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ABSTRACT 

In this work, we address the problem of robust real-time 

scheduling and resource allocation in real-life, complex 

environments with unpredictable stochastic behavior. We focus 

on an important, simplified case study from the computing 

domain, i.e., memory resource allocation and job scheduling on 

a dedicated computer cluster with shared memory. We explore 

techniques of resource utilization given a defined computing 

environment, and we develop an adaptive model to handle 

incoming computing jobs. We test and validate our proposed 

model by simulation using the Matlab and Sim Events software 

packages. An adaptive model, designed for a cluster of dual-

core machines with shared memory constraints, is proposed. 

We have shown that our model is efficient and robust despite 

making no assumptions about the stochastic characteristics of 

the incoming jobsIn this work, we address the problem of 

robust real-time scheduling and resource allocation in real-life, 

complex environments with unpredictable stochastic behavior. 

We focus on an important, simplified case study from the 

computing domain, i.e., memory resource allocation and job 

scheduling on a dedicated computer cluster with shared 

memory. We explore techniques of resource utilization given a 

defined computing environment, and we develop an adaptive 

model to handle incoming computing jobs. We test and validate 

our proposed model by simulation using the Matlab and Sim 

Events software packages. An adaptive model, designed for a 

cluster of dual-core machines with shared memory constraints, 

is proposed. We have shown that our model is efficient and 

robust despite making no assumptions about the stochastic 

characteristics of the incoming jobs 
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1. INTRODUCTION 
In the production world, supply chain optimization is of 

immense value. The effective use of the resources at hand, 

which means minimizing costs while maximizing throughput, 

is at the core of industrial research. Processes can be optimized 

by improving scheduling and process control and by reducing 

waste. While optimization problems typically involve 

assumptions about job arrival rates, type of jobs, and processing 

times, such assumptions are often non-realistic and thus 

generate inadequate results with a poor fit to the complex 

scenarios that are typical in reality. 

In contrast to such modeling, in real life, realistic assumptions 

about these metrics cannot be made. For example, each new 

order that arrives at a production facility can vary from other 

orders in terms of order size and type, arrival time, and 

processing time. In such unstructured environments, the nature 

of the probability of each parameter cannot be accurately 

modeled. Moreover, at any given time in a production process, 

one cannot know whether a resource required to handle a 

particular job will be available. Likewise, once the resource is 

occupied, the stochastic nature of its availability also hinders 

modeling. 

Optimization under such uncertainty is applicable to many 

production-like domains. In this work, we focus on the process 

of computing. As in traditional production, computing involves 

inputs (computing jobs) and outputs (computing results), which 

resemble the processes of conventional production. The 

‘conveyor’ in our case is the computing infrastructure, and the 

goal is to optimize the processes or even just to ensure that they 

are efficiently managed by maintaining high and stable 

resource utilization, reducing idle computing power, and 

achieving overall fast and balanced computing results. 

An integral component of modern industrial technology, the 

efficient and effective management of computing resources is 

of critical importance. Just as production processes and their 

optimums constituted the pinnacle of the industrial revolution, 

today efforts to optimize computing processes are at the 

forefront of the information age. But the rapid evolution of 

computing technology and computing performance metrics 

comes at the cost of an increased potential for resource waste. 

Among the most ubiquitous manifestations of modern 

computing technology, distributed infrastructures – such as 

clouds, grids and clusters – have become a valid solution for 

data analysis in both the business and scientific computing 

worlds. Insofar as large-scale computing infrastructures are 

expensive, their utilization and efficiency are of great value. In 

multiuser and multi-machine computing environments, 

utilization and efficiency can be increased by sharing machines 

between multiple users. As modern data centers increasingly 

gravitate toward a reliance on shared clusters, an effective 

cluster resource management system, which is currently 

lacking, is of the utmost importance. 

The significant improvements in the efficiency of computing 

technology notwithstanding, many limitations and challenges 

remain, particularly in the performance efficiency of both 

computing and communication. These limitations are 

augmented by the uncertainty of the streams of incoming 

computing jobs, which affects computing efficiency and brings 

additional challenges to bear on scheduling problems. Smooth 

and efficient computing operation therefore necessitates the 

design of robust and efficient resource management strategies. 

The heterogeneous nature of computing environments is 

reflected in the variety of CPU, RAM, and I/O resources that 

are available. The application of these resources can be 

dedicated or shared, e.g., memory shared between multiple 
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cores on the same machine, which constrains the use of that 

memory by each core. Computing jobs submitted to these 

clusters may have markedly divergent resource demands, thus 

engendering a complex problem whose solution with resource 

allocation algorithms is challenging. 

In this study, we explore resource utilization techniques given 

a defined set of variables, and we develop an adaptive model to 

address the problem at hand. The remainder of this paper is 

organized as follows. Section 2 establishes the background and 

includes a review of the related work in the field of resource 

allocation and task scheduling. Section 3 describes model 

analysis through simulation, and Section 4 contains the 

conclusions and suggested future research. 

2. BACKGROUND REVIEW 
In this section, we survey some of the main disciplines and 

concepts that are relevant to this study. Emphasis is given to 

resource scheduling and allocation of computing resources. 

2.1 Scheduling 
Scheduling allows the optimal allocation of resources among a 

given set of tasks to meet desired criteria. Formally, scheduling 

problems involve tasks that need to be scheduled on resources 

subject to system constraints and an objective to optimize some 

performance measures. The general aim is to build a schedule 

that specifies when and on which resource each task will be 

executed (Karger, et al., 2009). 

In general, scheduling problems can be categorized as 

applicable to online or offline scheduling (Sgall, 1998). 

Scheduling decisions in the offline mode are made only after 

the complete set of jobs to be scheduled and other pertinent 

information, especially each job’s runtime, are known. In 

contrast, scheduling decisions while online must be made – in 

lieu of the information that is already known before offline 

decisions are made – the instant that at least one job is ready to 

be executed. For real-time services, therefore, in which jobs 

must be processed ad-hoc and for which offline processing is 

not an option, the online scheduling schemes are highly 

relevant (Qureshi, et al., 2020). They are able to cope with both 

the lack of information about the future arrival of additional 

jobs and also the possibly unknown runtimes of the present 

jobs. In general, in both offline and online scheduling, the 

preemption of jobs is optional (Qureshi, et al., 2020) (Arndt, et 

al., 2000). 

To efficiently coordinate resource sharing, achieve fairness and 

satisfy time constraints, cluster schedulers tend to exploit 

preemption, which is usually done by simply stopping the 

execution of the low priority jobs and restarting them later 

when resources are available. Thus, a non-sophisticated 

preemption policy causes significant resource waste and delays 

the response times of long running or low priority jobs (Li, et 

al., 2015). 

Without preemption, however, conflicts in task completion can 

arise when tasks try to access a resource already occupied by 

another task. Offline, problems like this can be solved with a 

table-driven schedule while synchronization protocols can be 

used for runtime operation (Holenderski, et al., 2012). In the 

current work, however, preemption is not considered. Once a 

job has been assigned to a core on a machine, it remains there 

until it has finished. This is a reasonable assumption for a 

cluster of machines in which task migration is very costly, and  

it easily outweighs the possible improvements on the schedule. 

In the cloud and cluster computing contexts, scheduling 

constitutes a major challenge. For cloud computing, scheduling 

methods are essential to improve throughput and utilization, to 

reduce costs and to provide the rapidest service times (Ibrahim, 

et al., 2021). Classic schedulers, with static internal behavior 

that shows no or very few alterations in resource structures, 

have been designed for batch processes in homogeneous 

environments. Nascent modern systems, like grid, cloud, fog, 

and edge computing (Qureshi, et al., 2020), in contrast, are 

defined by highly heterogeneous environments with variable 

structures (Berlińska, et al., 2011). 

2.2 Resource management 

To achieve effective job scheduling on a cluster of machines, 

resources must be properly managed. In a cloud environment, 

resource management is a hard problem due to the scale of 

modern data centers; the heterogeneity and inter-dependencies 

of the types of resources; load variability and unpredictability; 

and the scope of the sometimes conflicting objectives of the 

different actors in a cloud ecosystem. Consequently, both 

academia and industry have undertaken significant research in 

job scheduling (Jennings, et al., 2015). 

Two of the most important concerns for users of shared 

environments are performance and fairness. Previous studies 

have shown that resource contention between users/jobs causes 

a trade-off between performance and fairness when considering 

an effective and efficient scheduling strategy (Niu, et al., 2015). 

While users are concerned with the performance of their 

applications, operators are usually more interested in efficient 

resource utilization (Kalra, et al., 2015). 

Cloud computing operators try to achieve scaling capabilities 

by building large-scale datacenters and by sharing their 

resources between multiple users and workloads. Nevertheless, 

most cloud facilities operate at very low utilization, thus 

impinging on their cost effectiveness. Despite reservations that 

utilize up to 80% of the total capacity, aggregate CPU 

utilization is consistently below 20%. Typical memory use is 

higher (40-50%), but still less than the reserved capacity (Reiss, 

et al., 2012). This scenario reflects the same lazy approach of 

‘just throw some computing power at it’, since the problem is 

not straightforward. Regardless of the above, to minimize 

operational risks, many cloud computing operators would 

overprovision their platforms. While operators could benefit by 

planning better and by utilizing smarter scheduling approaches 

to resource allocation and provisioning that will also reduce 

costs (Andreadis, et al., 2021). 

Much of the literature on resource management deals with the 

allocation of resources to jobs, i.e., matchmaking between 

requirements and available resources. Cluster schedulers like 

YARN (Vavilapalli, et al., 2013) and Borg (Verma, et al., 2015) 

exploit a resource manager (RM), a logically centralized 

service that matches the resource needs of the different jobs 

with the available resources on worker machines. Every few 

seconds during their operation, machines communicate with 

the RM—worker machines report resource availability—and 

the RM allocates the tasks to the machines accordingly.  

The main problem with this approach is in the location of the 

RM, namely, it is situated along the critical scheduling decision 

path. Additionally, resources can remain idle between the 

termination of a job and the next communication with the RM. 

This scenario can cause low cluster utilization, especially when 

a job consists of many small tasks (Rasley, et al., 2016). 

Moreover, it is in line with the results of the most recent 
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analyses released by Google of Borg cluster traces, wherein the 

average utilization of CPU and RAM is relatively low (Tirmazi, 

et al., 2020). 

2.3 Resource allocation 
Typical resource managers utilize resource allocation and 

assignment. Allocation refers to determining how much of each 

resource is used by a workload, i.e., number of servers, number 

of cores and amount of memory and bandwidth resources per 

server. Assignment refers to the selection of the specific 

resources needed to satisfy an allocation. The two greatest 

challenges of assignment comprise server heterogeneity and 

interference between co-located workloads, when hosts are 

shared to improve utilization (Delimitrou, et al., 2014). 

Systems in which performance constraints need to be satisfied 

to fulfil system operations and end-user demands require 

dynamic resource allocation. This necessitates the development 

of efficient resource allocation strategies that take, as input, an 

application model, multi-core platform model and constraints, 

and that output real-time performance resource allocations or 

optimized resource allocations. Although several articles have 

been published about real-time allocation on multi/many-core 

systems and significant progress has been made in the field, 

myriad questions and research challenges remain open (Singh, 

et al., 2017). These challenges are exacerbated by the difficulty 

of identifying the means with which to accurately assess the 

status of the resources (for example, memory utilization on the 

system cores) during runtime. Since inappropriate resource 

management can lead to inefficiency and low runtime 

performance of the system, dynamic resource allocation 

methods are critical to improve utilization (Singh, et al., 2020). 

The uncertainty inherent in resource allocation has yet to be 

adequately addressed in the scientific literature. Job runtimes 

constitute a major source of uncertainty due to the 

unpredictability of the workload, which can change 

dramatically. This unpredictability is due to the difficulty of 

accurately estimating the runtimes of submitted jobs (which 

typically exhibit a very low correlation with historical data), 

and of executing prediction correction, prediction fallback, etc. 

It is therefore important to design knowledge-free algorithms 

that consider effective alternatives to known optimization 

technologies that assume exact knowledge of the job 

parameters (Ramírez-Velarde, et al., 2017). 

Another source of uncertainty is the heterogeneity of the 

submitted jobs to the clusters of machines. In such clusters, 

which can result in different demands on resources, some jobs 

like machine learning tasks are CPU-intensive while sorting 

task are memory-intensive. Furthermore, a task might have 

stringent resource requirements on multiple types of resources, 

e.g., memory and CPU, thus complicating the scheduling 

design even more (Grandl, et al., 2014). 

2.4  Job scheduling 
Cluster operators seek efficient utilization of the invested 

resources, while users are concerned with the overall 

experience and performance (Kalra, et al., 2015). Thus, 

effective job scheduling on the finite resources in computing 

clusters is of high importance to promote return on investment 

and meet user expectations. Consequently, the optimal 

scheduler would be capable of effective job distribution across 

the machines in a cluster. The scheduling decisions have to 

consider the mean execution time of the jobs, as well as 

efficient resources utilization to avoid resource waste, and 

optimize response times of the successfully completed  jobs in 

order to improve the user experience (Soualhia, et al., 2017). 

Computing resources are often not available instantly for a 

submitted job, therefore a queue must be maintained. There are 

two main approaches to implementing job scheduling queues – 

centralized and distributed. Centralized approaches implement 

centralized scheduler to queue the jobs, such centralized 

systems may be suffering from inherent feedback delays. Since 

worker nodes must frequently update the scheduler about their 

status. When most of the submitted jobs are short tasks, such 

clusters achieve suboptimal utilization, since the 

communication overhead becomes a bottleneck. In contrast, in 

distributed approaches, the queues are implemented on the 

worker-nodes where the submitted jobs are processed. 

Distributed approaches tend to achieve better cluster 

utilization. This comes with a cost, since distributed systems 

lack system-wide information, and thus may fail to schedule on 

the most suited processing resource and cause long job 

completion times. As a result, distributed clusters might have 

poor performance when the variability in job types is large 

(Rasley, et al., 2016). 

The desired approach, therefore, must efficiently exploit the 

system’s resources so the negative impacts of job performance 

issues on turnaround and on the waiting and response times are 

reduced as much as possible. System performance is primarily 

evaluated according to the average case. In the task scheduling 

literature, precedence is given to minimizing the variance in 

response time rather than its average. A system that exploits a 

sensible and expected response time may therefore be preferred 

to a system that might be faster on average but at the same time 

has a highly variable response time (Dave, et al., 2017). 

It is not realistic to assume that the job flow will have low 

variance or be of a predictable stochastic nature. In addition, 

considerable scheduling challenges due to constraints-meeting 

objectives remain to be resolved. For example, data locality, 

i.e., to maximize system throughput, place computations near 

their input data; memory constraints, i.e., memory sharing by 

multiple cores limits the memory available for each core, etc. 

These and other hurdles imply the challenges entailed in the 

development of an adaptive model for load handling in machine 

clusters. 

2.5 Adaptive approach 
Adaptive approaches that are able to deal with a wide variety 

of workloads and grid properties have also been studied in 

(Ramírez-Alcaraz, et al., 2011; Hirales-Carbajal, et al., 2012). 

In all cases, job runtime estimation must be considered while 

performing resource allocation. The inaccuracy of such 

estimates, however, leaves room to significantly improve 

allocation strategy outcomes, especially in distributed 

environments (Ramírez-Alcaraz, et al., 2011). 

A range of adaptive approaches, including some machine-

learning methods, have been suggested in the literature as able 

to achieve high efficiency in resource allocation. For example, 

the probability of predicting queue waiting times can be 

modeled by using multi-class classification of similar jobs in 

history using dynamic k-Nearest Neighbors (k-NN) and 

Support Vector Machines (SVMs) (Kumar, et al., 2014). Others 

have proposed the efficient use of linear and quadratic 

regression models and decision trees (Kianpisheh, et al., 2012). 

However, all of the above methods rely on certain assumptions 

or adaptations to certain types of data, for example, a model 

adapted to heavily- and lightly-loaded processors (Albers, 
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1999), known runtimes, or job queue size. A static scheduling 

algorithm based on cost-reward optimization functions 

(truthful mechanism) is presented in (Grosu, et al., 2004). In 

(Ramirez-Velarde, et al., 2008), the authors applied self-

similarity and heavy-tails to create scalability models for high 

performance clusters. Other adaptive approaches that are 

suggested use well-known scheduling platforms like YARN 

(Vavilapalli, et al., 2013) and provide automated parameter 

tuning techniques according to a predefined strategy and 

assumptions, which is a challenge for flow of jobs that lacks 

any statistical characterization (Herodotou, et al., 2020).  

While most of the scheduling approaches in the extant research 

rely heavily on assumptions, in this work, we propose a 

different, robust and assumption-free approach for effective 

resource management and scheduling in the realistic and 

complex scenarios of distributed computing systems.  In our 

simulated model, we assume a distributed system in which 

every machine has a shared resource, and we introduce a 

constraint on the amount of memory that is available on a 

machine. Therefore, in addition to scheduling, we also consider 

resource management algorithms. In the frame of this work, we 

sought to clarify how memory and computing cores can be 

fairly yet efficiently used. 

3. SYSTEM MODEL 

3.1 Problem definition 
The main motivation of this work was to characterize a general 

model in the context of the classic production world. The 

proposed model may fit a variety of real-life scenarios in which 

it is not realistic to assume the exact stochastic nature of the 

process variables, i.e., the job arrival times and processing 

times.  

The assumed highly irregular and unpredictable nature of the 

process variables renders known theoretical models irrelevant. 

We therefore propose a robust method based on real-time 

evaluation of the system state and dynamics, wherein the only 

inputs are the system’s current state, and resource allocation 

decisions are derived accordingly. 

As a case study, we use an important, real problem from the 

computing domain. We thoroughly analyze a relatively simple 

case and use the analysis results to draw conclusions about 

more complex scenarios. To that end, we constructed a 

topology of 𝑁 homogenous multicore machines – each 

machine with 𝑆 number of processing cores – as a logical 

cluster with a shared memory resource 𝑅. These machines 

executed a stream of jobs 𝐽𝑗 from multiple queues. Solving even 

this simplified scenario, however, is still highly challenging but 

warranted, as to the best of our knowledge, no similar efficient 

control model currently exists. 

3.2 Model design 
The general logical flow of jobs of our specific model is 

depicted in Fig. 1. 

 

Fig. 1:  Logical flow of jobs 

Fig. 1 shows that the scheduler is tasked with matching job 

demands with the available core and memory resources. 

Managing both cores and memory, which constrain each 

other—i.e., two cores on the same machine have access to 

shared memory that amounts to 4 GB—is a complex task. We 

propose, as depicted in Fig. 2, to create an abstraction of cluster 

resources that represents three virtual clusters of resources and 

to manage them separately. 

 

Fig. 2: Abstraction of cluster resources 

Our proposed virtual clusters have an adaptive number of cores 

that already possess sufficient memory to receive the incoming 

jobs, which are assigned to three different queues. In the event 

that one of the queues becomes overloaded, we can simply 

provision more cores to the relevant pool of machines with 

appropriate memory allocation. This setup allows us to design 

a simple provisioning method, namely, we only need to define 

the rules about when to provision more cores – with appropriate 

memory – to a queue. 

 

Fig. 3: Flow of jobs with virtual clusters 

The abstraction shown in Fig. 3 allows us to develop resource 

provisioning strategies without the need to monitor both cores 

and memory. We were interested in two events in the system: 

queue change and end processing job events. Following are two 

pseudo-code algorithms that define how the two events are 

handled in the system. 

 

Algorithm 1: Queue Change Event 
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 Input : Q1, Q2, Q3: job queues; TR: threshold; 
    vClusters(3): virtual clusters; 
 Output : vClusters(3): virtual clusters. 

 1   compareStrategy(Q1, Q2, Q3, TR) 

       2       return provisionCores(vCluster()) 

 

Algorithm 2: End Processing Job Event 

 Input : J: completed job; Q1, Q2, Q3: job queues; 

    vClusters(3): virtual clusters; 

 Output : pCluster: physical cluster. 

 1 if provisionMet(pCluster ,vClusters) then 

 2  return releaseCore(J) 

 3 else 

 4  return redesignateCore(J) 

 

Algorithm 1 suggests that, based on the queue statistics and 

dynamics, we decide whether to re-provision the cores in the 

system adjust it to the current flow of jobs. Algorithm 2 

suggests that when a job is completed, we first check whether 

a re-provision of the core is needed and then release the core 

accordingly, thus enforcing the strategy of resource 

provisioning given by Algorithm 1. 

3.3 Model simulation 
The model was implemented with MATLAB® and Simulink® 

version R2018a, and the SimEvents® library was used. The 

MATLAB file for the model in this work is available for 

download at  

https://drive.google.com/file/d/1_udAxvsBkVnb15ZbdB6ed6

pvgIoB_vaq/view?usp=sharing 

3.4 Incoming job creation in simulation 
No assumptions were made about the system’s incoming jobs. 

To manage the job creation process in the simulation, we had 

to define a unique creation process (Fig. 4). 

 

Fig. 4: Job creation process in the simulation 

We designed the stream of incoming jobs such that the system 

will be loaded to approximately 80% capacity, i.e., on a system 

comprising 10 cores, an average of 8 cores will be occupied. 

The rationale for this approach was dictated by the shared 

memory constraints, namely, some cores will not be able to 

accept computing jobs because they do not have enough 

available memory when that memory is being used by another 

core. If we drive a stream of jobs that utilizes the entire cluster, 

100% of the time, the incoming jobs will begin to accumulate 

in the job queues. 

3.5 Provisioning strategy 
We exploited a simple yet powerful strategy to adapt the 

number of cores available for each queue. We equalized the 

proportion of queue occupancy of each queue with the 

proportion of cores provisioned to the queue; in the event that 

the proportional occupancy of a given queue is larger than the 

proportion of cores provisioned to that queue by some threshold 

TR, then we allocate more cores to that queue. Occupancy, 

which is calculated by multiplying the total waiting time in the 

queue by the queue length, allows one to estimate the extent to 

which the resources for a queue are ‘occupied’. 

For example, re-provision decisions that are made based only 

on queue length may cause a ‘burst’ of jobs of the same type, 

thus lengthening the queue (but the processing times of these 

jobs may be very short). On the other hand, making the same 

decisions based only on waiting time may cause jobs that are 

already in a queue to take long times to fully process (yet they 

may be few in number). This observation indicates that 

considering both the waiting times and the queue lengths will 

confer on the process the benefits of both approaches 

simultaneously. 

3.6 Model performance 
To evaluate model performance, we collected certain statistics, 

such as measures of core and memory utilization. 

 

Fig. 5: Utilization of cores and memory during simulation 

The performance metrics depicted in Fig. 5 show that the many 

changes in job stream stochastics, model performance exhibits 

approximately 70-75% utilization in comparison with a stable 

stochastics stream of jobs (i.e., the arrival rate for the Poisson 

process remains the same over the course of the entire 

simulation), under which utilization is 75% under a similar, 

average load. 

Fig. 6 shows that the system receives a variable flow of jobs 

and that at simulation time 5 s, a job peak requiring 3 GB of 

memory begins. Since the system was designed to be adaptive, 

however, we expect it to reallocate computing resources to the 

third (3 GB) queue to handle the unpredicted peak. 

 

0 5 10 15 20 25 30

Simulation time (sec)

0

20

40

60

80

100

U
ti
li
z
a
ti
o
n

 (
%

)

Core Utilization

Memory Utilization



International Journal of Computer Applications (0975 – 8887)  

Volume 186 – No.69, February 2025 

73 

 

Fig. 6: Number of jobs queued during simulation 

 

Fig. 7: Flowtime of jobs during simulation 

The duration of time required for a job to flow through the 

system until its completion is the flowtime metric (i.e., the 

elapsed time from job entrance to the system until the end of 

job processing). The flowtime metric differs from the waiting 

time metric in that the former refers only to the processing time. 

Figure 7 shows that, despite the queue lengths, the flowtime 

was comparably short, an outcome that is due to the 

reallocation of resources to the queues with high job 

occupancies. Moreover, the graph in Fig. 7 also indicates that 

the system managed to reduce the flowtime after the peak in 

incoming jobs. 

4. CONCLUSIONS 
In this work, we addressed a scheduling problem in a cluster of 

computers, each with two cores, with a total shared memory of 

4 GB. Highly realistic and robust, this model makes no 

assumptions about job arrivals or job processing times. In 

addition, the resources were represented as designated pools of 

computing resources with pre-assigned memory capacities of 

1, 2 or 3 GB, thus facilitating core provisioning and allowing 

us to focus on the scheduling strategy. We showed that the 

model is adaptive and adequately robust. 

This model can serve as a framework for the development of 

more complex scenarios. Though the model in this work 

assumed only three types of jobs with respect to memory 

requirements, in reality, memory requirements are typically of 

a continuous nature. Future works should therefore explore 

more sophisticated representations of the core and memory 

allocation “duo”. To that end, future research should address 

provision strategies, especially the method that is used to 

determine changes in provisioning. For example, perhaps the 

use of a dynamic threshold that changes in conjunction with 

system statistics could enable more advanced and adequate 

switching between system states.  

In addition, this work did not consider the preemption of 

processes, i.e., halting jobs during processing and switching 

computing resources to another job in the queue. Moreover, it 

did not address cases such as the simultaneous scheduling of 

multiple jobs on the same core, which could be managed by 

switching between jobs, thus allocating resources not only at 

the computing core level, but explicitly assigning a computing 

time slot for a job. Both of these scenarios can be integrated in 

this model. 

This study, to the best of our knowledge, is the first to drop any 

assumptions on process stochastic nature of job arrivals and job 

processing times and to consider the constraints imposed by 

shared memory in multicore machines assembled in a cluster. 
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