
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.7, February 2024

43

A Generative Adversarial Approach for Malware

Detection: Android Case Study

Prashant Kaushik
Department of Computer Science & Information technology

Jaypee Institute of Information Technology, Noida

ABSTRACT

Identifying infected Android apps relies on extracting key

features from apps, both statically and dynamically. Static

feature analysis offers a comprehensive view by examining all

source code, including bytecode, C++ code, and permission-

containing manifest files. Dynamic analysis complements this

by observing app behavior in action, such as disk access,

system calls, and network activity. Challenges arise when apps

update, as feature sets evolve, potentially hindering

classification accuracy. To address this, researchers developed

a tool combining a GAN (Generative Adversarial Network) and

automation to continuously gather and update feature sets for

training. The GAN generates similar samples to enhance

training and classification capabilities. The proposed

classification cascaded with GAN model named TC-GAN,

categorizes apps into three classes: malicious, benign, and

inconclusive ("can't say"). Using TensorFlow Lite, the model

achieved over 82% accuracy on a dataset of 12,000 apps and

their variations, with 15 extracted and 10 GAN-generated

features.

General Terms

Generative networks, deep learning.

Keywords

GAN, TC-GAN, malware applications, infected applications,

deep learning, feature vector generation, malicious APK

1. INTRODUCTION
Almost all large and small Android application Markets are

under continuous & timed attacks by cyber criminals. Also,

there are many paid and free third-party stores and website

which offer Free apps with malwares. Some of the onetime paid

versions also have been on many stores that allows paid app as

free. These free apps contain malicious code in them which

allow miners to mine for illegal currencies on the victim’s

device without even being noticed by the user. Apart from

stealing the private information, it can also be used to

threatening the user for crypto coins. These attackers package

the APK’s and add many forms of spy ware, malicious code,

crypto currency mining frameworks and reverse tcp tunnels for

uploading the private contents on to dark web. By a report of

Kasp Labs [1] there were 221,800 new mobile malware

programs that emerged in the second quarter of 2018 alone,

which is 1.8 times more than previous times. Google Play Store

has also come up with play protect to solve this problem of

identifying the malicious app using their own custom AI

models. Also, other labs and authors have been trying to solve

this problem of detecting the malicious and benign apps. Avast

has built a human made dataset on it. Which we will be using

its classification as our primary dataset for over 10k APK’s [2].

Y.Zhou [3] has worked on features & machine extraction on

API level, there are works done by authors to extract features

based on system call and permissions [4]. AndroData is a good

tool used to extract large number of static and dynamic vector-

based features of android app [5]. Scandroid[6] is a Java/C++

program for dynamic feature extraction made for manifest file

and it also performs vector feature extraction. Apposcopy is a

fully dynamic tool to extract features based on API calls [7].

TaintDroid [8] are used for scanning privacy features and

comDroid[9], a static analysis tool based on Bytecode of the

decompiled APKs. So over all there has been many research

work focused on feature extraction as well as algorithms for

classification. The popular algorithm used varies from SVM to

random forest [10] and also many CNN based feature

extraction and the dataset creation from many aspects. But still

there is no standard dataset for the practice or evaluation

purpose.

Kim et al. proposed an intrusion detection tool utilizing a J48

decision tree for classifying malicious and benign applications.

They extended their approach by incorporating JavaScript for

dynamic feature extraction, creating an app that functions as a

host-based intrusion detection system alongside existing

antivirus systems. The study references various works in

feature extraction, mathematical representation, algorithms,

and training basic neural network models for effective APK

classification. Dynamic analysis considers the number of

system calls in emulators, incorporating system call

information into the final dataset. The updated dataset,

available on GitHub, serves educational purposes [11]. For

classification, a neural network using the TensorFlow Lite

framework is employed, featuring 10 layers with 512

perceptrons each. The choice of activation function impacts

model accuracy. The project comprises three modules:

generating the feature vector, creating a labeled dataset with

human and Avast reports; training a GAN on this data for

dataset enhancement; and employing a python-based CNN

neural network to classify new APKs into three classes -

malicious, benign, or undetermined. The code for TC-GAN and

GAN is open for public review and evaluation [16].

2. NEW FEATUREVECTOR

GENERATION USING TC-GAN
The TC-GAN generation process integrates both static and

dynamic features to classify APKs as malicious, benign, or

indeterminate. Static features are derived from the APK source

code, decompiled using the Jadx tool [14]. These features are

used to train TC-GAN, generating additional vectors. The static

feature extraction module, implemented in Python using

pandas and related modules, is depicted in Figure 1, illustrating

the feature extraction process and the creation of the final data

for TC-GAN. Training and labeling adhere to the AVG [15]

report standards, and the resulting dataset will be accessible on

GitHub solely for research purposes. Dynamic feature

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.7, February 2024

44

extraction involves a C++ module running as a system

application on rooted Android devices and emulators created

on VirtualBox following Geny Motion guidelines. This module

captures basic feature vectors, as outlined in Table 2. After TC-

GAN training, a new set of features, labeled numerically, is

presented in Table X. The amalgamation of static and dynamic

features, coupled with TC-GAN's training, provides a

comprehensive basis for classifying APKs, offering a nuanced

understanding of their behavior and potential threats.

Fig. 1. Process of feature extraction

Once the dataset is labeled, it becomes ready for training the

classifier to achieve the final classification of APKs. It's

important to note that this dataset will continue to evolve, and

the latest version will be accessible on our GitHub homepage.

For legal compliance, the APK names have been deliberately

removed. The dynamic feature extraction (DFE) module is

crafted in C++ and is tailored for Android systems, functioning

seamlessly on rooted devices. In contrast, the static module is

designed in Python, offering versatility as it can operate on any

system. This comprehensive approach, encompassing both

static and dynamic features, coupled with the evolving dataset,

ensures a robust foundation for training classifiers and

enhancing the understanding of APK behavior in a security

context.

Table 1. Sample dataset Generated using TC-GAN

S.No F1 F2 — Fn Class

1 0.212 3 0.001 0 Malicious

2 0.45 4 0.003 0 Malicious

3 23 3 2 0 Benign

4 1.09 9 1 7 can’t say

Table 2. Dynamic Feature Vectors [12]

S. No. Feature vector name

1 System call

2 Disk Access time

3 Disk Access duration

4 No. of network URL

5 Data exchange per URL

6 Background activation time

7 background services

8 no. of permissions

9 no. of threads

10 native JNI libs

11 Reverse TCP payload

12 No. of HTTPS URL

13 No. of HTTP URL

14 Front Camera access

15 no. of Async tasks

Table 3. TC-Gan based generation feature vectors along

with weights

S.No F1 F2 F3 F4 F5 F6

W1 0.9 2 0.001 - 5 8

W2 0.12 7 - - 9 8

W3 0.35 12.4 - - 5.2 6.2

W4 0.1 6 - - 1.5 -

3. SYSTEM MODEL

3.1 Hyper parameter optimization
The selection of the most effective neural network architecture

is a crucial step in achieving optimal performance for both

classification and generation tasks. In our approach, we employ

TC-GAN and RNN for the entire system. The learning

algorithm for the neural network is fine-tuned to attain an

optimal learning rate, incorporating dynamic adjustments in

error functions to minimize losses across a set of layers. This

iterative process is repeated for both TC-GAN and RNN to

obtain finely tuned and optimized parameters. The optimized

parameters play a pivotal role in configuring the system model,

a detailed explanation of which follows in the subsequent

section. This meticulous parameter tuning ensures that the

neural network models are poised to deliver the best possible

results in terms of accuracy, robustness, and efficiency,

aligning with the specific requirements of the classification and

generation tasks at hand

3.2 Neural Network model and training
An eight-layered fully connected neural network is constructed

using TensorFlow, with each layer comprising 1024 neurons of

the RNN type. Notably, the RNN incorporates Long Short-

Term Memory (LSTM), enhancing its capacity to capture

dependencies over time. Both types of neural networks,

standard RNN and LSTM-based RNN, are meticulously

designed and subjected to training. The results are subjected to

a comparative analysis to discern the performance disparities

between the two architectures. The models are implemented in

TensorFlow [17], with Figure 2 and Figure 3 depicting the

structures of the RNN and LSTM-based RNN, respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.7, February 2024

45

The fundamental distinction lies in the presence of a memory

unit for short-term memory in each neuron of the LSTM,

contributing to its heightened accuracy. The comparative

analysis between the two architectures provides valuable

insights into the trade-offs and advantages offered by standard

RNN and LSTM-based RNN in the context of the specific task

at hand. Additionally, the mathematical equation governing

TC-GAN for feature vector generation, derived from the

extracted APK features, is presented for a comprehensive

understanding of the feature engineering process.

𝐓𝐂 − 𝐆𝐀𝐍 = 𝐐𝐮𝐚𝐧 [𝐦𝐢𝐧 𝐦𝐚𝐱 [𝐥𝐨𝐠(𝐃(𝐱)) + 𝐥𝐨𝐠(𝟏
− 𝐃(𝐆(𝐳)))] + 𝐞𝐫𝐫𝐨𝐫(𝐏𝟏|𝐏𝟐)]

In the TC-GAN methodology, the process involves taking the

output from the Generative Adversarial Network (GAN) and

introducing an error, forming an intermediate vector. This

intermediate vector serves as input to the GAN, where it

undergoes quantization to generate an output aligned with a

specific class. The resulting output from this step is then

utilized as a feature vector. This iterative process leverages the

adversarial training dynamics of GANs, enhancing the

discriminative capabilities of the generated features and

contributing to the overall effectiveness of the classification

task. The introduction of error and quantization steps within the

GAN framework helps refine and optimize the feature vector

for improved performance in subsequent classification and

prediction tasks related to the APKs under consideration.

Fig. 2. Overall Model of this project

3.3 This paragraph is a repeat of 3.1

Fig. 3. Variation of Accuracy, Losses for TC-GAN

4. RESULTS
As outlined previously, the training and modeling process

encompassed three types of neural networks. To evaluate the

efficacy of these models, their results were compared with prior

research conducted by various scholars, as documented in the

papers we reviewed. table 4 visually represents the fluctuations

in accuracy and losses, providing a comprehensive view of the

models' performance over the training period. This comparative

analysis not only validates the improvements achieved in our

work but also contributes to the broader understanding of

advancements in neural network-based approaches for the

specific task at hand. The visualization in Tensor board serves

as a valuable tool for tracking and interpreting the dynamics of

accuracy and loss metrics throughout the training process,

facilitating a more insightful assessment of the model's

behavior.

Table 4. Comparison of Results with Kim et al [11]

S.

No

Classifier Train

Acc

Test Acc Time in

Hours

1 J-48 81% 70% 0.10

2 Basic Bayes Net 68% 76% 0.13

3 RNN based

models
81% 79% 9

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.7, February 2024

46

4 TC-

GAN(proposed

model)

82% 98% 101

5. CONCLUSION
Following thorough training and experimentation, our results

indicate significant improvements over traditional CNN and

RNN-based neural networks. The utilization of TC-GAN-

based neural models, which excel in feature extraction, holds

promising potential for the classification and prediction of APK

activities. This advancement enables more accurate and

nuanced assessments of APK behavior. GAN models, which

have evolved beyond their initial applications, are becoming

instrumental in various dimensions beyond our specific use

case. Their versatility positions them as valuable tools for

enhancing the training of diverse models, including hybrid

models that leverage the strengths of multiple approaches. This

indicates a promising future for the integration of TC-GAN and

GAN models in advancing the field of APK classification and

prediction, offering more robust and effective solutions in

cybersecurity.

6. FUTURE WORK
The utilization of TC-GAN has demonstrated its efficacy

not only in generating values but also in overall feature

generation. Our intention is to extend its application to

address web-based activities, particularly in the mobile

domain, focusing on harmful extensions that attach to

browsers. This new endeavor aims to enhance our

understanding of potential threats in the online

environment. We invite contributions and insights from

researchers worldwide through our GitHub page,

fostering collaboration to build a benchmark dataset

collectively. This collaborative effort is instrumental in

creating a comprehensive and diverse resource,

enriching the field of cybersecurity research and

furthering our ability to identify and mitigate risks

associated with web-based activities and malicious

browser extensions.

7. REFERENCES
[1] “Kaspersky Lab Reporting: Mobile Malware Has Grown

Almost 3-fold in Q2, and Cyberespionage Attacks Target

SMB Companies.” www.kaspersky.com, 18 May 2023,

[2] Funk, Christian. “Kaspersky Security Bulletin 2013.

Overall Statistics for 2013.” Securelist, 18 May 2021,

securelist.com/kaspersky-security-bulletin-2013-overall-

statistics-for-2013/58265.

[3] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang and P. Ning,

Detecting malicious apps in o cial and alternative Android

markets, Proceedings of the second ACM conference

on Data and Application Security and Privacy,2012

[4] M. Spreitzenbarth, T. Schreck, F. Echtler, D. Arp and J.

Ho mann, Mobile- Sandbox: combining static and

dynamic analysis with machine-learning tech- niques,

International Journal of Information Security,14(2):141–

153,2014

[5] Kiran Khatter, Sapna Malik: “AndroData: A Tool for

Static & Dynamic Feature Extraction of Android Apps”

in International Journal of Applied Engineering, Jan

2015.

[6] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid:

Automated Security Certification of Android

Applications,” Technical report, University of Maryland,

2009.

[7] Y. Feng, S. Anand, I. Dillig and A. Aiken, Apposcopy:

semantics-based detection of Android malware through

static analysis,Proceedings of the 22nd ACM SIG- SOFT

International Symposium on Foundations of Software

Engineering,576– 587,2014

[8] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. Chun, L. P.

Cox, J. Jung, P. Mc- Daniel and A. N. Sheth, TaintDroid:

An Information-Flow Tracking System for Realtime

Privacy Monitoring on Smartphones,ACM Transactions

on Computer Systems, 32(2):1–29, 2014

[9] V. M. Afonso, M. F. de Amorim, A. R. A. Gregio, G. B.

Junquera and P. L. de Geus, Identifying Android malware

using dynamically obtained features,Journal of Computer

Virology and Hacking Techniques, 11(1):9–17, 2015

[10] J. Abah, O. Waziri,M. Abdullahi, U. Arthur and O.

Adewale, A machine learn- ing approach to anomaly-

based detection on Android platforms, International

Journal of Network Security and Its Applications,

7(6):15–35,2015

[11] H. Kang, J.-W. Jang, A. Mohaisen, and H. K. Kim,

“Detecting and classifying android malware using static

analysis along with creator information,” International

Journal of Distributed Sensor Networks, vol. 11, no. 6,

Article ID 479174, 2015.

[12] https://github.com/prashant343/APKinfectDetect/blob/m

aster/APKdata.c

[13] Tensorflow. “GitHub - Tensorflow/Tensorflow: An Open

Source Machine Learning Framework for

Everyone.” GitHub, github.com/tensorflow/tensorflow.

[14] Skylot. “GitHub - Skylot/Jadx: Dex to Java Decompiler.”

GitHub, github.com/skylot/jadx.

IJCATM : www.ijcaonline.org

