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ABSTRACT 

It is customary to measure the correctness of 3D medical 

segmentation of images and registration. As a result, the 

effectiveness and dependability of the used overlap metric are 

crucial to the evaluation process. A novel 3D-overlap metric 

for medical volume imaging is presented in this research. The 

proposed metric is specifically created to be orientated for 

medical volume images, unlike the present overlap metrics 

used in biomedical domains, which were primarily built for 

computer graphics applications. The peoposed complementary 

overlap metric furnishes statistically robust data, enabling 

visualization and analysis of the scale and localization of 

matching and mismatching volumes in addition to the merit 

number of the fraction of the region match. This metric is 

practical for medical images since it provides particular values 

for the axial, sagittal, and coronal planes.  To guarantee 

reliability and generalizability in this work, six distinct datasets 

were employed for comprehensive assessment. To assess the 

proposed metric, two methods were employed. The first step is 

to look at the association between the proposed overlap metric 

and other, more commonly used and recognized overlap 

metrics. The second involves examining the results of the 

proposed metric for specific test instances where we are aware 

of the expected trend of the right outputs in advance. The 

findings demonstrate the value of applying the proposed 

overlap metric to assess how well medical image segmentation 

and registration performed.   

General Terms 

Image Segmentation, Medical Images, Biomedical 

Engineering. 

Keywords 

Overlap Metric, Segmentation, 3-D Medical Images, Axial, 
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1. INTRODUCTION 
Medical images are commonly constructed from a pile of 2D 

slices attained by Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI), or Micro-CT scans. The proportion 

of overlap between two data sets is determined using the Three 

Dimensional (3D) overlap metric. 

The degree, to which the results of a registration between 

images or image segmentation match with the actual data, or a 

so-called “gold standard”, is referred to as accuracy [1]. 

Reliable and precise overlap metrics are indispensable tools for 

driving success in biomedical engineering. The quality of the 

registration and segmentation operations will be reflected by 

this metric, which should quantify the region agreement 

between two volume images. 

 

In medical applications, the precision of the image registration 

and segmentation operations is crucial. A variety of techniques 

are used in registration to establish anatomical or functional 

correlation between images taken at various periods, using 

various modalities, or of various subjects [2] [3]. For image-

guided radiosurgery, images registration is crucial [4]. Image 

registration facilitates interventional procedures through 

accurate alignment of pre-interventional (e.g., planning CT) 

and intra-procedural (e.g., real-time fluoroscopy) data across 

diverse applications like interventional radiology, radiation 

therapy, and minimally invasive surgery [5-9]. Additionally, in 

anabolic and catabolic mouse models, 3D image registration 

increases the long-term precision of in vivo Micro Computed 

Tomographic measures [10]. 

One of the most fundamental processes needed in medical 

applications is image segmentation. The ability of image 

segmentation to define, describe, and visualize regions of 

interest in medical images is what gives it its significance [11]. 

Image segmentation is generally required to fully utilize the 

medical imaging generated by contemporary imaging 

modalities like CT and MRI. Medical image segmentation 

methodologies encompass manual, automated, and hybrid 

approaches. Despite the substantial accuracy gains enabled by 

computer-aided techniques, manual segmentation remains 

susceptible to inter-observer variability and incurs significant 

time expenditure [12] [13]. A trustworthy overlap metric is 

required for both human and machine segmentation methods in 

order to evaluate the effectiveness of the segmentation 

procedure. If the right measures for measuring region 

agreement are available, registration and segmentation can be 

evaluated numerically [14]. 

Academics extensively employ (1) MSDE which stands for 

Mean Surface Distance Error, (2) HD stands for Hausdorff 

Distance, and (3) SDCCV stands for Signed Distances with 

Colour-Coded Visualization to quantify surface overlap in 

medical volume images. Both MSDE and SDCCV leverage 

Euclidean distance for point-wise comparisons, albeit with 

SDCCV generating signed values and color visualizations. 

Notably, MSDE and SDCCV exhibit significant conceptual 

overlap, as evidenced by their interchangeable usage in 

numerous studies [15–22]. 

2. CONTRIBUTION 
The intensive review and investigation that were performed by 

the authors of this research regarding the current overlap 

measurements lead us to several findings: 

– The result is not quantified as a single number by signed 

distances with color-coded visualization (i.e. figure of merit). 
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– These overlap measurement techniques, initially conceived 

for general applications and specifically for computer graphics, 

have demonstrated significant efficacy in the context of 

medical image registration. 

– While metrics like HD, MSDE, and SDCCV provide surface-

level insights, more comprehensive assessments necessitate 

voxel-based approaches for a deeper understanding of internal 

overlap. 

– MSDE and SDCCV are characterized as distance-based 

measures more so than overlap-based metrics because they are 

sensitive to point placements [29]. 

– Medical images frequently contain outliers [30] which HD is 

sensitive to. 

– HD occasionally delivers erroneous results because it finds 

the "furthest near neighbor" between two sets – the largest 

distance separating the closest points in each set. 

– Traditional distance-based error metrics can mask significant 

discrepancies on highly curved surfaces, even if the actual 

geometric discrepancy is significant. This is because they only 

consider the closest points between surfaces, potentially 

overlooking deeper misalignments [31]. 

– Those measurements based on distance instead yield an 

absolute figure that indicates the average distances rather than 

a percentage of overlap. 

– None of those overlap measures provide an analysis of the 

axial, sagittal, and coronal planes, despite the fact that this 

analysis is crucial in several clinical situations. 

A novel 3D-overlap metric is presented in this paper. This 

metric goes beyond the final score. It provides additional 

statistical data that helps visualize the size and location of 

matching and mismatching regions. This is like having a 

detailed map of the overlap, not just a single percentage. This 

additional information is crucial for surgeons, researchers, and 

anyone who needs to understand the nuanced differences 

between medical images. 

The proposed metric is not just a single number. It is a 

framework that can measure overlap in three key scenarios: 

Surface-to-surface: Comparing the outer shell of two organs, 

like brain hemispheres. 

Surface-to-volume: Matching a segmented tumor against the 

entire scanned area. 

Volume-to-volume: Comparing entire organ shapes, like lungs 

or hearts. 

The overlap ratio is examined using the axial, sagittal, and 

coronal planes by the provided overlap measure. As a result, it 

is a good option for volume imaging in medicine. It is crucial 

to not only calculate global measures but also examine how 

these mistakes are distributed locally, as local distributions may 

quickly reveal which anatomical shapes are mismatched and 

where [25]. The overlap metric’s complimentary values 

provide the ability to identify which sections are mismatched 

or incorrectly matched and where they are. 

Additionally to what was previously said, the presented overlap 

metric is insensitive to outliers because the Dice metric is 

employed internally as it will be shown in Section 3. The 

proposed overlap-focused metric excels at identifying 

irregularities on exceedingly curved surfaces, especially if 

"image fill" option is disabled. This powerful capability, further 

explained in Section 3, comes with a trade-off. 

3. MATERIALS AND METHODS 

3.1 Datasets 
This study explores six diverse datasets (Figure 1). The first, 

from pelvic CT scans [32], presents a surface in Figure 1(a) 

saved as an STL file. Similarly, Figure 1(b) showcases a knee 

surface from CT data [33], also saved in STL format. 

Datasets 3 and 4 in Figure 1 depict three-dimensional printed 

objects: a set of nested cubes, displayed in Figure 1(c),  and a 

dome, displayed in Figure 1(d). The two objects were digitally 

fabricated with specific sizes and subsequently a 3D printer is 

employed at the University of East Anglia's Computing 

Sciences School's 3D printing laboratory to print these objects. 

CT data files for those two objects were obtained at Ipswich 

Hospital in the United Kingdom. Both objects were scanned 

with a handheld laser scanner as well. Figure 2(a) and (b) 

exhibit photographs of the real plastic objects utilized in this 

investigation, while Figure 2 objects(c) and (d) show a CT slice 

for each object. Figure 2(e) objects depicts the hand-held laser 

scanner that was employed to photograph the two objects. 

 

(a) 

 

                     (b) 

 

                      (c) 

 

                  (d) 

 

                      (e) 

 

                      (f) 

Fig 1: This study made use of six separate data sets.  

The final two datasets (Figure 1(e) and (f)) were retrieved from 

the Cancer Imaging Archive [34,35]. They comprise groups of 

CT images acquired from head scans of two individuals. 
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Fig 2: The experiment utilized plastic objects in cubic and 

dome geometries (a) and (b). All of objects were 

photographed with an AS Spider TM laser scanner (e). CT 

image slices are presented in (c) and (d). 

3.2 Methods 
The provided overlap metric, depicted in Figure 3, quantifies 

how much two 3D models overlap. Two medical volume 

images are accepted as inputs. In light of this, the method 

chooses one of three paths to calculate the overlap percentage. 

The first one illustrates the situation where both inputs are 

surfaces. In medical imaging, comparing surfaces acquired 

from the same object using different devices or validating 3D 

model segmentation against a ground truth surface are frequent 

use cases, as documented in [36–39]. The next path 

characterizes the scenario where the first input is a surface and 

the second input is a discrete volumetric representation (i.e., 3D 

grid). A situation where this is necessary is when a CT derived 

model needs to be evaluated by being compared to a ground 

truth (i.e. surface mesh) [9,40–44]. The third path reflects the 

scenario in which both inputs are a 3D voxel grid. Comparing 

CT scans generated by different scanners for the same object 

exemplifies this scenario of assessing surface overlaps across 

modalities. [45–46]. 

The proposed model will first extract the isosurface to create a 

surface. A widely used method known as the marching cubes 

algorithm performs this extraction [47]. Following that, each 

surface in each of the three planes is intersected by a 

plane/triangle to begin the slicing process (i.e. axial, sagittal 

and coronal). The three following steps make up the majority 

of the slicing process: 

– Mesh simplification 

– Intersecting planes and triangles 

– Intersection points are projected onto 2D image pixels. 

4. EXPERIMENTAL WORKS 
This research delves deep into the reliability of the proposed 

innovative 3D overlap metric. A series of experiments were 

conducted to rigorously assess its accuracy in diverse 

scenarios. These experiments will answer crucial questions: 

- Can the proposed metric accurately quantify overlap across 

different types of 3D data (surfaces and volumes)? 

- How reliable are the conclusions drawn from the metric in 

various comparison scenarios? 

- What are the limitations of the metric, and how can they be 

addressed? 

By delving into these questions, the aim to refine and validate 

the proposed 3D overlap metric, ensuring it becomes a valuable 

tool for diverse medical applications. Table 1 shows the results 

of applying the proposed overlap metric for different cases and 

Table 2 shows the results of applying RMSE, and HD for the 

same different cases.  

 

Fig 3: The proposed model. 

Table 1.  Quantifying overlap across axial, sagittal, and 

coronal views in various test cases. 

T.Case Axial Sagittal Coronal Avg. 

1 1.0000 1.000 1.000 1.000 

2 0.91849 0.87023 0.8983 0.8957 

3 0.86423 0.87877 0.8608 0.8679 

4 0.86566 0.83477 0.88539 0.8619 

5 0.82493 0.79827 0.82531 0.8162 

6 0.8131 0.77446 0.7899 0.7925 

7 0.71122 0.75858 0.70818 0.726 

8 0.72988 0.68254 0.76811 0.7268 

9 0.65774 0.64804 0.64529 0.6504 

10 0.54668 0.50139 0.51741 0.5218 

11 0.43425 0.50979 0.40788 0.4506 

12 0.42622 0.38793 0.46384 0.426 

13 0.34392 0.33966 0.319 0.3342 

14 0.87093 0.79052 0.87813 0.8465 

15 0.77063 0.6625 0.78236 0.7385 

16 0.11866 0.087385 0.13057 0.1122 

17 0.000 0.000 0.000 0.000 
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Table 2.  RMSE and HD measurements for different test 

cases. 

Case# RMSE HD 

1 0.000 0.000 

2 0.7981 1811 

3 0.9859 2531 

4 0.9144 2597 

5 1.2269 2490 

6 1.4078 1871 

7 1.6659 2549 

8 1.6831 2544 

9 2.1291 2501 

10 3.0101 1985 

11 4.1092 2635 

12 4.1253 2533 

13 5.3131 2564 

14 0.9858 99 

15 1.7848 248 

16 7.6134 1240 

17 64.3856 

 

8846 

 

5. DISCUSSION 
A screenshot of the Matlab GUI tool which was developed to 

execute and evaluate the proposed 3D-overlap metric is shown 

in Figure 4. Some of the observations we’re going to talk about 

here were reported in Tables 1 and 2. The first finding is that 

the values produced by the proposed overlap metric are 

connected with the findings of the RMSE measure, which is 

one of the most extensively used metrics in a huge number of 

studies. The proposed metric’s dependability is further 

supported by this correlation. The second finding is that the 

proposed metric’s results, as shown in those two tables, make 

sense in terms of geometry and transformation. A positive 

correlation exists between the rotation angle of an object and 

the decrease in its similarity ratio. This can be observed, for 

example, in a comparison of object rotations of 2 degrees, 5 

degrees, and 15 degrees, where the similarity ratio consistently 

decreases with increasing angle. (rows#5, #9, and #13 in Table 

1 are examples).  

Another illustration of the rationality of the results is that when 

an object is translated by 2 percentage points, it is more similar 

than when it is translated by 5 percentage points, and the latter 

is more similar than when it is translated by 25 percentage 

points (see as an example rows #14 to #16 in Table 1). The final 

finding is that any other alignment procedure may be helped to 

achieve better alignment by using the complimentary values 

produced by the proposed metric to identify the source of the 

discrepancy. Translating the object in the y-direction notably 

decreases the similarity ratio in that view compared to axial and 

coronal views (Table 1, rows #14–#16). Conversely, rotating 

around the x-axis significantly increases the similarity ratio in 

the axial view relative to sagittal and coronal perspectives. 

 

Fig 4: A screenshot of the GUI tool that prepared using 

Matlab 

As shown in Figure 5, the proposed overlap metric can handle 

the partial volume impact scenario. This is due to the fact that 

the proposed overlap metric accounts for three views when 

calculating the degree of overlap. This produces partial volume 

estimates that are more precise. The proposed metric offers the 

standard deviation as an additional reading. When the standard 

deviation (SD) is high, the degree of similarity between the 

respective images is likely to be dispersed across a large range 

of values. This implies that there are some outliers, and it is 

important to identify the images that are to cause by looking at 

the figures that show the degree of similarity slice by slice. 

 
Fig 5: Three view triangulation in voxel space yields 

accurate partial volume estimates. 

The proposed metric’s axial, sagittal, and coronal analysis data 

can be used to identify locations or positions with lower overlap 

or mismatch. For instance, the proposed metric generates the 

bar charts displayed in Figure 6 to determine the percentage of 

overlap for a head. Figure 7(a) illustrates a delineation of that 

head in order to make things clearer (a). A segmentation of the 

volume into 102 axial, 61 sagittal, and 74 coronal slices was 

performed.  Figure 5 charts visualize similarity across these 

slices. The left half of the head (red in Figure 7b) exhibits low 
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similarity. This misalignment was observed in the sagittal 

view's first half (30 images) and the axial view's first 20% (20 

images). Notably, the coronal view displays consistent 

similarity, suggesting the issue isn't specific to a particular 

region along the front-to-back axis. 

 

         

   

    
Fig 6: Bar charts generated by the proposed metric for a 

head: axial, sagittal, and coronal views sorted from top to 

left 

 

 
 

(a)                              (b) 

Fig 7: (a) Delineating the head's boundaries across three 

key planes: axial (horizontal), sagittal (side), and coronal 

(frontal). (b) A specific region with low overlap is 

highlighted in red. 

 

6. CONCUSION 
Degree of similarity between medical volume images was 

measured in three dimensions using a new model that was 

given in this paper. The characteristic of image segmentation 

and registration is quantified in part by the use of the presented 

metric. It has several properties, the first of which is that by 

going beyond a single number,  metric empowers medical 

professionals with deeper insights into their 3D medical data. 

Second, it takes one surface and one three-dimensional grid or 

two surfaces and two three-dimensional grids as inputs. 

Moreover, it provides supplementary statistical data that may 

be used to identify the quantity and locations of zones of match 

and mismatch. It is practical for medical applications since, 

among other things, it analyses the degree of similarity while 

considering the 3-D planes. Fifth, it is insensitive to outliers, 

making this statistic especially crucial for medical pictures. 

Sixthly, it is not necessary to orient or place the undervalued 

goods in a particular attitude. In addition to what has already 

been discussed, it is also capable of finding geometric faults on 

extremely curved surfaces. It just accepts the two items as they 

are and begins the evaluation without the need for any 

initialization or special settings. 

The results of the presented metric have been rigorously 

examined using six different data sets and a variety of test 

cases. A comparison is performed between the values produced 

by the proposed 3D overlap metric to the values produced by 

three other frequently used overlap metrics. The results of the 

proposed overlap metric are clearly correlated and logical. The 

proposed overlap measure is useful for medical volume images 

because, according to the thorough analysis that was presented 

in this research, it provides complimentary output that define 

the regions of overlaps with respect to the 3-D perspectives. 

Down-sampling medical images necessitates a balance 

between resource efficiency and detail preservation. This study 

leverages a novel overlap metric to optimize down-sampling 

for Poisson Surface Reconstruction (PSR), Uniform Mesh 

Resampling (UMR), and Quadric Edge Collapse Decimation 

(QECD) techniques. 
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