
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.70, February 2025

14

A Proposed Model (DOA) for DevOps Practice in Agile

Development

Anum Bahar
Faculty of Computing

Riphah International University,
Lahore, Pakistan

Muhammad Yaseen
Faculty of Computing

Riphah International University
Lahore, Pakistan

Amara Parveen
Faculty of Computing

Riphah International University
Lahore, Pakistan

Muhammad Asif Nauman
Faculty of Computing

Riphah International University,
Lahore, Pakistan

ABSTRACT

In the modern world of software development, there is a growing

trend that incorporates DevOps practice into agile software

development methodology as a critical factor in improving

software delivery processes. Moreover, this paper presents the

DevOps in Agile (DOA) model as a possible solution for

unification between development and operational teams and as a

way to shorten the cycle time and increase the quality of software

products. Thus, the DOA model also highlights communication,

integration, and automation as key success factor. This model

aims to combine the best of both the Agile concept and the

DevOps to create a model that is flexible enough to adapt to

market forces while at the same time meeting high standards of

software quality. The paper identifies the issue of culture and tool

choice as key themes and discusses how they may relate to the

integration of these methodologies, then offers a systematic

process by which organizations may successfully implement the

DOA model.

Keywords

Agile, DevOps, Software Development, integration, Testing

automation, DOA model

1. INTRODUCTION
Recently, there has been an integration of DevOps practice and

Agile methodologies have become a new methodology in the

software development life cycle that serves as a boost way of

developing software. DevOps integration in the agile

environment also solves the problems that arise from having

development and operation as two separate terms in a project.

DevOps and agile are two terms or practices frequently used in

today's software development, and their engagement is intended

to enhance the quality, velocity, and productivity of software

development. Although Agile highlights the concept of iterative

and incremental development and the ability to incorporate

changing user needs, on the other hand, DevOps is more focused

on the aspect of automation and collaboration between the

development and operations teams. In this paper, DOA (DevOps

in Agile) model has been proposed which should define its

primary DevOps practices and principles of agile software

development.

1.1 Agile
Agile software development is a methodology used in

information systems (IS) and software development concentrates

on the user and is designed to be developed in an incremental and

iterative style. The term Agile software development

methodology dates back to 2001. Agile was developed as a

process model in response to the problems of the previous

approach called the waterfall model of software development

which was often planned-driven and was described as a

predictive model [1]. Agile organizations are networked teams

with short learning cycles focusing on a clear community vision

and delegating decision-making to the closest teams, unlike

traditional hierarchical structures. Agile methodologies prioritize

adaptation over innovation for management and efficiency

improvement in the networked knowledge-based economy and

are developed and adopted in current research work [2]. Agile

methodology is a highly efficient software development approach

based on four core principles: individual interactions, working

software, customer collaboration, and change response. It can be

adapted based on project size, requirements, and factors like

DAD, SAFe, XP, and Scrum, which are easy to use and highly

adopted [3]. Agile software development offers several

advantages over traditional software development methods,

including limited documentation, intensive customer

collaboration, rapid delivery, and continuous alignment with

business goals or requirements [4]. As the need for fast delivery

and the ability to adapt to market needs in organizations is

realized, Agile has been embraced by organizations not only in

the IT sector but also in other industries [5].

1.2 DevOps Practices
In 2009, Patrick Debois founded the first DevOps Days

conference in Ghent, Belgium. This meeting later expanded to

other countries. DevOps is a culture that fosters collaboration

between development and operational teams to deploy code for

faster, automated production. It involves all developers in the

production phase and system engineers, administrators, and

security professionals. This practice increases an organization's

speed, improves customer service, and strengthens market

competition [6]. Companies are implementing DevOps to

enhance software delivery processes, reducing gaps between

operation and development teams once successfully implemented

and adopted within software organizations [7]. DevOps is a

framework that comprises four dimensions, i.e. Collaboration,

automation, measurement, and monitoring. DevOps is an

extension of the agile software development method that

emphasizes continuous software delivery and continuous

integration with automation reducing latency and improving

communication, collaboration, and reliability [8]. DevOps

mailto:Amara786parveen@gmail.comAmara

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.70, February 2025

15

recover software delivery, improves communication, faster time

to market, responsiveness, and reduced interruption. It updates

product development, increases responsibility, and fosters

broader skillsets and roles [9]. DevOps is a combination of

people, process, and tooling, focusing on Continuous Integration

and Continuous Delivery (CI/CD) for faster and more secure

code delivery. It encourages open-mindedness, predictability,

cross-skill training, and shared tasks. DevOps tools play a critical

role in integrating different environments and tools, enabling

changes to propagate across different environments.

Organizations often face challenges in selecting appropriate tools

and frameworks to automate and integrate different systems [10].

The DevOps Lifecycle is a continuous cycle that optimizes

product plans, design, testing, and repairs by combining

development and operations teams. It fosters communication and

automation, ensuring efficiency from planning to delivery, and

enhancing effectiveness [11].

The DevOps methodology involves a simple lifecycle including

Continuous Development, Continuous Integrations|, Continuous

Testing, and Continuous Monitoring [12]. DevOps fosters a

culture of continuous improvement, resulting in shorter iterative

cycles and shorter update cycles. This reduces time to market and

simplifies flaw detection. Teams should have open tools and

guidelines for effective implementation [13]. The technique

enables the rapid production of high-quality and reliable software

through a specific cycle illustrated in Figure 1.

Figure 1: The Life Cycle of DevOps

The success of DevOps relies on understanding the DevOps

lifecycle. So,

Plan: At this stage establish clear objectives for development and

operations teams, foster collaboration for effective planning, and

conduct risk assessments to identify potential challenges and

risks in the development procedure.

Code and Build: In this stage code development involves

collaborative writing, continuous integration, automated testing,

and peer review to maintain quality and identify issues early in

the development process. Software developers release code in the

groups and use products such as Git for easy versioning of the

code. Automated CI tools are used to compile and execute test

cases for the code.

Test: At this stage continuous testing including unit tests,

integration tests, and acceptance tests helps maintain code quality

and identify bugs early. Automated testing tools specifically

software testing tools check code modifications for potential

functionality breakage and ensure code integrity.

Deploy: In this stage Continuous Deployment (CD) and

Infrastructure as Code (IaC) are automated deployment

procedures that use only tested code changes in web application

and software production environments. CD involves testing code

changes while IaC handles infrastructure configurations as code,

automating provisioning and management.

Operate: In this stage application monitoring and logging are

involved. Application monitoring involves real-time tools

gathering data and creating logs for problem-solving purposes.

Incident management is achieved through alerts, allowing fast

response without involving multiple people or systems. Feedback

loops are used for monitoring and planning future development

and operations team improvements related to incidents. This

process ensures efficient and effective communication within the

system.

Monitoring: In this stage performance monitoring includes daily

inspection of the web application for optimal operation, server

status, and other parameters. User experience monitoring focuses

on user engagement and satisfaction while security monitoring

ensures data and web application protection.

DevOps supported Tools: DevOps utilizes various tools and

technologies to enhance communication, integration, and

optimization, supporting process integration and project

management, all of which are crucial for effective DevOps

practices.

Figure 2: DevOps ToolChain

Figure 2 shows the different tools of DevOps and these

tools are discussed further:

Version Control Systems Tools: Git tool is a version

control system that allows collaboration among developers

and making it crucial for managing code changes. The

GitHub/GitLab offers hosting for Git repositories, issue

tracking, CI/CD, and project management, facilitating

collaboration among several members.

CI/CD Tools: In CI/CD Jenkins and CircleCI tools are

used. The Jenkins tool is an open-source automation server

for building, deploying, and automating software

development processes. It simplifies the configuration of

CI/CD workflows with its plugins. CircleCI is a cloud-

based CI/CD tool that enables quick application building,

testing, and deployment.

Containerization Tools: Docker is a container-based tool

for developers to generate, deploy, and run applications

while Kubernetes is a management tool for containerized

applications, enabling automated deployments and scaling.

Infrastructure as Code (IaC) Tools: Terraform is an open-

source tool for provisioning infrastructure using

declarative configuration language, while Ansible

automates application deployment and ensures consistent

environment setup.

The Monitoring and Logging Tools: Prometheus is an

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.70, February 2025

16

open-source monitoring toolkit for Kubernetes-based

environments, while the ELK Stack, comprising

Elasticsearch, Logstash, and Kibana, analyzes and

visualizes real-time log data for app performance and user

behavior.

Project Management Tools: JIRA is a widely used project

management tool that supports Agile methodologies like

Scrum and Kanban, aiding software development teams in

project planning, tracking, and management. Trello is a

project management visualization software that aids task

setting and teamwork development.

1.3 DevOps in Agile Context
DevOps practices within Agile software development is a

radical evolution for organizations to change the way they

engineer software. Bringing those two together, by

accessing the iterations and discipline that Agile inherits

with collaboration principles of DevOps as well as an

automation-centric approach, it should enable

organizations to have a more coherent lifecycle [5]. Agile

methodology enhances user-developer communication,

while DevOps is a team-based approach that divides silos

into teams. While they share similarities, they are not

identical. Some argue that DevOps is superior to agile

methodology. Understanding the nuances of both

methodologies is crucial to eliminate ambiguity [14].

Agile and DevOps are important methodologies for

successful software development. Twenty years ago, the

focus was on development, implementation, and integrated

IT [3]. The integration of DevOps with Agile and other

software development techniques can transform software

engineering practices, enabling organizations to overcome

cultural barriers, simplify processes, and encourage teams.

This approach fosters innovation, reliability, and

efficiency, enabling rapid market response while meeting

high-quality requirements. The implementation of DevOps

and agile methodologies is crucial for continuous

enhancement and stakeholder satisfaction. Combining

DevOps and Agile strengths can lead to organizational

success [15].

The integration of a DevOps culture into agile contexts

enhances the alignment between development and

operations enabling teams to work together efficiently and

deliver high-quality software. According to [16], the

integration of DevOps into Agile practices fosters

continuous feedback loops, a crucial element for iterative

improvement and innovation

The integration of agile software development

methodology and DevOps practices is becoming a crucial

strategy for organizations to enhance their software

development capabilities.

2. AIM AND OBJECTIVE
The main objective of this research article is to introduce a

new model applying the DevOps approach to Agile

software development known as the DevOps in Agile

(DOA). This model is mainly meant to increase

communications and integration between development and

IT operations teams to reduce cycle time and increase the

quality of the final software product. Through the flexible

integration of Agile and DevOps methodologies, the DOA

model aims at filling what it considers the existing gaps in

software development practices more so in CI/CD and

automated testing. The study will explore the implications

of this model for organizations seeking an integrated

approach to software development and operation to

enhance and maintain an innovative culture

3. RELATED WORK
Modern approaches to software development have divided them

into two primary categories Agile and DevOps. Agile is centered

on iterative development, customer interaction, and responding

to change, and DevOps is based on the efficient shift between the

development and deployment process for more frequent and

effective deliveries [3]. The combined use of these two models

has been acknowledged as one of the key success factors for

organizations that seek to improve the efficiency and quality of

their software delivery [17]. The studies presented in recent

research indicate that to manage the complexity of software

projects, it is crucial to integrate Agile and DevOps models for

project delivery in competitive markets [18]. In traditional Agile

environments, various problems could be encountered like lack

of communication between teams working on different modules

and slow feedback, which can be addressed with the help of

DevOps practices, using automation, integration, and feedback

[19]. DevOps, a 2009 concept, focuses on enhancing software

development methodologies by fostering a relationship between

development and IT operations teams. Successful DevOps results

in increased deployment frequency, shorter change lead times,

improved recovery times, and increased organizational resilience.

[20] Implementing DevOps practices in an Agile software

development environment can be challenging due to cultural

resistance, tool choice, communication barriers, skills gaps, and

inconsistencies between theory and practice. Enablers of

integration difficulty include management support, team

cohesiveness, and learning. These factors enhance the chances of

success in integration. Research shows that integrating DevOps

practices with agile approaches can positively impact project

performance. Therefore, it is essential to identify and address

these challenges to ensure successful integration and successful

project outcomes [21]. To overcome challenges, focus on critical

success factors and top management support for DevOps

practices in Agile software development. Provide resources and

promote a culture of change. Improve collaboration between

development and operations by creating cross-functional teams.

Adequate communication and organizational improvements such

as process automation, aligned objectives, effective

communication, and KPIs will ensure goals and progress [22].

However, DevOps practices in Agile software development to

enhance the software quality by emphasizing the value for

customers, collaboration, automation, and optimization. The

integration of both frameworks enables organizations to get the

job done faster, at a cheaper price, and in better quality since the

practices do not encourage the creation of silos [23].

Additionally, an empirical assessment of DevOps frameworks

revealed that the introduction of the DevOps culture can result in

notable enhancements in both software quality and team

productivity [24]. The proposed DOA model emerges from this

understanding of the present world as a fast-paced digital

environment that requires organizations to create collaborative

learning cultures. DOA model integrates DevOps into Agile and

combines them into a single framework to help make the

environment better for both the development and operations

teams to facilitate optimal functionality and efficient delivery of

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.70, February 2025

17

quality software within the shortest time possible and

improvement of the customer feedback [25].

This research will, therefore, fill this gap by offering a framework

for the adoption of DevOps in Agile software development,

enhancing its applicability for organizations willing to make the

transition.

4. RESEARCH QUESTIONS
The work presented in this paper is based on the following seven

research questions:

RQ1: What are the critical challenges of DevOps in agile

software development?

RQ2: What are the critical challenges in the real industrial

practice of DevOps in the context of agile software development?

RQ3: What are the critical success factors and best practices of

DevOps in agile software development?

RQ4: What are the critical success factors and best practices in

the real industrial practice of DevOps in the context of agile

software development?

RQ5: To design a robust model for DevOps practice in agile

software development based on identified best practices.

RQ6: To Implement and validate the proposed model for DevOps

practice in agile software development via case studies.

5. RESEARCH METHODOLOGY
The methodology of the proposed model (DOA) DevOps practice

in Agile software development consists of the following three

phases. The methodology of model is designed in previous

studies [26] [27] [28]. SLR will be conducted for the

identification of challenges and best practices for DevOps in

Agile [29] [30].

Phase#1: SLR will be conducted for data collection.

Phase#2: Empirical studies will be conducted to validate the

result of SLR and to find the practices for the mentioned factors.

Phase#3: For evaluation and validation of DOA, a Case study

will be conducted. To explain the aforesaid three phases the

following subsections are added.

DOA development life cycle is shown in Figure 3.

5.1 Collection of Data and its analysis:

5.1.1. Critical success factors (CSFs)
These are critical factors when adopting DevOps within Agile

environments. They include communication, integration, and

collaboration, which are all key aspects that boost team

performance and project success.

5.1.2 Critical Challenges (Cs)

Critical Challenges (Cs) are challenges and risks that can impede

Agile development, including lack of training, change resistance,

and miscommunication between development and operations

teams which can impede the project and increase costs.

5.1.3 Best Practices
The activities will be outlined in a set of best practices to ensure

effective implementation of CSFs and help organizations make

recommendations for DevOps implementation in organizations

adopting Agile frameworks. Studies in the software industry.

Figure 3: DOA Development Cycle Activities

The Systematic Literature Review (SLR) will be useful in finding

out the kind of critical success factors (CSFs) and critical

Challenges (Cs) that are linked to the intersection of DevOps and

Agile. In contrast to the more traditional approach to conducting

literature reviews. The systematic approach of the SLR enables

efficient data extraction and analysis in line with our research

questions. In this method, it is possible to capture all the factors

that affect success and failure in these environments

comprehensively. The identified factors will be analyzed from

various perspectives, including project scopes, involved teams,

and software types, as the fundamental factors causing success or

failure may vary depending on contextual factors. An industry

expert-based survey will be conducted with a panel of industry

specialists to supplement the SLR findings, with the objectives

of:

- Justification of the findings with the studies included in the

SLR, to affirm the practical applicability of our

recommendations.

- Identifying other CSFs and CRs that have not been explored in

other research studies conducted in other organizations.

- Gathering best practices and lessons learned concerning the best

ways of enhancing the implementation of the identified CSFs and

CRs.

DOA criteria

specification

Addressing of

relevant Research

Questions

Rationalization,

Structuring and

Development of

Model (DOA)

Identification of

CFs and Cs

Identification of

CFs and Cs from

software industry

Evaluation of Model

(DOA) in industries

4

2

3

1

5

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.70, February 2025

18

5.2 DOA Model Development
The DOA model will be developed through five stages, each

ensuring a systematic approach to building a strong framework.

The proposed model's general framework is illustrated in the

figure 4 below.

Figure 4: DOA Model Development

Assessment Criteria: The development and assessment of the

DOA Model is based on two specific criteria.

5.2.1 User Satisfactions
The DOA model prioritizes user satisfaction by ensuring it is

intuitive and aligns with operational needs. Feedback on features,

navigation, and functionality is collected to create a model that

meets user’s requirements and enhances their workflow and

productivity. This approach ensures the model's success and user

satisfaction.

5.2.2 Usability
The DOA model aims to be user-friendly and easy to implement,

focusing on simplicity and clarity. It will be designed with clear

documentation, user guides, and training resources to facilitate

understanding. The goal is to integrate seamlessly into existing

processes, reducing the need for extensive training or resource

allocation.

The study involves data collection, analysis, rationalization of

findings, derivation of empirical models, and validation with case

study references.

5.3 Structure of DOA Model
As it is mentioned below, the DOA model has been put forward

to offer a structure to address the implementation of DevOps

principles in Agile software development. Its structure is based

on three primary components:

1. DOA Model Level

2. Factors CSFs and CRs at each level

3. Implementations Practices and Solutions

The division of CSFs and CRs into different levels helps define

the interconnection between factors and helps organizations

understand their maturity evolution. Organizations must follow

practices related to each CSF and CR under that particular level

similar to DevOps and Agile methodologies.

Figure 5 details the process of developing a DevOps Agile (DOA)

model, based on literature review and expert opinions.

5.4 DOA Evaluation
The proposed DevOps in Agile (DOA) model will be assessed

through industrial case studies of up to five organizations using

DevOps practices in the Agile software development context. To

gain a broader view of the model's effectiveness and feasibility,

various data collection methods will be employed. These include

faculty focus groups, structured interviews with primary

stakeholders, and a self-administered questionnaire administered

to a larger user population. The goal is to identify how effectively

the model supports the Continuous Service Frameworks (CSFs),

manages the Continuous Release Requests (CRs), and enhances

development and operations team collaboration. The evaluation

insights will not only enrich the improvements of the DOA model

but also enhance the shared knowledge of the correct approaches

to DevOps implementation in the Agile software development

context. Real-life feedback collected through interviews or

surveys can be incorporated to further improve the quality and

efficiency of organizations seeking to enhance software delivery

processes. This mixed-methods approach ensures a broader view

of the model and its inadequacies, enhancing the shared

knowledge of correct DevOps implementation approaches in the

Agile software development context.

Literature review

SLR and Questionnaire

Survey

Empirical studies

Literature review of

Different models

Case studies

Specify criteria for

DOA

development

Data collection and

analysis

Rationalization and

structuring of results

Development of DOA

Evaluation of results

via case study

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.70, February 2025

19

Figure 5. DOA Structure

6. RESEARCH MILESTONES ACHIEVED
Now complete the following research activities and these

activities are:

➢ Problem identifications and Objective formulation

➢ Specification of Research Question

➢ Conducting a Systematic Literature Review (SLR)

➢ Selection of research methodology

➢ Defining DOA Model

➢ Evaluation method Selection

7. PRELIMINARY RESULTS
A Systematic Literature Review (SLR) has recently commenced

as part of an ongoing research effort to investigate the challenges

and best practices for implementing DevOps in Agile. The initial

stage of this review has involved examining many research

papers to identify the primary challenges faced by organizations

and the best practices suggested in the literature. These early

findings form the basis for additional analysis and refinement as

the study continues. The integration of DevOps with Agile

methodologies seeks to improve the speed of software delivery,

enhance collaboration, and boost operational efficiency.

Nevertheless, despite its best practices, incorporating DevOps

into Agile frameworks presents several challenges. Many

organizations tool with aligning processes, managing automation

complexity, and navigating the cultural changes necessary for full

DevOps adoption. The literature underscores significant gaps in

seamlessly merging Agile and DevOps, highlighting the need for

structured approaches to address challenges and implement

industry-recommended practices. As the SLR is ongoing,

researchers are currently evaluating existing studies to precise

key challenges encountered by organizations integrating DevOps

within Agile environments. Through the assessment of multiple

scholarly sources, initial insights have been gathered regarding

major challenges and corresponding best practices that

organizations can employ to streamline their DevOps processes.

The current findings offer preliminary perspectives on existing

gaps, industry recommendations, and potential strategies to

enhance Agile-DevOps synergy. However, additional analysis

and validation are necessary to refine these results.

The table 1 below summarizes the primary challenges and best

practices identified in the literature.

Existing Models

such as CMMI

and Experts input

RESEARCH

QUESTION

Critical Success Factors

and Critical Challenges of

DevOps in Agile

DOA LEVELS SLR AND EMPIRICAL

STUDY

DOA Guidelines

for vendors

Practices: How to

implement Critical

Success Factors and

address Critical

Challenges

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.70, February 2025

20

Table 1: List of Initial Challenges and best Practices

These best practices and challenges were identified from different

research papers, serving as a basis for the suggested DevOps

model in Agile. Due to the ongoing SLR, more analysis will be

performed later to refine and affirm these findings to ensure

practical applicability in real-world settings.

As the research continues, further insights will be added to

improve the understanding of Agile-DevOps integration.

Empirical research and case studies will be used to validate these

findings and suggest a complete framework that covers areas of

existing gaps and improves DevOps adoption for Agile

environments. The ultimate results will deliver actionable

suggestions for organizations willing to better their DevOps

strategies in Agile frameworks.

8. CONCLUSION AND FUTURE WORK
DOA (DevOps in Agile) model integrates principles of DevOps

into Agile development of software. This model presents an

explicit approach to address challenges of software development

in changing environments. It contributes to better coordination

between development and operations teams, which results in

better communication, automation, and continuous integration.

This, consequently, results in better efficiency and quality of the

software. DOA model reduces the complexity in delivering

software using continuous feedback, reducing the deployment

time, and facilitating easier modifications in requirements. This

explicit approach not only mitigates operational lag but also

supports the culture of continuous improvement and innovation

within an organization. Follow-up studies will examine how to

implement the DOA model based on actual studies, industry

trends, and software development team feedback. We will

examine how the model impacts software quality, deployment

rate, and team efficiency in order to enhance its effectiveness. We

will examine more sophisticated automation tools, AI-based

testing, and security integration (DevSecOps) to make the model

usable in other areas. The utilization of cloud-native DevOps

practices and microservices architectures will be investigated to

determine if they scale and remain stable. The study will also

assess how organizations can enhance their Agile-DevOps

adoption by addressing cultural resistance, tool selection issues,

and skill gaps. Through continuous improvement and verification

of the DOA model, this research hopes to contribute to the

development of DevOps and Agile practices so that organizations

can construct sustainable, high-quality software development

practices.

9. REFERENCES
[1] A. M. S. Khan, A. W. Khan, F. Khan, M. A. Khan, and T.

K. Whangbo, “Critical Challenges to Adopt DevOps Culture

in Software Organizations: A Systematic Review,” IEEE

Access, vol. 10, pp. 14339–14349, 2022, doi:

https://doi.org/10.1109/ACCESS.2022.3145970.

[2] A. Omonije, “Agile Methodology: A Comprehensive

Impact on Modern Business Operations,” International

Journal of Science and Research, vol. 13, no. 2, 2024, doi:

https://doi.org/10.21275/SR24130104148.

[3] S. M. R. A. Masud, Md. Masnun, A. Sultana, A. Sultana, F.

Ahmed, and N. Begum, “DevOps Enabled Agile:

Combining Agile and DevOps Methodologies for Software

Development,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no.

11, 2022, doi 10.14569/ijacsa.2022.0131131.

[4] J. Beard, V. C. Storey, B. M. Samuel, and Fereshta

Islamzada, “Agile Development: The Promise, the

Reality, the Opportunity,” ResearchGate, pp. 1–20,

May 2024, Accessed: Dec. 10, 2024.M. Choras et al.,

Challenges Success Factors / Best Practices

Inefficient collaboration between Dev and Ops teams.

[2] [10]
• Encourage cross-functional teams

• Joint responsibilities

• Frequent cross-team meetings.

Challenges of integration between Agile and DevOps

workflow [5] [25] [16].
• Create CI/CD pipelines

• Have automated feedback loops in place

• Facilitate compatibility of Agile and

DevOps tools.

Frequent releases causing system instability [1] [21]

[23]
• Use feature toggles

• Canary releases,

• Blue-green deployments,

• Automated rollback.

Rapid deployment processes raising security issues [9]

[10]
• Embed DevSecOps practices

• Pperform continuous security testing

• Impose access control policies

Security challenges [11] [22] [13] • Integrate security into each step of the

DevOps pipeline (DevSecOps).

• Automate

security testing and include compliance

gates in the CI/CD pipeline.

Difficulty to keep Agile sprint cycles with DevOps. [7]

[15].
• Employ value stream mapping

• Iterative enhancements, and automated sprint

retrospectives

Toolchain complexity in DOA model [5] [12] • Simplify toolchain management

by embracing integrated DevOps platforms

Resistance to cultural change [6] [14] [23] • Provide continuous learning and upskilling

programs to bridge the knowledge gap

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.70, February 2025

21

“Measuring and Improving Agile Processes in a Small-Size

Software Development Company,” IEEE Access, vol. 8, pp.

78452–78466, 2020, doi: 10.1109/access.2020.2990117.

[5] A. Nalamwar and P. Sirsat, “An Empirical Study on

DevOps,” vol. 3, no. 11, 2019.

[6] N. Azad, “Understanding DevOps critical successfactors

and organizational practices,” IEEE Xplore, May

01,2022.https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&a

rnumber=9808814, Doi: 10.1145/3524614.3528627.

[7] Harshali Rohit Kadaskar, “UNLEASHING THEPOWER

OF DEVOPS IN SOFTWARE DEVELOPMENT,” Int. J.

Sci. Res. Mod. Sci. Technol., vol. 3, no. 3, pp. 01–07, Mar.

2024, doi: 10.59828/ijsrmst.v3i3.185.

[8] M. Moeez et al., “Comprehensive Analysis of DevOps:

Integration, Automation, Collaboration, and Continuous

Delivery,” Bull. Bus. Econ. BBE, vol. 13, no. 1, Mar. 2024, doi:
10.61506/01.00253.

[9] M. Gokarna, “DevOps phases across Software Development

Lifecycle,” Jan. 06, 2021, Institute of Electrical and
Electronics Engineers (IEEE). doi:
10.36227/techrxiv.13207796.v2.

[10] L. Gren and P. Ralph, “What makes effective leadership in

agile software development teams?,” in Proceedings of the

44th International Conference on Software Engineering,

Pittsburgh Pennsylvania: ACM, May 2022. doi:
10.1145/3510003.3510100.

[11] O. Justin Onyarin, “A Complete Guide to DevOps Best

Practices,” Mar. 2022, doi: 10.5281/ZENODO.6376787.

[12] J. A. Tsapa, “Integrating DevOps with Agile and other

Software Development Methodologies,” Open Access, vol.

3, no. 3, 2022.

[13] I. Indurangala, “Coalescing DevOps with Agile

Methodologies in IT Industry; Insights from Case Studies”.

[14] F. Bildirici, “DEVOPS AND AGILE METHODS

INTEGRATED SOFTWARE CONFIGURATION

MANAGEMENT: HAVELSAN EXPERIENCE”.

[15] D. Nyale, “Unravelling DevOps Agile Methodologies: A

Comprehensive Review of Recent Research,” Int. J. Res.

Appl. Sci. Eng. Technol., vol. 11, no. 11, pp. 2012–2021,

Nov. 2023, doi: 10.22214/ijraset.2023.56986.

[16] P. Raj and D. P. Sinha, “Project Management In Era Of

Agile And Devops Methodologies,” vol. 9, no. 01, 2020.

[17] G. Bou Ghantous and A. Q. Gill, “Evaluating the DevOps

Reference Architecture for Multi-cloud IoT-Applications,”

SN Comput. Sci., vol. 2, no. 2, Apr. 2021, doi:

10.1007/s42979021-00519-6.

[18] S. M. Mohammad, “DevOps automation and Agile

methodology,” vol. 5, no. 3, 2017. Sree , Moukthika

Kameswari Mallela, Sree , Moukthika Kameswari Mallela,

and Sree , Moukthika Kameswari Mallela, “A

Transformative Approach to Agile-Driven DevOps in

Software Project Management,” Social Science Research

Network, Jan. 2024, doi:

https://doi.org/10.2139/ssrn.4766168.

[19] A. Hemon, B. Lyonnet, F. Rowe, and B. Fitzgerald, “From

Agile to DevOps: Smart Skills and Collaborations,”

Information Systems Frontiers, Mar. 2019, doi:

https://doi.org/10.1007/s10796-019-09905-1..

[20] M. Hüttermann and C. Rosenkranz, “The DevOps Funnel:

Introducing DevOps as an Antecedent for Digitalization in

Large-Scale Organizations,” in Proceedings of the Annual

Hawaii International Conference on System Sciences,

Hawaii International Conference on System Sciences, 2023.

doi: 10.24251/hicss.2023.683.

[21] A. Qumer Gill, A. Loumish, I. Riyat, and S. Han, “DevOps

for information management systems,” VINE J. Inf. Knowl.

Manag. Syst., vol. 48, no. 1, pp. 122–139, Feb. 2018, doi:

10.1108/vjikms-02-2017-0007.

[22] M. Yaseen, “Exploratory study of existing research on

software requirements prioritization: A systematic literature

review,” Journal of Software Evolution and Process, vol. 36,

no. 6, Sep. 2023, doi: https://doi.org/10.1002/smr.2613..

[23] M. Yaseen, “Requirement elicitation model for global

software development vendors,” Journal of Software:

Evolution and Process, Nov. 2023, doi:

https://doi.org/10.1002/smr.2628.

[24] M. Yaseen, R. Alroobaea, and H. Alsufyani, “Structural

association of requirements engineering challenges in GSD:

interpretive structural modelling (ISM) approach,”

Requirements Engineering, Feb. 2025, doi:

https://doi.org/10.1007/s00766-025-00435-8..

[25] M. Yaseen, Samad Baseer, and S. Sherin, “Critical

challenges for requirement implementation in context of

global software development: A systematic literature

review,” Dec. 2015, doi:

https://doi.org/10.1109/icosst.2015.7396413.

[26] M. A. Akbar, A. Alsanad, S. Mahmood, A. A. Alsanad, and

A. Gumaei, “A Systematic Study to Improve the

Requirements Engineering Process in the Domain of Global

Software Development,” IEEE Access, vol. 8, pp. 53374–

53393, 2020, doi:

https://doi.org/10.1109/access.2020.2979468.

[27] M. Krey, “DevOps Adoption: Challenges & Barriers,” in

Proceedings of the Annual Hawaii International Conference

on System Sciences, Hawaii International Conference on

System Sciences, 2022. doi: 10.24251/hicss.2022.8

[28] M. Yaseen, S. Ali, Abullah, and N. Ullah, “An Improved

Framework for Requirement Implementation in the context

of Global Software Development: A Systematic Literature

Review Protocol,” International Journal of Database Theory

and Application, vol. 9, no. 6, pp. 161–170, Jun. 2016, doi:

https://doi.org/10.14257/ijdta.2016.9.6.16

IJCATM : www.ijcaonline.org

