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ABSTRACT 

Identifying infected Android apps relies on extracting key 

features from apps, both statically and dynamically. Static 

feature analysis offers a comprehensive view by examining all 

source code, including bytecode, C++ code, and permission-

containing manifest files. Dynamic analysis complements this 

by observing app behavior in action, such as disk access, 

system calls, and network activity. Challenges arise when apps 

update, as feature sets evolve, potentially hindering 

classification accuracy. To address this, researchers developed 

a tool combining a GAN (Generative Adversarial Network) and 

automation to continuously gather and update feature sets for 

training. The GAN generates similar samples to enhance 

training and classification capabilities. The proposed 

classification cascaded with GAN model named TC-GAN, 

categorizes apps into three classes: malicious, benign, and 

inconclusive ("can't say"). Using TensorFlow Lite, the model 

achieved over 82% accuracy on a dataset of 12,000 apps and 

their variations, with 15 extracted and 10 GAN-generated 

features. 
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Keywords 
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1. INTRODUCTION 
Almost all large and small Android application Markets are 

under continuous & timed attacks by cyber criminals. Also, 

there are many paid and free third-party stores and website 

which offer Free apps with malwares. Some of the onetime paid 

versions also have been on many stores that allows paid app as 

free. These free apps contain malicious code in them which 

allow miners to mine for illegal currencies on the victim’s 

device without even being noticed by the user. Apart from 

stealing the private information, it can also be used to 

threatening the user for crypto coins. These attackers package 

the APK’s and add many forms of spy ware, malicious code, 

crypto currency mining frameworks and reverse tcp tunnels for 

uploading the private contents on to dark web. By a report of 

Kasp Labs [1] there were 221,800 new mobile malware 

programs that emerged in the second quarter of 2018 alone, 

which is 1.8 times more than previous times. Google Play Store 

has also come up with play protect to solve this problem of 

identifying the malicious app using their own custom AI 

models. Also, other labs and authors have been trying to solve 

this problem of detecting the malicious and benign apps. Avast 

has built a human made dataset on it. Which we will be using 

its classification as our primary dataset for over 10k APK’s [2]. 

Y.Zhou [3] has worked on features & machine extraction on 

API level, there are works done by authors to extract features 

based on system call and permissions [4]. AndroData is a good 

tool used to extract large number of static and dynamic vector-

based features of android app [5]. Scandroid[6] is a Java/C++ 

program for dynamic feature extraction made for manifest file 

and it also performs vector feature extraction. Apposcopy is a 

fully dynamic tool to extract features based on API calls [7]. 

TaintDroid [8] are used for scanning privacy features and 

comDroid[9], a static analysis tool based on Bytecode of the 

decompiled APKs. So over all there has been many research 

work focused on feature extraction as well as algorithms for 

classification. The popular algorithm used varies from SVM to 

random forest [10] and also many CNN based feature 

extraction and the dataset creation from many aspects. But still 

there is no standard dataset for the practice or evaluation 

purpose.  

Kim et al. proposed an intrusion detection tool utilizing a J48 

decision tree for classifying malicious and benign applications. 

They extended their approach by incorporating JavaScript for 

dynamic feature extraction, creating an app that functions as a 

host-based intrusion detection system alongside existing 

antivirus systems. The study references various works in 

feature extraction, mathematical representation, algorithms, 

and training basic neural network models for effective APK 

classification. Dynamic analysis considers the number of 

system calls in emulators, incorporating system call 

information into the final dataset. The updated dataset, 

available on GitHub, serves educational purposes [11]. For 

classification, a neural network using the TensorFlow Lite 

framework is employed, featuring 10 layers with 512 

perceptrons each. The choice of activation function impacts 

model accuracy. The project comprises three modules: 

generating the feature vector, creating a labeled dataset with 

human and Avast reports; training a GAN on this data for 

dataset enhancement; and employing a python-based CNN 

neural network to classify new APKs into three classes - 

malicious, benign, or undetermined. The code for TC-GAN and 

GAN is open for public review and evaluation [16]. 

2. NEW FEATUREVECTOR 

GENERATION USING TC-GAN 
The TC-GAN generation process integrates both static and 

dynamic features to classify APKs as malicious, benign, or 

indeterminate. Static features are derived from the APK source 

code, decompiled using the Jadx tool [14]. These features are 

used to train TC-GAN, generating additional vectors. The static 

feature extraction module, implemented in Python using 

pandas and related modules, is depicted in Figure 1, illustrating 

the feature extraction process and the creation of the final data 

for TC-GAN. Training and labeling adhere to the AVG [15] 

report standards, and the resulting dataset will be accessible on 

GitHub solely for research purposes. Dynamic feature 
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extraction involves a C++ module running as a system 

application on rooted Android devices and emulators created 

on VirtualBox following Geny Motion guidelines. This module 

captures basic feature vectors, as outlined in Table 2. After TC-

GAN training, a new set of features, labeled numerically, is 

presented in Table X. The amalgamation of static and dynamic 

features, coupled with TC-GAN's training, provides a 

comprehensive basis for classifying APKs, offering a nuanced 

understanding of their behavior and potential threats. 

 
Fig. 1. Process of feature extraction 

Once the dataset is labeled, it becomes ready for training the 

classifier to achieve the final classification of APKs. It's 

important to note that this dataset will continue to evolve, and 

the latest version will be accessible on our GitHub homepage. 

For legal compliance, the APK names have been deliberately 

removed. The dynamic feature extraction (DFE) module is 

crafted in C++ and is tailored for Android systems, functioning 

seamlessly on rooted devices. In contrast, the static module is 

designed in Python, offering versatility as it can operate on any 

system. This comprehensive approach, encompassing both 

static and dynamic features, coupled with the evolving dataset, 

ensures a robust foundation for training classifiers and 

enhancing the understanding of APK behavior in a security 

context. 

Table 1. Sample dataset Generated using TC-GAN 

S.No F1 F2 — Fn Class 

1 0.212 3 0.001 0 Malicious 

2 0.45 4 0.003 0 Malicious 

3 23 3 2 0 Benign 

4 1.09 9 1 7 can’t say 

Table 2. Dynamic Feature Vectors [12] 

S. No. Feature vector name 

1 System call 

2 Disk Access time 

3 Disk Access duration 

4 No. of network URL 

5 Data exchange per URL  

6 Background activation time 

7 background services 

8 no. of permissions 

9 no. of threads  

10 native JNI libs 

11 Reverse TCP payload  

12 No. of HTTPS URL 

13 No. of HTTP URL 

14 Front Camera access  

15 no. of Async tasks 

 

Table 3. TC-Gan based generation feature vectors along 

with weights 

S.No F1 F2 F3 F4 F5 F6 

W1 0.9 2 0.001 - 5 8 

W2 0.12 7 - - 9 8 

W3 0.35 12.4 - - 5.2 6.2 

W4 0.1 6 - - 1.5 - 

 

3. SYSTEM MODEL 

3.1 Hyper parameter optimization 
The selection of the most effective neural network architecture 

is a crucial step in achieving optimal performance for both 

classification and generation tasks. In our approach, we employ 

TC-GAN and RNN for the entire system. The learning 

algorithm for the neural network is fine-tuned to attain an 

optimal learning rate, incorporating dynamic adjustments in 

error functions to minimize losses across a set of layers. This 

iterative process is repeated for both TC-GAN and RNN to 

obtain finely tuned and optimized parameters. The optimized 

parameters play a pivotal role in configuring the system model, 

a detailed explanation of which follows in the subsequent 

section. This meticulous parameter tuning ensures that the 

neural network models are poised to deliver the best possible 

results in terms of accuracy, robustness, and efficiency, 

aligning with the specific requirements of the classification and 

generation tasks at hand 

3.2 Neural Network model and training 
An eight-layered fully connected neural network is constructed 

using TensorFlow, with each layer comprising 1024 neurons of 

the RNN type. Notably, the RNN incorporates Long Short-

Term Memory (LSTM), enhancing its capacity to capture 

dependencies over time. Both types of neural networks, 

standard RNN and LSTM-based RNN, are meticulously 

designed and subjected to training. The results are subjected to 

a comparative analysis to discern the performance disparities 

between the two architectures. The models are implemented in 

TensorFlow [17], with Figure 2 and Figure 3 depicting the 

structures of the RNN and LSTM-based RNN, respectively. 
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The fundamental distinction lies in the presence of a memory 

unit for short-term memory in each neuron of the LSTM, 

contributing to its heightened accuracy. The comparative 

analysis between the two architectures provides valuable 

insights into the trade-offs and advantages offered by standard 

RNN and LSTM-based RNN in the context of the specific task 

at hand. Additionally, the mathematical equation governing 

TC-GAN for feature vector generation, derived from the 

extracted APK features, is presented for a comprehensive 

understanding of the feature engineering process. 

𝐓𝐂 − 𝐆𝐀𝐍 =  𝐐𝐮𝐚𝐧 [𝐦𝐢𝐧 𝐦𝐚𝐱 [𝐥𝐨𝐠(𝐃(𝐱))  +  𝐥𝐨𝐠(𝟏
− 𝐃(𝐆(𝐳)))]   +  𝐞𝐫𝐫𝐨𝐫(𝐏𝟏|𝐏𝟐) ] 

In the TC-GAN methodology, the process involves taking the 

output from the Generative Adversarial Network (GAN) and 

introducing an error, forming an intermediate vector. This 

intermediate vector serves as input to the GAN, where it 

undergoes quantization to generate an output aligned with a 

specific class. The resulting output from this step is then 

utilized as a feature vector. This iterative process leverages the 

adversarial training dynamics of GANs, enhancing the 

discriminative capabilities of the generated features and 

contributing to the overall effectiveness of the classification 

task. The introduction of error and quantization steps within the 

GAN framework helps refine and optimize the feature vector 

for improved performance in subsequent classification and 

prediction tasks related to the APKs under consideration. 

 

 

Fig. 2. Overall Model of this project 

3.3 This paragraph is a repeat of 3.1 

 

 

Fig. 3. Variation of Accuracy, Losses for TC-GAN 

4. RESULTS 
As outlined previously, the training and modeling process 

encompassed three types of neural networks. To evaluate the 

efficacy of these models, their results were compared with prior 

research conducted by various scholars, as documented in the 

papers we reviewed. table 4 visually represents the fluctuations 

in accuracy and losses, providing a comprehensive view of the 

models' performance over the training period. This comparative 

analysis not only validates  the improvements achieved in our 

work but also contributes to the broader understanding of 

advancements in neural network-based approaches for the 

specific task at hand. The visualization in Tensor board serves 

as a valuable tool for tracking and interpreting the dynamics of 

accuracy and loss metrics throughout the training process, 

facilitating a more insightful assessment of the model's 

behavior. 

Table 4. Comparison of Results with Kim et al [11]  

S.

No 

Classifier Train 

Acc 

Test Acc Time in 

Hours 

1 J-48 81% 70% 0.10 

2 Basic Bayes Net 68% 76% 0.13 

3 RNN based 

models 
81% 79% 9 
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4 TC-

GAN(proposed 

model) 

82% 98% 101 

 

5. CONCLUSION 
Following thorough training and experimentation, our results 

indicate significant improvements over traditional CNN and 

RNN-based neural networks. The utilization of TC-GAN-

based neural models, which excel in feature extraction, holds 

promising potential for the classification and prediction of APK 

activities. This advancement enables more accurate and 

nuanced assessments of APK behavior. GAN models, which 

have evolved beyond their initial applications, are becoming 

instrumental in various dimensions beyond our specific use 

case. Their versatility positions them as valuable tools for 

enhancing the training of diverse models, including hybrid 

models that leverage the strengths of multiple approaches. This 

indicates a promising future for the integration of TC-GAN and 

GAN models in advancing the field of APK classification and 

prediction, offering more robust and effective solutions in 

cybersecurity. 

6. FUTURE WORK 
The utilization of TC-GAN has demonstrated its efficacy 

not only in generating values but also in overall feature 

generation. Our intention is to extend its application to 

address web-based activities, particularly in the mobile 

domain, focusing on harmful extensions that attach to 

browsers. This new endeavor aims to enhance our 

understanding of potential threats in the online 

environment. We invite contributions and insights from 

researchers worldwide through our GitHub page, 

fostering collaboration to build a benchmark dataset 

collectively. This collaborative effort is instrumental in 

creating a comprehensive and diverse resource, 

enriching the field of cybersecurity research and 

furthering our ability to identify and mitigate risks 

associated with web-based activities and malicious 

browser extensions. 
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