
International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.7, February 2024

Optimizing Robot Path Planning in 2D Static
Environments using GA, PSO and ACO Search

Algorithms

Santosh Shrestha
Computer Science Department

Missouri State University
Springfield, MO 65807

Pranith Varma Appani
Computer Science Department

Missouri State University
Springfield, MO 65807

Praveen Reddy Kota
Computer Science Department

Missouri State University
Springfield, MO 65807

Alaa Sheta
Computer Science Department

Southern Connecticut State University
New Haven, CT, USA 06515

ABSTRACT
Meta-heuristic search algorithms have shown great success in robot
motion planning by designing collision-free paths in static and dy-
namic environments. Meta-heuristic search algorithms with suitable
representation (i.e., encoding) can find the optimal path from a start
to endpoint effectiveness via waypoints. The waypoints are ran-
dom points generated in the search environment. In this research,
we investigate the use of several meta-heuristic algorithms, such
as Genetic Algorithms (GA), Particle Swarm Optimizations (PSO),
and Ant Colony Optimizations (ACO), to solve path planning prob-
lems in a two-dimensional static environment. The proposed path
planning-based search enjoys a free robot passage in all possible
space directions to operate in complex search spaces. Performance
benchmarking is also carried out through simulation in various
scenarios to determine and analyze the performance of each algo-
rithm.

Keywords
Path Planning, Metaheuristic Search Algorithms, Genetic Algo-
rithms, Particle Swarm Optimizations and Ant Colony Optimiza-
tions.

1. INTRODUCTION
In the last century, robotics become an essential element in many
fields, such as manufacturing automation, where an autonomous
robot system can be utilized for parts and products manufacture [1].
Robotics were also used in the car industry. In 2021, the Republic
of Korea used 2,867 robots for every 10,000 employees, occupying
the top position in the world. Other countries such as Germany,
the United States, and Japan followed with 1500, 1457, and 1422
for every 10,000 employees, respectively [2]. Currently, one mil-
lion robots work in the car industry worldwide [3]. Autonomous

navigating of robot systems has become progressively critical in
many applications [1,4]. Planning robot motion is one of the signif-
icant tasks in intelligent control of autonomous systems [5, 6]. Au-
tonomous vehicles dramatically reduce the contribution of human
driver error and negligence as the cause of vehicle collisions [7].
Path planning involves finding an optimal collision-free path from
the desired source to the destination in any given environment [8].
Solving path planning problems requires three primary consider-
ations: 1) Finding a path or route that connects from source to
destination, 2) the obtained path or route needs to be obstacle-free,
and 3) the obtained path or route needs to be the shortest one [9]. It
is one of the complex problems in the field of robotics and computer
science, and the topic has been studied over decades, enabling wide
ranges of technologies, from autonomous driving to Unmanned
Aerial Vehicles (UAVs) [9, 10]. It is considered a complex problem
since, in computational complexity theory, it is considered an NP
(Nondeterministic Polynomial time) complete problem [11]. This
means that as the environment complexity grows - so does the com-
putational complexity of the solution drastically. Finding the most
effective solution is challenging, and many attempts have been made
to develop the best method to search for the space of the optimal
path. The application of such effective solutions is vital in today’s
world.
Even though there exist many traditional approaches to solving path
planning problems, they all suffer from optimization issues in one
way or another [12]. As the complexity of the environment grows,
it has been known that these methods do not perform well or suffer
some efficiency problems [13]. These metaheuristic-based solu-
tions perform consistently in real-world applications while requir-
ing less memory and processing better results than the traditional
approaches [14, 15]. Meta-heuristics algorithms also do not suffer
from local minimum problems in path planning like other algo-
rithms do [15]. One of the primary reasons why these algorithms

1

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.7, February 2024

perform comparatively better is because they are not greedy and can
balance between local and global optimal solutions.
This research explores the practicality of meta-heuristic-based
methods to handle robot motion planning and navigation problems
in static environments with several obstacles. This paper aims to ex-
plore and understand how effective meta-heuristic algorithms are in
solving path-planning problems by searching for the optimal path
through simulation. The nature and behavior of these algorithms
are studied, and their results are shown through various experi-
ments. Furthermore, a performance comparison is made to deter-
mine which algorithm performs the best in our given path-planning
problem scenario so that we can highlight their key strengths and
weaknesses. The experiments’ results will clarify how these al-
gorithms work and how they can effectively apply to path-planning
problems. Benchmarking the algorithm’s performance will also pro-
vide a general estimation of how well they perform compared to each
other, and the information shall be helpful when deciding the type
of algorithm to use to solve path-planning problems.
This paper is organized as follows. Section 2 provides a literature
review of the research in robot automation and path planning using
traditional and meta-heuristic search methods. Section 3, we provide
a statement for the problem formulation-based path planning. A
detailed discussion of various meta-heuristics search methods is
provided in Section 4. Section 6 provides the setup for the planned
experimentation to find the optimal path. The experimental results
are provided in Section 7. Finally, we provide the work conclusions.

2. BACKGROUND AND RELATED WORK
Mobile robots show intelligent behaviors where they can execute
complex tasks without dedicated supervision (i.e., autonomously)
in known or unknown environments and do not rely on human assis-
tance. Nowadays, autonomous robots are widely used in numerous
applications such as autonomous driving [11], industrial robots [16],
mine detection [17, 18], battlefields [19], and protein folding [20].
Among the rapidly growing field of research in robotics, robot path
planning is most common in the literature [7]. The path planning
problem solution offered includes three categories:

—Traditional algorithms (for example, Visibility Graph, Artificial
Potential Field),

—Heuristic Algorithms (for example, A* Algorithm [21], Dĳkstra’s
Algorithm), and

—Meta-heuristic Algorithms, also known as Evolutionary Algo-
rithms (Ant Colony Optimization, Particle Swarm Optimization,
Genetic Algorithm) [14, 22].

2.1 Traditional algorithms
Traditional methods, such as Artificial Potential Field, utilize the
concept of virtual force to direct the motion of a robot through the
path, creating a repulsion effect from obstacles and a gravitational at-
traction effect toward the goal originally proposed by Khatib [9,14].
This approach performs better in real-time, although it suffers from
significant drawbacks such as getting stuck at local minimum points
and inability to access the goal due to physical environment con-
straints [14]. Another traditional approach is the Visibility graph,
which, as the name suggests, is about building a graph by connect-
ing the robot, destination point, and polygonal obstacles [9]. The
drawback of the Visibility graph is the need for more flexibility
because as the source and designation point changes, the visibility
graph has to be reconstructed [9].

2.2 Heuristic Algorithms
Heuristic Algorithms are another type of path planning used widely
to solve path planning problems, specifically the ones with discrete
topology [23]. One popular among these algorithms is the A* Al-
gorithm, which evaluates values of subsequent nodes or child nodes
and grows by selecting the node with the lowest costs of each exten-
sion until the goal is reached [21]. The advantage of this algorithm
is that it has relatively less complexity with fewer extensions and
also has an excellent real-time performance [21]. However, it ig-
nores the actual size of the robot, causing unexpected issues with
the motion process in the physical environment [21]. Dĳkstra’s Al-
gorithm is another popular heuristic search algorithm that traverses
nodes from start to end and then compares the forward path to get
the shortest possible path [24]. The main advantage of this algo-
rithm is its robustness and ability to find the shortest path in most
cases [24]. However, it still struggles with efficiency issues and is
not well suited for complex environments [9].

2.3 Meta-heuristic search algorithms
Meta-heuristic search algorithms are another type of search al-
gorithm that has succeeded in solving path planning problems
[10,23,25]. The term "meta-heuristic" reveals that these algorithms
are higher-level schemes that lead other heuristics to discover the
solution space competently. These can be applied to many opti-
mization problems since they are not problem-dependent. They
offer flexible and effective instruments for locating appropriate so-
lutions satisfactorily, although they do not necessarily guarantee the
optimal solution. Natural processes around us inspire these types of
algorithms. Genetic Algorithms (GA), Particle Swarm Optimiza-
tion (PSO), and Ant Colony Optimization (ACO) are a few of
the popular ones that have been used widely for several problem-
solving [8,10,13,25]. Although the various evolutionary algorithms
require varying tuning parameters and functions to be implemented,
they all follow similar evolutionary characteristics.
This paper primarily focuses on finding a global path in a static
environment and follows an offline path-planning process. As a part
of the algorithm, the population is initialized, the individual’s cost
fitness function is calculated iteratively, and the best solutions are
obtained as the algorithm continues to evolve.

3. PROBLEM STATEMENT
Path planning involves choosing the best path between a source and
a destination in an environment while minimizing time and avoiding
obstacles. Path planning problem varies depending upon the type
of plan, time, and environment [7].

—Based on plan type, path planning can be either global or lo-
cal [13]. Global path planning requires prior knowledge of the
environment before initiating. However, local path planning prior
knowledge of the environment is unknown, and the information
is collected as the robot progresses through its sensors [12, 13].

—Path planning can be online or offline based on time [12]. In
Online path planning, the path from start to finish is planned and
adjusted as the robot moves through sensors, but in offline path
planning, the path is pre-planned, and the same path is followed.

—The Environment of the path planning problem can also be two
different types: static and dynamic [7]. In a dynamic environment,
obstacles are moving or dynamically vary and are not stationary,
but in a static environment, obstacles are known and are station-
ary [13]. The environment where the path planning should be

2

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.7, February 2024

executed varies, and that is directly correlated to the complexity
of the problem [12].

In [26], the authors presented a detailed study of various meth-
ods/approaches utilized for mobile robot navigation in static and
dynamic environments.

Fig. 1: Path Planning Approaches for Mobile Robot Navigation in Various
Environments [26]

As illustrated in Figure 2, mobile robots move in a closed workspace,
given an enclosed Euclidean 2D workspace. To assist the robot in
avoiding obstacles, a map is constructed with a set of path points
and a finite number of static obstacles.
Pathway points are intermediate points between the start and the
goal that help direct the robot along the path. The path points can be
generated randomly or pre-defined as needed. However, the criteria
for defining these points should be that the path point must be within
the environment boundary and should not overlap any obstacles.

Fig. 2: Path points connecting to source to destination

4. METAHEURISTICS SEARCH ALGORITHMS
Metaheuristic search algorithms are higher-level algorithms that
guide or direct significant search processes to reach near-optimal
solution space [27–29]. The primary objective of these algorithms
is to efficiently explore the available search space until the near-
optimal solutions are reached [28]. The main characteristics of meta-
heuristic algorithms are that they are problem-independent and are
usually non-deterministic [15] unlike traditional algorithms, which
are problem-specific with limited search space. This very nature
of the algorithms allows them to be applied in various problems,
including NP-hard problems [15] such as path planning problems.
In the following subsections, we will discuss the evolutionary pro-
cess for popular metaheuristics algorithms, including Genetic Algo-
rithms(GA), Particle Swarm Optimizations (PSO), and Ant Colony
Optimizations (ACO).

4.1 Genetic Algorithm (GA)
Genetic algorithms are popular meta-heuristic algorithms inspired
by the genetic evolution process and natural selection of Darwin’s
evolution theory initially proposed by J.H. Holland in 1975 [30].
GA initiates with a set of candidate solutions, and through the iter-
ative repeated processes like selection, crossover, and mutation, the
best individual survives and is considered the best solution [31]. An
initial population with a sequence of paths that may have potential
solutions is created. The population contains candidate solutions
of chromosomes, which are binary strings. Through the iterative
process of selection evaluated by the fitness function, mutation, and
crossover, a near-optimal solution is reached [31]. The main advan-
tage of GAs is their ability to explore search space and integrate
with other algorithms. But, the downside is the intensive computa-
tional operations it requires [31]. The GA algorithm is presented in
Algorithm 1.

Algorithm 1 Genetic Algorithm [32]
Result: output the best individual found with containing path points
Initialize the starting and target point
Generate randomly initial population using path points in each
chromosome
while NOT(convergence condition) do

Evaluate the fitness for each chromosome in the current
population
Select the parents using Roulette selection
Eliminate the lowest fitness chromosome
Duplicate the highest fitness chromosome
Apply randomly crossover process between current parents
using the given probability while keeping the start and end
points without change in the population
Apply the mutation process with the given probability
Generate the new population

end
return the best individual found

4.1.1 Encoding. Chromosomes are a set of candidate solutions
for the problem [16, 33]. For the path planning problem, the chro-
mosome representation is a sequence of nodes (points) with the
starting point (node) of each segment at the beginning of the first
segment, the intermediate nodes (via points), and the endpoint (des-
tination) at the end of the last segment. The 36 binary bits are chosen

3

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.7, February 2024

for the chromosome representation as the length accommodates suf-
ficiently the number of path points for our experiment. A random
population of chromosomes is generated initially, with a fixed start
and goal point but with random intermediate points between each.
Chromosomes look something like this:

1 0 1 1 ... 1 1 1 1 0 1 0 1 0

For example, a chromosome with the enclosed val-
ues 000001000110011001100111100111111111 represents
0 − 4 − 6 − 6 − 6 − 7 − 9 − 15 − 15 nodes sequences given that
we have a set of 16 waypoints denoting each node uniquely with
source node 0 and end node 15.

4.1.2 Evaluations. The randomly generated population of chro-
mosomes goes through an evaluation process using the fitness func-
tion described in Section 5 and Equation 7 [32]. This process eval-
uates the total distance covered by the nodes present in each chro-
mosome.

4.1.3 Selection. Based on the fitness values of each chromosome
in the population, a specific set of chromosomes with better fitness
values needs to be selected to produce offspring and proceed to the
next generation. This selection process is based on roulette wheel
selection. In this process, the selection of chromosomes is given
by the probability directly proportional to their fitness values. The
probability 𝑝𝑥 is given by Equation 1.

𝑝𝑥 =
𝑓𝑥∑𝑖=1
𝑛 𝑓𝑖

(1)

where 𝑓𝑥 is the fitness value of chromosome 𝑥 [16].

4.1.4 Operators. Crossover produces two new paths in the next
generation by combining two parent paths [32, 33]. In this case,
we have used two crossover points. Each parent path is randomly
divided into three parts, and the parts are recombined. Creating new
children involves exchanging the middle parts of the first and second
paths between crossover bit positions.

4.1.5 Mutation. A chromosome is altered by replacing the value
of 1 and 0 and vice-versa in specific chromosome locations [16]. It
is an essential part of the process as it will help maintain diversity
and randomness in the population and prevent the solution from
getting stuck in the local minimum. A flow chart that shows how
GAs work is presented in Figure 3.

4.2 Particle Swarm Optimization (PSO)
The Particle Swarm Optimization algorithm is a popular meta-
heuristic algorithm that emulates the social behavior of birds in
nature and exploits the idea of sharing information among indi-
viduals in a group to direct the entire population to follow in the
right direction [34]. PSO was first developed by James Kennedy
and Russell Eberhart as a social simulation inspired by the behav-
ior of swarms in nature, such as a bird flock or a fish school [12].
The primary motivation for the algorithm was to simulate human
social behavior. However, the algorithm’s simplicity and fast con-
vergence have found their way through implementation in several
applications, and it has shown great success in solving path plan-
ning problems [12]. It uses information sharing among the group to
decide the movement of the entire group to the best possible state
or direction. The PSO algorithm is presented in Algorithm 2.
The PSO process begins by initializing a set of random solutions.
Individual particles update their position using their personal and

Start

Generate ini-
tial population

Calculate fitness
of individuals

stop criteria

Roulette selec-
tion of parents

Crossover to pro-
duce children

Mutation of children

End
yes

no

Fig. 3: GA Flowchart [32]

global best solutions to follow optimal particle position. Compared
to other methods, it is simpler to implement and contains fewer
parameters [12]. The objective function of a PSO system represents
the candidate solutions of particles with two properties: position
and velocity [34]. Iteratively establishing the fitness value for each
particle based on position is the objective function. Positions with
higher fitness values are considered better. During the search, each
particle is updated at a dynamically adjusted velocity based on its
own personal best fitness value and the global fitness values of the
entire population [35].
Following are the Equations 2 and 3 that update each particle’s
position and velocity [35].

𝑉𝑖 = 𝜔𝑉𝑖−1 + 𝑐1𝑟1 (𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖−1) + 𝑐2𝑟2 (𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖−1) (2)
𝑋𝑖 = 𝑋𝑖−1 +𝑉𝑖 (3)

In the Equation, 𝑋𝑖 is the particle’s position, and 𝑣𝑖 is the particle’s
velocity. 𝑐1 and 𝑐2 are the heuristic tuning parameters that control
the social and personal weights or influences, and 𝑟1 and 𝑟2 are
random numbers between 0 and 1 assigned to each particle. 𝜔 is
inertia weight coefficient and usually set to 1. 𝑃𝑏𝑒𝑠𝑡 represents the
personal best fitness value of a particle and 𝐺𝑏𝑒𝑠𝑡 represents the
global best of the entire population [34].
For PSO to handle the path planning problem, certain modifications
in encoding need to be made where each particle has a priority array,
which is used to find the shortest path from source to destination.
During the initialization phase, these priorities are randomly chosen,
and with iterations, these priorities are adjusted based on their fitness
values. Following the node based on their priorities from start to
finish, fitness values are calculated using Equation 1 for a single
particle. 𝑝𝑖 contains the priority array of each node in the solution

4

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.7, February 2024

or particle. Visiting each node or path point based on the priority
from start to end points is required for each solution. Figure 4
presents a flow chart showing how PSO works.

Algorithm 2 Particle Swarm Optimization [35]
Result: global best with path points based on highest priority
Initialize Swarm Size 𝑁 , Maximum Iterations 𝑖𝑡_𝑚𝑎𝑥

for each particle 𝑖(𝑖 = 1 𝑡𝑜 𝑁) do
Initialize position with random priority for each node 𝑥𝑖
Initialize velocity 𝑣𝑖
Initialize 𝑃𝑏𝑒𝑠𝑡

Initialize 𝐺𝑏𝑒𝑠𝑡

end
while (𝑖𝑡 < 𝑖𝑡_𝑚𝑎𝑥) do

for each particle 𝑖(𝑖 = 1 𝑡𝑜 𝑁) do
Calculate new velocity using 𝑉𝑖 eqn.2
Obtain new new position using 𝑃𝑖 eqn.3
Compute Fitness based on the new position using eqn.7
if 𝑃𝑏𝑒𝑠𝑡 >Fitness then

Update 𝑃𝑏𝑒𝑠𝑡

if 𝐺𝑏𝑒𝑠𝑡 >Fitness then
Update 𝐺𝑏𝑒𝑠𝑡

end
end

end
end
return 𝑡ℎ𝑒𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑝𝑜𝑖𝑛𝑡𝑠

Start

Initial particle swarm
with arbitrary values

Assess the fitness
of each particle

Update 𝑃𝑏𝑒𝑠𝑡

and 𝐺𝑏𝑒𝑠𝑡

Update particle velocity
and position using
Equation 2 and 3

stop criteria

End

yes

no

Fig. 4: PSO Flowchart [34]

4.3 Ant Colony Optimization
Another type of meta-heuristic algorithm inspired by real-world
biological ants is ACO. It was proposed by M. Dorigo in 1992 in his
Ph.D. dissertation [11]. The inspiration for Ant colony optimization
comes from the natural behaviors of Ants, which deposit a particular
type of hormone called a pheromone to find the path to their food
sources. The ACO algorithm is presented in Algorithm 3.
Ant Colony Optimization (ACO) is a metaheuristic algorithm that
emulates ants’ behavior to find optimal solutions [36]. Each ant
leaves a hormone called pheromone along the path when searching
for food. The shortest path will have a higher pheromone concen-
tration, and other ants follow the same path [11, 36]. To prevent
getting stuck in local minima, pheromone evaporates over time, al-
lowing ants to choose another path [11]. The pheromone levels on
the shortest path remain high because the pheromone deposit speed
is faster than its evaporation speed.
The major drawback is that as the environment complexity in-
creases, so does the computational cost exponentially [9]. Another
common meta-heuristic approach is Simulated annealing, which
emulates the cooling down process of solid materials. The initial
temperature and cooling state are set, allowing the temperature to
decrease progressively [14]. The random spike characteristics allow
exploration in search space and avoid falling into a local minimum.
The disadvantage of the approach is it is slower in converging, and
issues created by its randomness [37].

Algorithm 3 Ant Colony Optimization [36]
Result: shortest path from source to destination
Initialize the number of ants (N), number of iterations (it), and
pheromones level
while NOT(reached maximum iterations) do

for each ant do
Select next node based on the probability 𝑝

𝑖 𝑗

𝑘
until the end

node from the start node
if end node reached then

Calculate fitness
Deposit pheromones along the path taken

end
end

end
return best path points with the highest pheromone level

Consider a network where ants can travel between different nodes.
Using pheromone deposits, the probability that an ant 𝑘 located in
node 𝑖 will choose to go to another node in the network is given
in [11] (See Equation 4).

𝑝
𝑖 𝑗

𝑘
=


(𝜏𝑘
𝑖 𝑗
)𝛼 (𝜂𝑘

𝑖 𝑗
)𝛽∑

𝑙∈𝑁 𝑘
𝑖
(𝜏𝑘
𝑖𝑙
)𝛼 (𝜂𝑘

𝑖𝑙
)𝛽

if 𝑗 ∈ 𝑁𝑘
𝑖

0 if 𝑗 ∉ 𝑁𝑘
𝑖

(4)

The evaporation rate (also called an evaporation percentage), which
diminishes the value of deposited pheromone along the path (from
node 𝑖 to 𝑗) as time progresses, is given by Equation 5.

𝜏𝑖 𝑗 ← (1 − 𝜌)𝜏𝑖 𝑗 +
𝑚∑︁
𝑘

Δ𝜏𝑘𝑖 𝑗 (5)

5

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.7, February 2024

The new pheromone levels are updated once pheromone evapora-
tion occurs and the ants) that just crossed the path have deposited
additional pheromones [11] (See Equation 6).

Δ𝜏𝑘𝑖 𝑗 =

{
𝑄/𝐿𝑘 if ant expression 𝑘 uses 𝑖 𝑗 in its tour
0 otherwise

(6)

The decision as to which edge in the graph is chosen depends upon
the pheromone level deposited previously. The definition of the
variables used in this system of equations is presented in Table 1.
The probability of 𝑝𝑖 𝑗

𝑘
of moving from node 𝑖 to 𝑗 relies on product

of two values: 𝜂𝑘
𝑖 𝑗

which is computed by heuristic value and 𝜏𝑘
𝑖 𝑗

of
the path. Figure 5 presents a flow chart showing how ACO works.

Start

Set current position

Find the best point
for the next move

based on ACO

end node?

best path so far?Store path

Pheromone evaporation

Update path pheromones

Update Pheromones
along the path

Max iteration?

End

yes

no

no

yes

yes

no

Fig. 5: ACO Flowchart [11]

5. FITNESS FUNCTION
A fitness function is a critical component of metaheuristics algo-
rithms. The function is used to evaluate and direct existing search

space to better solution space [31]. The function varies by prob-
lem, but for path planning problems, we can use Euclidean distance
function [16, 23, 33].
Given a solution containing a path of a set of nodes in a graph, as
shown in Figure 2, we can calculate fitness value by summing the
distances from the start node to the end node. The fitness function
is given by Equation 7.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐹) =
𝑚+1∑︁
𝑛=1

𝑑 (𝑃𝑖 , 𝑃𝑖+1) (7)

Distance between two nodes is calculated by Equation 8

𝑑 (𝑃𝑖 , 𝑃𝑖+1) =
√︃
(𝑋𝑖+1 − 𝑋𝑖)2 + (𝑌𝑖+1 − 𝑌𝑖 ,)2 (8)

𝑃𝑖 and 𝑃𝑖+1 can be any two nodes in the graph and 𝑚 is the number
of nodes in the candidate solution.

6. EXPERIMENTAL SETUP
A fixed bounded size of 100 × 100 2-D environment with varying
path points and obstacles was set up for simulation. The environ-
ment’s start and end points were determined and remained constant
before running the simulation. The environment contained an en-
closed 2-dimensional boundary with numerous path points and ob-
stacles. The path points for the environment are randomly generated
within the enclosed boundary and are obstacle-free. Obstacles are
enclosed rectangular boundaries within the environment. The path
points overlapping with the obstacles are ignored and removed from
the path point lists. The algorithms find the shortest path from the
source to the destination, combining some path points. The source
and destination remain the same throughout the experiments while
the level of complexity increases.
Figure 6 shows the environment for scenario 1 with obstacle-free
path points and obstacles along with the source marked as a ’+’
point and the goal marked as an ’x’ point.

Fig. 6: Scenario 1: 2-dimensional Environment

Table 2 describes the specifications for each of the three scenarios.
Scenario 1 contains an environment with ten obstacles and 60 path
points. Similarly, scenarios 2 and 3 contain 15 and 20 obstacles and
120 and 180 path points, respectively. The increase in environmental
complexity is obtained by increasing the number of path points and
obstacles. This was set up to investigate and analyze the behavior

6

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.7, February 2024

Parameter Symbol Description
Pheromone Amount 𝜏𝑖 𝑗 Amount of pheromone deposited when moving from node 𝑖 to 𝑗

Tuning Parameter 𝛼 Controls the significance of 𝜏𝑖 𝑗
Tuning Parameter 𝛽 Controls the influence of 𝜂
Desirability Factor 𝜂 Represents the desirability factor from node 𝑖 to 𝑗 ; prior knowledge of fitness

function, 1/𝑑𝑖 𝑗 , where 𝑑𝑖 𝑗 is the distance from node 𝑖 to 𝑗 computed from
Equation 1

Evaporation Rate 𝜌 Rate of pheromone evaporation
Pheromone Amount Δ𝜏𝑘

𝑖 𝑗
Amount of pheromone deposited by the 𝑘 𝑡ℎ ant in the path planning problem

Table 1. : Description of Parameters in Ant Colony Optimization

and performance of each meta-heuristic as the environment changes.
This would also help us understand how the algorithm copes with
increased complexity and what impact the change in path points and
obstacles will have on their overall performance.

Scenario Obstacles count Path points Count

1 10 60

2 15 120

3 20 180

Table 2. : Environment set-ups

7. EXPERIMENTAL RESULTS
The simulations with three different scenarios, as stated in Table
2, each running GA, PSO, and ACO algorithms, were carried out
in a machine equipped with Windows 10 Home, powered by an
Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz, with 16GB of
installed memory (RAM), and operates on a 64-bit system with an
x64-based processor.
The experiments were performed at least five times to find consistent
performance, and the results were observed. As the performance of
these algorithms depends on the tuning parameters, optimal pa-
rameter values were determined through repeated experiments and
filtering out the best possible values for each. It is essential to prop-
erly benchmark all these algorithms to the level playing field as it
provides a fair ground for evaluation.
In Tables 3, 4, and 5, the tuning parameters for each of the algorithms
used in the experiments are shown. These tuning parameters were
obtained through trial and error and found to be the best-performing
ones during the experiment.

Parameters Scenario 1 Scenario 2 Scenario 3

Number of Iterations 80 80 80

Number of individuals 70 70 100

Crossover split size 0.5 0.5 0.5

Mutation Rate 0.3 0.3 0.3

Table 3. : GA Tuning Parameters

As seen in Figure 7, 8, and 9, all algorithms were able to discover
common shortest paths after running them in simulation for scenar-
ios 1, 2, and 3 respectively. Although some took longer than others,
eventually, all algorithms could converge to common shortest paths
in the tested environment.

Parameters Scenario 1 Scenario 2 Scenario 3

Number of Iterations 80 80 80

Swarm size 30 40 40

𝜔 1 1 1

𝑐1 0.1 0.1 0.1

𝑐2 0.2 0.2 0.2

Table 4. : PSO Tuning Parameters

Parameters Scenario 1 Scenario 2 Scenario 3

Number of Iterations 80 80 80

Number of ants 20 20 30

Initial pheromone value 0.8 0.8 0.8

Evaporation rate 0.1 0.1 0.1

Table 5. : ACO Tuning Parameters
Figure 10, 11, and 12 show the convergence graph of GA, PSO, and
ACO when best paths in scenarios 1, 2, and 3 are discovered. It can
be seen that PSO converges fastest, and GA seems to converge the
slowest. ACO is converging between the two. This trend seems to
follow in the remaining scenarios, 2 and 3, with a higher level of
environment complexity - PSO always converges the fastest among
the three algorithms.
For each scenario, the convergence time for PSO is faster than the
rest of the algorithms. GA has the slowest convergence time. An
increase in the complexity of the environment, as in scenarios 2
and 3, with additional path points and obstacles, impacts the overall
performance of all the algorithms, but the overall pattern or ratio
stays the same. Table 6 compares the exact millisecond numbers’
performance.

Algorithms Average Convergence Time (in ms)
Scenario 1 Scenario 2 Scenario 3

GA 1011.23 2154.85 3982.37
PSO 122.45 322.78 954.91
ACO 706.90 1111.43 2154.51

Table 6. : Comparison of the average convergence time for each algorithm

Table 7 shows each algorithm’s average shortest path lengths. An
increase in complexity with additional path points and obstacles
does not seem to help discover better optimal shorter paths or im-
prove the solution in any way given the same enclosed boundary
and source/destination. Conversely, the solution or shortest path got
worse with increased path points.

7

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.7, February 2024

Fig. 7: Scenario 1: Best found shortest Path Fig. 8: Scenario 2: Best found shortest Path Fig. 9: Scenario 3: Best found shortest Path

Fig. 10: Scenario 1: Convergence curve Fig. 11: Scenario 2: Convergence curve Fig. 12: Scenario 3: Convergence curve

Algorithms Average Path Length
Scenario 1 Scenario 2 Scenario 3

GA 149.27 155.17 178.89
PSO 138.65 155.56 180.25
ACO 137.75 156.56 178.14

Table 7. : Comparison of average path-lengths
8. CONCLUSIONS AND FUTURE WORK
This research introduced our idea of utilizing several met-heuristics
search algorithms to find the optimal path in a static environment.
GA, PSO, and ACO search algorithms were explored in three en-
vironments with various complexities concerning the number of
obstacles and waypoints. Our experiments show that these algo-
rithms perform relatively similarly, but the convergence time may
vary depending on the heuristic tuning parameters. We found that
PSO provided superior results compared to GA and ACO. PSO
found the shorted path solution in minimum time compared to other
algorithms. Further investigation can be implemented by experi-
menting with these algorithms in a dynamic environment where
obstacles are not fixed.

9. REFERENCES
[1] M. N. A. Wahab, S. Nefti-Meziani, and A. Atyabi, “A

comparative review on mobile robot path planning: Classical
or meta-heuristic methods?” Annual Reviews in Control,
vol. 50, pp. 233–252, 2020. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1367578820300675

[2] IFR, “International federation of robotics,” http://www.ifr.
org/, 2020.

[3] M. Bartoš, V. Bulej, M. Bohušík, J. Stanček, V. Ivanov,
and P. Macek, “An overview of robot applications in

automotive industry,” Transportation Research Procedia,
vol. 55, pp. 837–844, 2021, 14th International scientific
conference on sustainable, modern and safe transport.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2352146521004543

[4] A. Loganathan and N. S. Ahmad, “A systematic
review on recent advances in autonomous mobile robot
navigation,” Engineering Science and Technology, an
International Journal, vol. 40, p. 101343, 2023. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S2215098623000204

[5] T.-K. Dao, T.-S. Pan, and J.-S. Pan, “A multi-objective opti-
mal mobile robot path planning based on whale optimization
algorithm,” in 2016 IEEE 13th international conference on
signal processing (ICSP). IEEE, 2016, pp. 337–342.

[6] Z. Yan, J. Zhang, Z. Yang, and J. Tang, “Two-dimensional op-
timal path planning for autonomous underwater vehicle using
a whale optimization algorithm,” Concurrency and Computa-
tion: Practice and Experience, vol. 33, no. 9, p. e6140, 2021.

[7] M. Abed, O. Farouq, and Q. Al-Doori, “A review on path plan-
ning algorithms for mobile robots,” Engineering and Technol-
ogy Journal, vol. 39, pp. 804–820, 05 2021.

[8] J. Hopkins, F. Joy, A. Sheta, H. Turabieh, and
D. Kar, “Path planning for indoor uav using A*
and late acceptance hill climbing algorithms utilizing
probabilistic roadmap,” International Journal of Engineering
& Technology, vol. 9, no. 4, null. [Online]. Available:
https://par.nsf.gov/biblio/10222262

[9] Z. Fu, J. Yu, G. Xie, Y. Chen, and Y. Mao, “A heuristic evo-
lutionary algorithm of UAV path planning,” Wireless Com-
munications and Mobile Computing, vol. 2018, pp. 1–11, 09
2018.

8

https://www.sciencedirect.com/science/article/pii/S1367578820300675
https://www.sciencedirect.com/science/article/pii/S1367578820300675
http://www.ifr.org/
http://www.ifr.org/
https://www.sciencedirect.com/science/article/pii/S2352146521004543
https://www.sciencedirect.com/science/article/pii/S2352146521004543
https://www.sciencedirect.com/science/article/pii/S2215098623000204
https://www.sciencedirect.com/science/article/pii/S2215098623000204
https://par.nsf.gov/biblio/10222262

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.7, February 2024

[10] A. Sheta, M. Braik, D. R. Maddi, A. Mahdy, S. Aljahdali,
and H. Turabieh, “Optimization of PID controller to
stabilize quadcopter movements using meta-heuristic search
algorithms,” Applied Sciences, vol. 11, no. 14, 2021. [Online].
Available: https://www.mdpi.com/2076-3417/11/14/6492

[11] M. Brand, M. Masuda, N. Wehner, and X.-H. Yu, “Ant colony
optimization algorithm for robot path planning,” vol. 3, pp.
V3–436–V3–440, 2010.

[12] G. Bilbeisi, N. Al-Madi, and F. Awad, “Pso-ag: A multi-robot
path planning and obstacle avoidance algorithm,” in 2015
IEEE Jordan Conference on Applied Electrical Engineering
and Computing Technologies (AEECT), 2015, pp. 1–6.

[13] I. Altaharwa, A. Sheta, and M. Alweshah, “A mobile robot
path planning using genetic algorithm in static environment,”
Journal of Computer Science, vol. 4, 01 2008.

[14] “A comparative review on mobile robot path planning:
Classical or meta-heuristic methods?” Annual Reviews
in Control, vol. 50, pp. 233–252, 2020. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S1367578820300675

[15] Y. Gigras, N. Jora, and A. Dhull, “Comparison between differ-
ent meta-heuristic algorithms for path planning in robotics,”
International Journal of Computer Applications, vol. 142, pp.
6–10, 2016.

[16] C. Lamini, S. Benhlima, and A. Elbekri, “Genetic algorithm
based approach for autonomous mobile robot path planning,”
Procedia Computer Science, vol. 127, pp. 180–189, 2018,
proceedings Of The First International Conference On
Intelligent Computing In Data Sciences, ICDS 2017.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S187705091830125X

[17] M. Zubair and M. A. Choudhry, “Land mine detecting robot
capable of path planning,” in 2010 Second World Congress on
Software Engineering, vol. 1, 2010, pp. 34–37.

[18] R. Sawant, C. Singh, A. Shaikh, A. Aggarwal, P. Shahane,
and H. R, “Mine detection using a swarm of robots,” in 2022
International Conference on Advances in Computing, Com-
munication and Applied Informatics (ACCAI), 2022, pp. 1–9.

[19] B. A. Swett, E. N. Hahn, and A. J. Llorens, Designing Robots
for the Battlefield: State of the Art. Cham: Springer Interna-
tional Publishing, 2021, pp. 131–146.

[20] G. Song, S. Thomas, K. Dill, J. M. Scholtz, and N. Amato, “A
path planning-based study of protein folding with a case study
of hairpin formation in protein g and l,” Pacific Symposium
on Biocomputing. Pacific Symposium on Biocomputing, pp.
240–51, 02 2003.

[21] A. K. Guruji, H. Agarwal, and D. Parsediya, “Time-efficient
a* algorithm for robot path planning,” Procedia Technology,
vol. 23, pp. 144–149, 2016, 3rd International Conference on
Innovations in Automation and Mechatronics Engineering
2016, ICIAME 2016 05-06 February, 2016. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S2212017316300111

[22] D. R. Maddi, A. Sheta, A. Mahdy, and H. Turabieh,
“Multiple waypoint mobile robot path planning using
neighborhood search genetic algorithms,” ser. AIRC
’19. New York, NY, USA: Association for Computing
Machinery, 2020, p. 14–22. [Online]. Available: https:
//doi.org/10.1145/3388218.3388225

[23] M. M. Costa and M. F. Silva, “A survey on path planning
algorithms for mobile robots,” in 2019 IEEE International
Conference on Autonomous Robot Systems and Competitions
(ICARSC), 2019, pp. 1–7.

[24] F. Syed Abdullah, S. Iyal, M. Makhtar, and A. A. Jamal,
“Robotic indoor path planning using dĳkstra’s algorithm with
multi-layer dictionaries,” 12 2015.

[25] A. Sheta, A. Ali, A. Baareh, and S. Aljahdali, “Meta-heuristic
search algorithms for solving the economic load dispatch prob-
lem,” in 2022 3rd International Conference on Artificial Intel-
ligence, Robotics and Control (AIRC), 2022, pp. 87–92.

[26] A. Sanyal, M. Nayab Zafar, J. C. Mohanta, and
M. Faiyaz Ahmed, “Path planning approaches for mobile robot
navigation in various environments: A review,” in Advances
in Interdisciplinary Engineering, N. Kumar, S. Tibor, R. Sind-
hwani, J. Lee, and P. Srivastava, Eds. Singapore: Springer
Singapore, 2021, pp. 555–572.

[27] K.-L. Du and M. N. S. Swamy, Search and Optimization by
Metaheuristics: Techniques and Algorithms Inspired by Na-
ture, 1st ed. Birkhäuser Basel, 2016.

[28] M. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah,
“Chapter 10 - metaheuristic algorithms: A comprehensive
review,” in Computational Intelligence for Multimedia Big
Data on the Cloud with Engineering Applications, ser.
Intelligent Data-Centric Systems, A. K. Sangaiah, M. Sheng,
and Z. Zhang, Eds. Academic Press, 2018, pp. 185–231.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780128133149000104

[29] K. Rajwar, K. Deep, and S. Das, “An exhaustive
review of the metaheuristic algorithms for search and
optimization: taxonomy, applications, and open challenges,”
Artificial Intelligence Review, vol. 56, pp. 13 187–
13 257, 2023. [Online]. Available: https://doi.org/10.1007/
s10462-023-10470-y

[30] J. H. Holland, Adaptation in Natural and Artificial Systems.
Ann Arbor, MI: University of Michigan Press, 1975, second
edition, 1992.

[31] J. Tu and S. Yang, “Genetic algorithm based path planning for
a mobile robot,” in 2003 IEEE International Conference on
Robotics and Automation (Cat. No.03CH37422), vol. 1, 2003,
pp. 1221–1226 vol.1.

[32] G. Nagib and W. Gharieb, “Path planning for a mobile robot
using genetic algorithms,” 10 2004, pp. 185– 189.

[33] W. Parvez and S. Dhar, “Path planning optimization using
genetic algorithm,” International Journal of Computational
Engineering Research, vol. 3, no. 4, pp. 23–28, 2013.

[34] Y. K. Ever, “Using simplified swarm optimization on
path planning for intelligent mobile robot,” Procedia
Computer Science, vol. 120, pp. 83–90, 2017, 9th
International Conference on Theory and Application of
Soft Computing, Computing with Words and Perception,
ICSCCW 2017, 22-23 August 2017, Budapest, Hungary.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1877050917324237

[35] Y.-Q. Qin, D.-B. Sun, N. Li, and Y.-G. Cen, “Path planning for
mobile robot using the particle swarm optimization with mu-
tation operator,” in Proceedings of 2004 International Con-
ference on Machine Learning and Cybernetics (IEEE Cat.
No.04EX826), vol. 4, 2004, pp. 2473–2478 vol.4.

9

https://www.mdpi.com/2076-3417/11/14/6492
https://www.sciencedirect.com/science/article/pii/S1367578820300675
https://www.sciencedirect.com/science/article/pii/S1367578820300675
https://www.sciencedirect.com/science/article/pii/S187705091830125X
https://www.sciencedirect.com/science/article/pii/S187705091830125X
https://www.sciencedirect.com/science/article/pii/S2212017316300111
https://www.sciencedirect.com/science/article/pii/S2212017316300111
https://doi.org/10.1145/3388218.3388225
https://doi.org/10.1145/3388218.3388225
https://www.sciencedirect.com/science/article/pii/B9780128133149000104
https://www.sciencedirect.com/science/article/pii/B9780128133149000104
https://doi.org/10.1007/s10462-023-10470-y
https://doi.org/10.1007/s10462-023-10470-y
https://www.sciencedirect.com/science/article/pii/S1877050917324237
https://www.sciencedirect.com/science/article/pii/S1877050917324237

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.7, February 2024

[36] S. Chakraborty, “Ant colony system: A new concept to robot
path planning,” International Journal of Hybrid Information
Technology, vol. 6, pp. 11–30, 11 2013.

[37] H. Miao and Y.-C. Tian, “Dynamic robot path planning
using an enhanced simulated annealing approach,” Applied
Mathematics and Computation, vol. 222, pp. 420–437, 2013.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0096300313007728

10

https://www.sciencedirect.com/science/article/pii/S0096300313007728
https://www.sciencedirect.com/science/article/pii/S0096300313007728

	Introduction
	Background and Related Work
	Traditional algorithms
	Heuristic Algorithms
	Meta-heuristic search algorithms

	Problem Statement
	Metaheuristics Search Algorithms
	Genetic Algorithm (GA)
	Encoding
	Evaluations
	Selection
	Operators
	Mutation

	Particle Swarm Optimization (PSO)
	Ant Colony Optimization

	Fitness Function
	Experimental Setup
	Experimental Results
	Conclusions and Future Work
	References

