflet Wavelet transformation, outperforming De-
cision Tree and SVC at 65% and 52%, respectively, proving its
supremacy.

4.1.2 Performance Analysis of Signal Processing and Machine
Learning Models with Numeric coding for PCA. The accuracy of
three machine learning algorithms—the Voting Classifier, Decision
Tree, and SVC utilizing Numeric coding with different signal pro-
cessing transformations—is compared in this section. The Voting
Classifier attains 95.95% accuracy for the DCT II transformation,
while Decision Tree and SVC fall short at 67% and 64%, respec-
tively. The Voting Classifier remains at 95.95% with DCT III, while
SVC falls to 62% and Decision Tree to 59%. The Voting Classifier
produces the highest accuracy at 98.31%, SVC at 93%, and De-
cision Tree at 77% when using the FFT transformation. By com-
parison, the Voting Classifier achieves the maximum accuracy of
99.21% when using the Haar Wavelet transformation, while De-
cision Tree and SVC also demonstrate good performance, at 86%
and 84%, respectively. Lastly, with Coiflet Wavelet transformation,
the Voting Classifier achieves 95.7%, while Decision Tree and SVC
perform moderately at 65% and 63%, respectively.

4.1.3 Performance Analysis of Signal Processing and Machine
Learning Models with Complex coding for PCA. The accuracy of
the Voting Classifier, Decision Tree, and SVC employing complex
coding with different signal processing transformations is com-
pared in this section. Voting Classifier scores 96.18% for DCT II,
whilst Decision Tree and SVC perform worse at 72% and 70%,

respectively. The Voting Classifier achieves 97.19% with DCT III,
way ahead of SVC at 71% and Decision Tree at 70%. The Voting
Classifier produces 97.5% accuracy, SVC 95%, and Decision Tree
81%; these results demonstrate the efficacy of the FFT transfor-
mation. On the other hand, accuracy is greatly decreased by Haar
Wavelet transformation, with the Voting Classifier at 80%, Deci-
sion Tree at 57%, and SVC at 50%. The Voting Classifier, at 80%,
is the last product of the Coiflet Wavelet transformation; Decision
Tree and SVC, at 62% and 67%, respectively, perform moderately.

Table 2. : Experimental Results for Linear Discriminant Analysis

Sr
No

Coding
Tech-
niques

Transformation ML Techniques Accuracy

1 EIIP DCT II Voting Classifier 99.6%
2 EIIP DCT III Voting Classifier 99.8%
3 EIIP FFT Voting Classifier 99.7%
4 EIIP Haar Wavelet Voting Classifier 99.5%
5 EIIP Coiflet Wavelet Voting Classifier 99.6%
6 Numeric DCT II Voting Classifier 99.8%
7 Numeric DCT III Voting Classifier 99.4%
8 Numeric FFT Voting Classifier 99.8%
9 Numeric Haar Wavelet Voting Classifier 99.8%
10 Numeric Coiflet Wavelet Voting Classifier 99.3%
11 Complex DCT II Voting Classifier 99.7%
12 Complex DCT III Voting Classifier 99.3%
13 Complex FFT Voting Classifier 99.6%
14 Complex Haar Wavelet Voting Classifier 99.2%
15 Complex Coiflet Wavelet Voting Classifier 99.4%
16 EIIP DCT II Decision Tree 99%
17 EIIP DCT II SVC 97.3%
18 Numeric DCT II Decision Tree 99%
19 Numeric DCT II SVC 98.65%
20 Complex DCT II Decision Tree 99%
21 Complex DCT II SVC 98.53%
22 EIIP DCT III Decision Tree 99%
23 EIIP DCT III SVC 97.52%
24 Numeric DCT III SVC 98.03%
25 Numeric DCT III Decision Tree 99%
26 Complex DCT III SVC 98.05%
27 Complex DCT III Decision Tree 99%
28 EIIP FFT Decision Tree 99%
29 EIIP FFT SVC 98.08%
30 Numeric FFT Decision Tree 99%
31 Numeric FFT SVC 97.97%
32 Complex FFT Decision Tree 99%
33 Complex FFT SVC 97.97%
34 EIIP Haar Wavelet Decision Tree 99%
35 EIIP Haar Wavelet SVC 97.86%
36 Numeric Haar Wavelet Decision Tree 99%
37 Numeric Haar Wavelet SVC 98.42%
38 Complex Haar Wavelet Decision Tree 99%
39 Complex Haar Wavelet SVC 96.74%
40 EIIP Coiflet Wavelet Decision Tree 99%
41 EIIP Coiflet Wavelet SVC 97.86%
42 Numeric Coiflet Wavelet Decision Tree 99%
43 Numeric Coiflet Wavelet SVC 98.65%
44 Complex Coiflet Wavelet Decision Tree 99%
45 Complex Coiflet Wavelet SVC 97.19%
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4.2 Results comparision for LDA
Table 2 presents the results after LDA for dimensionality reduc-
tion. The accuracy of classification is greatly influenced by the
choice of the machine learning algorithm, transformation, and cod-
ing method, as shown in the table. The Voting Classifier with EIIP
coding shows consistent high accuracy, with all the transformations
producing results within a narrow range of 99.5% to 99.8%. Most
notably, the Voting Classifier with DCT-III produces the highest
accuracy of 99.8%. Decision Tree and SVC show reduced accu-
racy with EIIP coding, especially SVC’s, which ranges from 97.3%
up to 98.65%. The Voting Classifier is pretty robust with the FFT:
99.7% for EIIP, 99.8% for Numeric, and 99.6% for Complex cod-
ing. Haar Wavelet, in turn, provides competitive performance of
up to 99.8%, which was especially obtained with Numeric cod-
ing. Basically, the DCT-II and DCT-III transforms act very well for
the various methods of encoding. This is why the Voting Classifier
reaches 99.6% for EIIP, 99.8% for Numeric, and 99.7% for Com-
plex encoding. The rest of the analyzed algorithms classify as fol-
lows: the Decision Tree achieves 99%, while the SVC shows 96.74
to a maximum of 98.65% on all other transformations and encoding
methods. These results confirm the better generalization of the Vot-
ing Classifier in different scenarios, while Decision Tree and SVC
are more sensitive to transform and coding strategies. In the end,
only a correct choice of the used coding strategy, transformation,
and machine learning algorithm can yield an optimal classification
performance.

4.2.1 Performance Analysis of Signal Processing and Machine
Learning Models with EIIP coding for LDA . Using EIIP cod-
ing with different signal processing transformations, the accuracy
of three machine learning algorithms Voting Classifier, Decision
Tree, and SVC is assessed in this section. 99.6% with DCT II,
99.8% with DCT III, 99.7% with FFT, 99.5% with Haar Wavelet,
and 99.6% with Coiflet Wavelet are the highest performance lev-
els regularly achieved by the Voting Classifier. The robustness of
the Decision Tree in handling EIIP encoded data is demonstrated
by its strong performance, which maintains 99% accuracy across
all transformations. Although the SVC algorithm performs better
with FFT (98.08%) and DCT II (97.3%), it performs worse with
Haar and Coiflet Wavelets (97.86%). In comparison, the SVC al-
gorithm exhibits greater variability. Comparing SVC to the other
models, this variability indicates that SVC has difficulty capturing
the complexity of EIIP transformations to the fullest. Though not
as effectively as the Voting Classifier and Decision Tree, SVC still
shows some promise in spite of these difficulties.

4.2.2 Performance Analysis of Signal Processing and Machine
Learning Models with Numeric coding for LDA . In this part, the
accuracy of three machine learning algorithms SVC, Voting Classi-
fier, and Decision Tree is compared using different transformations
and Numeric coding. For Numeric DCT II, the Voting Classifier has
the highest accuracy at 99.8%, followed by Decision Tree at 99%
and SVC at 98.65%. The Voting Classifier outperforms the Deci-
sion Tree at 99% and SVC at 98.03% for Numeric DCT III, how-
ever it decreases somewhat to 99.4%. The Voting Classifier and De-
cision Tree with Numeric FFT attain 99.8% and 99%, respectively,
whereas SVC achieves 97.97%, indicating the effectiveness of FFT
in enhancing classification. The Voting Classifier retains 99.8%,
the Decision Tree reaches 99%, and the SVC increases to 98.42%
in the Numeric Haar Wavelet transformation. Last but not least,
the Voting Classifier records 99.3%, Decision Tree keeps 99%, and
SVC records 98.65% with Numeric Coiflet Wavelet, demonstrating
a slight decline in performance for all models.

4.2.3 Performance Analysis of Signal Processing and Machine
Learning Models with Complex coding for LDA . This section ex-
amines the accuracy of the Decision Tree, SVC, and Voting Classi-
fier using Complex coding with various transformations. The Vot-
ing Classifier does better than the Decision Tree (99%) and SVC
(98.53%) with a 99.7% accuracy rate for DCT II, exhibiting good
model performance with little variations. While the Decision Tree
maintains its 99% level and the SVC achieves 98.05%, the Voting
Classifier for DCT III slightly declines to 99.3%. The voting clas-
sifier, decision tree, and SVC all perform exceptionally well in the
complex FFT setup, with the voting classifier at 99.6%, decision
tree at 99%, and SVC at 97.97%. This shows how powerful FFT is
in enhancing classification accuracy.. After applying Haar Wavelet
transformation, the Voting Classifier achieves 99.2%, the Decision
Tree maintains its 99%, and SVC falls to 96.74%. Finally, the Vot-
ing Classifier scores 99.4% in the Coiflet Wavelet transformation,
Decision Tree keeps scoring 99%, and SVC scores 97.19%. These
results show some difficulties with complex feature extraction but
overall good performance.

Table 3. : Coding Techniques Analysis for PCA and LDA

Technique Dimensionality
Reduction

Avg.
Acc.

Std
Dev

Worst
Acc.

Best
Acc.

EIIP PCA 75.74 0.1777 50 98.65
Numeric PCA 80.34 0.155651 59 99.21
Complex PCA 76.39 0.150266 50 97.5
EIIP LDA 98.78 0.008431 97.3 99.8
Numeric LDA 99.01 0.005704 97.97 99.8
Complex LDA 98.71 0.008629 96.74 99.7

4.3 Comparative analysis of Dimensionality Reduction
Techniques

Table 3 examines three coding techniques EIIP, numeric, and com-
plex for their average accuracy, standard deviation, worst accuracy,
and highest accuracy across Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA). The Numeric method
under PCA has the best average accuracy 80.34% and the lowest
standard deviation 0.155651, with maximum and worst accuracy of
99.21% and 59%. EIIP has the lowest average accuracy 75.74% and
the highest variability, with values ranging from 50% to 98.65%.
The Complex technique has a comparable, but more consistent, av-
erage accuracy of 76.39%. All methods improve when combined
with LDA. With less variability and an accuracy range of 97.3%
to 99.8%, the average accuracy of EIIP rises to 98.78% . With the
lowest standard deviation 0.005704 and the highest average accu-
racy 99.01%, the numeric coding technique performs consistently
between 97.97% and 99.8%. With a complex approach, moderate
variability and accuracy of 98.71% are achieved 0.008629. For all
coding approaches combined, LDA greatly improves accuracy and
consistency; Numeric performs particularly well in this regard.
Table 4 compares different signal processing methods with PCA
and LDA, including DCT-II, DCT-III, FFT, Haar Wavelet, and
Coiflet Wavelet, based on some evaluation criteria such as mean
accuracy, standard deviation, minimum accuracy, and maximum
accuracy. In the case of PCA, FFT obtained the highest mean ac-
curacy of 89.35% with a low standard deviation of 0.078 and the
accuracy ranging from 77% to 98.65%, which indicates stable per-
formance. This is followed by DCT-III with an average accuracy of
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Table 4. : Signal Processing Techniques Analysis for PCA and LDA

Technique Dimensionality
Reduction

Avg.
Acc.

Std
Dev

Worst
Acc.

Best
Acc.

DCT II PCA 75.7 0.1594 56 96.2
DCT III PCA 79.44 0.152 59 97.19
FFT PCA 89.35 0.078013 77 98.65
Haar Wavelet PCA 72.67 0.1826 50 99.21
Coiflet Wavelet PCA 71.64 0.15249 52 95.7
DCT II LDA 98.75 0.007668 97 99.8
DCT III LDA 98.79 0.0061911 97.53 99.8
FFT LDA 98.90 0.00738 97.97 99.8
Haar Wavelet LDA 98.72 0.009345 96.74 99.8
Coiflet Wavelet LDA 98.85 0.00626 97.86 99.6

79.44% and a standard deviation of 0.152 with an accuracy range
from 59% to 97.19%. DCT-II comes next with an average accuracy
of 75.7% with a standard deviation of 0.159 and an accuracy range
between 56% and 96.2%. Haar Wavelet has the largest variability
(standard deviation of 0.183), with an average accuracy of 72.67%
and an accuracy ranging from 50% to 99.21%. Coiflet Wavelet
has an average accuracy of 71.64%, a standard deviation of 0.152,
and an accuracy range of 52% to 95.7% Under LDA, all meth-
ods show significant improvement. FFT maintains excellent perfor-
mance with an average accuracy of 98.90%, a low standard devia-
tion of 0.007, and accuracy ranging from 97.97 % to 99.8%. DCT-II
and DCT-III also have good performances with average accuracies
of 98.75% and 98.79%, respectively, and narrow accuracy ranges.
The Haar Wavelet has an improved average accuracy of 98.72%
with a standard deviation of 0.009 and thus varies between 96.74%
and 99.8% in accuracy. On the other hand, the Coiflet Wavelet has
an average accuracy of 98.85% with a standard deviation of 0.006
and accuracy range of 97.86%.

Table 5. : ML Techniques Analysis for PCA and LDA

Technique Dimensionality
Reduction

Avg.
Acc.

Std
Dev

Worst
Acc.

Best
Acc.

Voting Classifier PCA 93.9 0.06307 80 99.21
Decision Tree PCA 70 0.096693 57 88
SVC PCA 71 0.163867 50 95
Voting Classifier LDA 99.57 0.002059 99.3 99.81
Decision Tree LDA 99 0 99 99
SVC LDA 97.93 0.00533 97.19 98.65

Table 5 presents an overview of the various machine learning algo-
rithms’ performances under PCA and LDA, including Voting Clas-
sifier, Decision Tree, and SVC. The Voting Classifier, under PCA,
has the maximum average accuracy of 93.9%, ranging from 80%
to 99.21%, with a standard deviation of 0.06307. With greater vari-
ability, Decision Tree and SVC exhibit lower average accuracies of
70% and 71%, respectively. SVC is between 50% and 95%, and
Decision Tree is between 57% and 88%. All strategies demonstrate
a notable improvement under LDA. With an extremely low stan-
dard deviation of 0.002059, the Voting Classifier achieves an aver-
age accuracy of 99.57%, ranging from 99.3% to 99.81%. With no
fluctuation, Decision Tree continuously maintains 99% accuracy.
With a standard deviation of 0.00533, SVC increases to an aver-
age accuracy of 97.93%, ranging from 97.19% to 98.6%. Overall,

it can be seen that LDA enhances the accuracy and consistency of
all algorithms, with the Voting Classifier performing the best.

Table 6. : Comparison of Dimensionality Reduction Techniques

Technique Avg. Acc. Std Dev Worst
Acc.

Best Acc.

PCA 78% 0.1577 52% 99.21%
LDA 96.74% 0.0075 96.74% 99.80%

A thorough comparison of Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA) with an emphasis on im-
portant performance indicators is provided in Table 6. The accu-
racy achieved using PCA is as follows: 52% at lowest, 99.21% at
maximum, 78.17% at mean, and 0.1577 at standard deviation. With
a mean accuracy of 96.74%, a maximum accuracy of 99.80%, a
minimum accuracy of 96.74%, and a substantially smaller standard
deviation of 0.00755, LDA, on the other hand, performs notice-
ably better than PCA. The better performance and consistency of
LDA are demonstrated by this data. LDA is the best option for data
processing tasks needing great precision and stability, as Table 6
amply illustrates its benefits. LDA assures higher dependability by
reducing variability and improving average accuracies in compli-
cated data contexts where precision and reliability are critical. This
essentially makes LDA a very important tool for multifarious data
analysis projects, offering improved performance and uniformity
compared to PCA.

5. CONCLUSION
In this study, the interaction of different coding schemes and trans-
formation methods was extensively studied to enhance the perfor-
mance of machine learning with specific focus on PCA and LDA
as dimension reduction techniques. With the assessment of EIIP,
Numeric, and Complex coding systems with transformations such
as FFT, DCT II, DCT III, and wavelet approaches like Haar and
Coiflet, it was found through the study that FFT with Voting Clas-
sifier and PCA performed optimally to detect strong frequency-
domain characteristics in EIIP and Numeric codings. Although
Haar and Coiflet wavelets opened the prospect to detect local as
well as global patterns, their performance depended more on the
context and the type of data and hence they needed to be very care-
fully selected based on the data nature. However, LDA consistently
delivered a very discriminative feature space regardless of coding
and greatly enhanced class separability as well as accuracy of the
classifier.
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