
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.69, February 2025

68

Adaptive Memory Allocation Model in Multi-Core

Machine Clusters

Roman Malih
Ben-Gurion University

1 Ben-Gurion Ave.
Beer-Sheva 8443944, Israel

Ofer Levi
The Open University of Israel

1 University Road
Raanana 4353701, Israel

Diamanta Benson-Karhi
The Open University of Israel

1 University Road
Raanana 4353701, Israel

ABSTRACT

In this work, we address the problem of robust real-time

scheduling and resource allocation in real-life, complex

environments with unpredictable stochastic behavior. We focus

on an important, simplified case study from the computing

domain, i.e., memory resource allocation and job scheduling on

a dedicated computer cluster with shared memory. We explore

techniques of resource utilization given a defined computing

environment, and we develop an adaptive model to handle

incoming computing jobs. We test and validate our proposed

model by simulation using the Matlab and Sim Events software

packages. An adaptive model, designed for a cluster of dual-

core machines with shared memory constraints, is proposed.

We have shown that our model is efficient and robust despite

making no assumptions about the stochastic characteristics of

the incoming jobsIn this work, we address the problem of

robust real-time scheduling and resource allocation in real-life,

complex environments with unpredictable stochastic behavior.

We focus on an important, simplified case study from the

computing domain, i.e., memory resource allocation and job

scheduling on a dedicated computer cluster with shared

memory. We explore techniques of resource utilization given a

defined computing environment, and we develop an adaptive

model to handle incoming computing jobs. We test and validate

our proposed model by simulation using the Matlab and Sim

Events software packages. An adaptive model, designed for a

cluster of dual-core machines with shared memory constraints,

is proposed. We have shown that our model is efficient and

robust despite making no assumptions about the stochastic

characteristics of the incoming jobs

Keywords

Scheduling, Parallel computing, Resource management

1. INTRODUCTION
In the production world, supply chain optimization is of

immense value. The effective use of the resources at hand,

which means minimizing costs while maximizing throughput,

is at the core of industrial research. Processes can be optimized

by improving scheduling and process control and by reducing

waste. While optimization problems typically involve

assumptions about job arrival rates, type of jobs, and processing

times, such assumptions are often non-realistic and thus

generate inadequate results with a poor fit to the complex

scenarios that are typical in reality.

In contrast to such modeling, in real life, realistic assumptions

about these metrics cannot be made. For example, each new

order that arrives at a production facility can vary from other

orders in terms of order size and type, arrival time, and

processing time. In such unstructured environments, the nature

of the probability of each parameter cannot be accurately

modeled. Moreover, at any given time in a production process,

one cannot know whether a resource required to handle a

particular job will be available. Likewise, once the resource is

occupied, the stochastic nature of its availability also hinders

modeling.

Optimization under such uncertainty is applicable to many

production-like domains. In this work, we focus on the process

of computing. As in traditional production, computing involves

inputs (computing jobs) and outputs (computing results), which

resemble the processes of conventional production. The

‘conveyor’ in our case is the computing infrastructure, and the

goal is to optimize the processes or even just to ensure that they

are efficiently managed by maintaining high and stable

resource utilization, reducing idle computing power, and

achieving overall fast and balanced computing results.

An integral component of modern industrial technology, the

efficient and effective management of computing resources is

of critical importance. Just as production processes and their

optimums constituted the pinnacle of the industrial revolution,

today efforts to optimize computing processes are at the

forefront of the information age. But the rapid evolution of

computing technology and computing performance metrics

comes at the cost of an increased potential for resource waste.

Among the most ubiquitous manifestations of modern

computing technology, distributed infrastructures – such as

clouds, grids and clusters – have become a valid solution for

data analysis in both the business and scientific computing

worlds. Insofar as large-scale computing infrastructures are

expensive, their utilization and efficiency are of great value. In

multiuser and multi-machine computing environments,

utilization and efficiency can be increased by sharing machines

between multiple users. As modern data centers increasingly

gravitate toward a reliance on shared clusters, an effective

cluster resource management system, which is currently

lacking, is of the utmost importance.

The significant improvements in the efficiency of computing

technology notwithstanding, many limitations and challenges

remain, particularly in the performance efficiency of both

computing and communication. These limitations are

augmented by the uncertainty of the streams of incoming

computing jobs, which affects computing efficiency and brings

additional challenges to bear on scheduling problems. Smooth

and efficient computing operation therefore necessitates the

design of robust and efficient resource management strategies.

The heterogeneous nature of computing environments is

reflected in the variety of CPU, RAM, and I/O resources that

are available. The application of these resources can be

dedicated or shared, e.g., memory shared between multiple

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.69, February 2025

69

cores on the same machine, which constrains the use of that

memory by each core. Computing jobs submitted to these

clusters may have markedly divergent resource demands, thus

engendering a complex problem whose solution with resource

allocation algorithms is challenging.

In this study, we explore resource utilization techniques given

a defined set of variables, and we develop an adaptive model to

address the problem at hand. The remainder of this paper is

organized as follows. Section 2 establishes the background and

includes a review of the related work in the field of resource

allocation and task scheduling. Section 3 describes model

analysis through simulation, and Section 4 contains the

conclusions and suggested future research.

2. BACKGROUND REVIEW
In this section, we survey some of the main disciplines and

concepts that are relevant to this study. Emphasis is given to

resource scheduling and allocation of computing resources.

2.1 Scheduling
Scheduling allows the optimal allocation of resources among a

given set of tasks to meet desired criteria. Formally, scheduling

problems involve tasks that need to be scheduled on resources

subject to system constraints and an objective to optimize some

performance measures. The general aim is to build a schedule

that specifies when and on which resource each task will be

executed (Karger, et al., 2009).

In general, scheduling problems can be categorized as

applicable to online or offline scheduling (Sgall, 1998).

Scheduling decisions in the offline mode are made only after

the complete set of jobs to be scheduled and other pertinent

information, especially each job’s runtime, are known. In

contrast, scheduling decisions while online must be made – in

lieu of the information that is already known before offline

decisions are made – the instant that at least one job is ready to

be executed. For real-time services, therefore, in which jobs

must be processed ad-hoc and for which offline processing is

not an option, the online scheduling schemes are highly

relevant (Qureshi, et al., 2020). They are able to cope with both

the lack of information about the future arrival of additional

jobs and also the possibly unknown runtimes of the present

jobs. In general, in both offline and online scheduling, the

preemption of jobs is optional (Qureshi, et al., 2020) (Arndt, et

al., 2000).

To efficiently coordinate resource sharing, achieve fairness and

satisfy time constraints, cluster schedulers tend to exploit

preemption, which is usually done by simply stopping the

execution of the low priority jobs and restarting them later

when resources are available. Thus, a non-sophisticated

preemption policy causes significant resource waste and delays

the response times of long running or low priority jobs (Li, et

al., 2015).

Without preemption, however, conflicts in task completion can

arise when tasks try to access a resource already occupied by

another task. Offline, problems like this can be solved with a

table-driven schedule while synchronization protocols can be

used for runtime operation (Holenderski, et al., 2012). In the

current work, however, preemption is not considered. Once a

job has been assigned to a core on a machine, it remains there

until it has finished. This is a reasonable assumption for a

cluster of machines in which task migration is very costly, and

it easily outweighs the possible improvements on the schedule.

In the cloud and cluster computing contexts, scheduling

constitutes a major challenge. For cloud computing, scheduling

methods are essential to improve throughput and utilization, to

reduce costs and to provide the rapidest service times (Ibrahim,

et al., 2021). Classic schedulers, with static internal behavior

that shows no or very few alterations in resource structures,

have been designed for batch processes in homogeneous

environments. Nascent modern systems, like grid, cloud, fog,

and edge computing (Qureshi, et al., 2020), in contrast, are

defined by highly heterogeneous environments with variable

structures (Berlińska, et al., 2011).

2.2 Resource management

To achieve effective job scheduling on a cluster of machines,

resources must be properly managed. In a cloud environment,

resource management is a hard problem due to the scale of

modern data centers; the heterogeneity and inter-dependencies

of the types of resources; load variability and unpredictability;

and the scope of the sometimes conflicting objectives of the

different actors in a cloud ecosystem. Consequently, both

academia and industry have undertaken significant research in

job scheduling (Jennings, et al., 2015).

Two of the most important concerns for users of shared

environments are performance and fairness. Previous studies

have shown that resource contention between users/jobs causes

a trade-off between performance and fairness when considering

an effective and efficient scheduling strategy (Niu, et al., 2015).

While users are concerned with the performance of their

applications, operators are usually more interested in efficient

resource utilization (Kalra, et al., 2015).

Cloud computing operators try to achieve scaling capabilities

by building large-scale datacenters and by sharing their

resources between multiple users and workloads. Nevertheless,

most cloud facilities operate at very low utilization, thus

impinging on their cost effectiveness. Despite reservations that

utilize up to 80% of the total capacity, aggregate CPU

utilization is consistently below 20%. Typical memory use is

higher (40-50%), but still less than the reserved capacity (Reiss,

et al., 2012). This scenario reflects the same lazy approach of

‘just throw some computing power at it’, since the problem is

not straightforward. Regardless of the above, to minimize

operational risks, many cloud computing operators would

overprovision their platforms. While operators could benefit by

planning better and by utilizing smarter scheduling approaches

to resource allocation and provisioning that will also reduce

costs (Andreadis, et al., 2021).

Much of the literature on resource management deals with the

allocation of resources to jobs, i.e., matchmaking between

requirements and available resources. Cluster schedulers like

YARN (Vavilapalli, et al., 2013) and Borg (Verma, et al., 2015)

exploit a resource manager (RM), a logically centralized

service that matches the resource needs of the different jobs

with the available resources on worker machines. Every few

seconds during their operation, machines communicate with

the RM—worker machines report resource availability—and

the RM allocates the tasks to the machines accordingly.

The main problem with this approach is in the location of the

RM, namely, it is situated along the critical scheduling decision

path. Additionally, resources can remain idle between the

termination of a job and the next communication with the RM.

This scenario can cause low cluster utilization, especially when

a job consists of many small tasks (Rasley, et al., 2016).

Moreover, it is in line with the results of the most recent

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.69, February 2025

70

analyses released by Google of Borg cluster traces, wherein the

average utilization of CPU and RAM is relatively low (Tirmazi,

et al., 2020).

2.3 Resource allocation
Typical resource managers utilize resource allocation and

assignment. Allocation refers to determining how much of each

resource is used by a workload, i.e., number of servers, number

of cores and amount of memory and bandwidth resources per

server. Assignment refers to the selection of the specific

resources needed to satisfy an allocation. The two greatest

challenges of assignment comprise server heterogeneity and

interference between co-located workloads, when hosts are

shared to improve utilization (Delimitrou, et al., 2014).

Systems in which performance constraints need to be satisfied

to fulfil system operations and end-user demands require

dynamic resource allocation. This necessitates the development

of efficient resource allocation strategies that take, as input, an

application model, multi-core platform model and constraints,

and that output real-time performance resource allocations or

optimized resource allocations. Although several articles have

been published about real-time allocation on multi/many-core

systems and significant progress has been made in the field,

myriad questions and research challenges remain open (Singh,

et al., 2017). These challenges are exacerbated by the difficulty

of identifying the means with which to accurately assess the

status of the resources (for example, memory utilization on the

system cores) during runtime. Since inappropriate resource

management can lead to inefficiency and low runtime

performance of the system, dynamic resource allocation

methods are critical to improve utilization (Singh, et al., 2020).

The uncertainty inherent in resource allocation has yet to be

adequately addressed in the scientific literature. Job runtimes

constitute a major source of uncertainty due to the

unpredictability of the workload, which can change

dramatically. This unpredictability is due to the difficulty of

accurately estimating the runtimes of submitted jobs (which

typically exhibit a very low correlation with historical data),

and of executing prediction correction, prediction fallback, etc.

It is therefore important to design knowledge-free algorithms

that consider effective alternatives to known optimization

technologies that assume exact knowledge of the job

parameters (Ramírez-Velarde, et al., 2017).

Another source of uncertainty is the heterogeneity of the

submitted jobs to the clusters of machines. In such clusters,

which can result in different demands on resources, some jobs

like machine learning tasks are CPU-intensive while sorting

task are memory-intensive. Furthermore, a task might have

stringent resource requirements on multiple types of resources,

e.g., memory and CPU, thus complicating the scheduling

design even more (Grandl, et al., 2014).

2.4 Job scheduling
Cluster operators seek efficient utilization of the invested

resources, while users are concerned with the overall

experience and performance (Kalra, et al., 2015). Thus,

effective job scheduling on the finite resources in computing

clusters is of high importance to promote return on investment

and meet user expectations. Consequently, the optimal

scheduler would be capable of effective job distribution across

the machines in a cluster. The scheduling decisions have to

consider the mean execution time of the jobs, as well as

efficient resources utilization to avoid resource waste, and

optimize response times of the successfully completed jobs in

order to improve the user experience (Soualhia, et al., 2017).

Computing resources are often not available instantly for a

submitted job, therefore a queue must be maintained. There are

two main approaches to implementing job scheduling queues –

centralized and distributed. Centralized approaches implement

centralized scheduler to queue the jobs, such centralized

systems may be suffering from inherent feedback delays. Since

worker nodes must frequently update the scheduler about their

status. When most of the submitted jobs are short tasks, such

clusters achieve suboptimal utilization, since the

communication overhead becomes a bottleneck. In contrast, in

distributed approaches, the queues are implemented on the

worker-nodes where the submitted jobs are processed.

Distributed approaches tend to achieve better cluster

utilization. This comes with a cost, since distributed systems

lack system-wide information, and thus may fail to schedule on

the most suited processing resource and cause long job

completion times. As a result, distributed clusters might have

poor performance when the variability in job types is large

(Rasley, et al., 2016).

The desired approach, therefore, must efficiently exploit the

system’s resources so the negative impacts of job performance

issues on turnaround and on the waiting and response times are

reduced as much as possible. System performance is primarily

evaluated according to the average case. In the task scheduling

literature, precedence is given to minimizing the variance in

response time rather than its average. A system that exploits a

sensible and expected response time may therefore be preferred

to a system that might be faster on average but at the same time

has a highly variable response time (Dave, et al., 2017).

It is not realistic to assume that the job flow will have low

variance or be of a predictable stochastic nature. In addition,

considerable scheduling challenges due to constraints-meeting

objectives remain to be resolved. For example, data locality,

i.e., to maximize system throughput, place computations near

their input data; memory constraints, i.e., memory sharing by

multiple cores limits the memory available for each core, etc.

These and other hurdles imply the challenges entailed in the

development of an adaptive model for load handling in machine

clusters.

2.5 Adaptive approach
Adaptive approaches that are able to deal with a wide variety

of workloads and grid properties have also been studied in

(Ramírez-Alcaraz, et al., 2011; Hirales-Carbajal, et al., 2012).

In all cases, job runtime estimation must be considered while

performing resource allocation. The inaccuracy of such

estimates, however, leaves room to significantly improve

allocation strategy outcomes, especially in distributed

environments (Ramírez-Alcaraz, et al., 2011).

A range of adaptive approaches, including some machine-

learning methods, have been suggested in the literature as able

to achieve high efficiency in resource allocation. For example,

the probability of predicting queue waiting times can be

modeled by using multi-class classification of similar jobs in

history using dynamic k-Nearest Neighbors (k-NN) and

Support Vector Machines (SVMs) (Kumar, et al., 2014). Others

have proposed the efficient use of linear and quadratic

regression models and decision trees (Kianpisheh, et al., 2012).

However, all of the above methods rely on certain assumptions

or adaptations to certain types of data, for example, a model

adapted to heavily- and lightly-loaded processors (Albers,

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.69, February 2025

71

1999), known runtimes, or job queue size. A static scheduling

algorithm based on cost-reward optimization functions

(truthful mechanism) is presented in (Grosu, et al., 2004). In

(Ramirez-Velarde, et al., 2008), the authors applied self-

similarity and heavy-tails to create scalability models for high

performance clusters. Other adaptive approaches that are

suggested use well-known scheduling platforms like YARN

(Vavilapalli, et al., 2013) and provide automated parameter

tuning techniques according to a predefined strategy and

assumptions, which is a challenge for flow of jobs that lacks

any statistical characterization (Herodotou, et al., 2020).

While most of the scheduling approaches in the extant research

rely heavily on assumptions, in this work, we propose a

different, robust and assumption-free approach for effective

resource management and scheduling in the realistic and

complex scenarios of distributed computing systems. In our

simulated model, we assume a distributed system in which

every machine has a shared resource, and we introduce a

constraint on the amount of memory that is available on a

machine. Therefore, in addition to scheduling, we also consider

resource management algorithms. In the frame of this work, we

sought to clarify how memory and computing cores can be

fairly yet efficiently used.

3. SYSTEM MODEL

3.1 Problem definition
The main motivation of this work was to characterize a general

model in the context of the classic production world. The

proposed model may fit a variety of real-life scenarios in which

it is not realistic to assume the exact stochastic nature of the

process variables, i.e., the job arrival times and processing

times.

The assumed highly irregular and unpredictable nature of the

process variables renders known theoretical models irrelevant.

We therefore propose a robust method based on real-time

evaluation of the system state and dynamics, wherein the only

inputs are the system’s current state, and resource allocation

decisions are derived accordingly.

As a case study, we use an important, real problem from the

computing domain. We thoroughly analyze a relatively simple

case and use the analysis results to draw conclusions about

more complex scenarios. To that end, we constructed a

topology of 𝑁 homogenous multicore machines – each

machine with 𝑆 number of processing cores – as a logical

cluster with a shared memory resource 𝑅. These machines

executed a stream of jobs 𝐽𝑗 from multiple queues. Solving even

this simplified scenario, however, is still highly challenging but

warranted, as to the best of our knowledge, no similar efficient

control model currently exists.

3.2 Model design
The general logical flow of jobs of our specific model is

depicted in Fig. 1.

Fig. 1: Logical flow of jobs

Fig. 1 shows that the scheduler is tasked with matching job

demands with the available core and memory resources.

Managing both cores and memory, which constrain each

other—i.e., two cores on the same machine have access to

shared memory that amounts to 4 GB—is a complex task. We

propose, as depicted in Fig. 2, to create an abstraction of cluster

resources that represents three virtual clusters of resources and

to manage them separately.

Fig. 2: Abstraction of cluster resources

Our proposed virtual clusters have an adaptive number of cores

that already possess sufficient memory to receive the incoming

jobs, which are assigned to three different queues. In the event

that one of the queues becomes overloaded, we can simply

provision more cores to the relevant pool of machines with

appropriate memory allocation. This setup allows us to design

a simple provisioning method, namely, we only need to define

the rules about when to provision more cores – with appropriate

memory – to a queue.

Fig. 3: Flow of jobs with virtual clusters

The abstraction shown in Fig. 3 allows us to develop resource

provisioning strategies without the need to monitor both cores

and memory. We were interested in two events in the system:

queue change and end processing job events. Following are two

pseudo-code algorithms that define how the two events are

handled in the system.

Algorithm 1: Queue Change Event

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.69, February 2025

72

 Input : Q1, Q2, Q3: job queues; TR: threshold;
 vClusters(3): virtual clusters;
 Output : vClusters(3): virtual clusters.

 1 compareStrategy(Q1, Q2, Q3, TR)

 2 return provisionCores(vCluster())

Algorithm 2: End Processing Job Event

 Input : J: completed job; Q1, Q2, Q3: job queues;

 vClusters(3): virtual clusters;

 Output : pCluster: physical cluster.

 1 if provisionMet(pCluster ,vClusters) then

 2 return releaseCore(J)

 3 else

 4 return redesignateCore(J)

Algorithm 1 suggests that, based on the queue statistics and

dynamics, we decide whether to re-provision the cores in the

system adjust it to the current flow of jobs. Algorithm 2

suggests that when a job is completed, we first check whether

a re-provision of the core is needed and then release the core

accordingly, thus enforcing the strategy of resource

provisioning given by Algorithm 1.

3.3 Model simulation
The model was implemented with MATLAB® and Simulink®

version R2018a, and the SimEvents® library was used. The

MATLAB file for the model in this work is available for

download at

https://drive.google.com/file/d/1_udAxvsBkVnb15ZbdB6ed6

pvgIoB_vaq/view?usp=sharing

3.4 Incoming job creation in simulation
No assumptions were made about the system’s incoming jobs.

To manage the job creation process in the simulation, we had

to define a unique creation process (Fig. 4).

Fig. 4: Job creation process in the simulation

We designed the stream of incoming jobs such that the system

will be loaded to approximately 80% capacity, i.e., on a system

comprising 10 cores, an average of 8 cores will be occupied.

The rationale for this approach was dictated by the shared

memory constraints, namely, some cores will not be able to

accept computing jobs because they do not have enough

available memory when that memory is being used by another

core. If we drive a stream of jobs that utilizes the entire cluster,

100% of the time, the incoming jobs will begin to accumulate

in the job queues.

3.5 Provisioning strategy
We exploited a simple yet powerful strategy to adapt the

number of cores available for each queue. We equalized the

proportion of queue occupancy of each queue with the

proportion of cores provisioned to the queue; in the event that

the proportional occupancy of a given queue is larger than the

proportion of cores provisioned to that queue by some threshold

TR, then we allocate more cores to that queue. Occupancy,

which is calculated by multiplying the total waiting time in the

queue by the queue length, allows one to estimate the extent to

which the resources for a queue are ‘occupied’.

For example, re-provision decisions that are made based only

on queue length may cause a ‘burst’ of jobs of the same type,

thus lengthening the queue (but the processing times of these

jobs may be very short). On the other hand, making the same

decisions based only on waiting time may cause jobs that are

already in a queue to take long times to fully process (yet they

may be few in number). This observation indicates that

considering both the waiting times and the queue lengths will

confer on the process the benefits of both approaches

simultaneously.

3.6 Model performance
To evaluate model performance, we collected certain statistics,

such as measures of core and memory utilization.

Fig. 5: Utilization of cores and memory during simulation

The performance metrics depicted in Fig. 5 show that the many

changes in job stream stochastics, model performance exhibits

approximately 70-75% utilization in comparison with a stable

stochastics stream of jobs (i.e., the arrival rate for the Poisson

process remains the same over the course of the entire

simulation), under which utilization is 75% under a similar,

average load.

Fig. 6 shows that the system receives a variable flow of jobs

and that at simulation time 5 s, a job peak requiring 3 GB of

memory begins. Since the system was designed to be adaptive,

however, we expect it to reallocate computing resources to the

third (3 GB) queue to handle the unpredicted peak.

0 5 10 15 20 25 30

Simulation time (sec)

0

20

40

60

80

100

U
ti
li
z
a
ti
o
n

 (
%

)

Core Utilization

Memory Utilization

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.69, February 2025

73

Fig. 6: Number of jobs queued during simulation

Fig. 7: Flowtime of jobs during simulation

The duration of time required for a job to flow through the

system until its completion is the flowtime metric (i.e., the

elapsed time from job entrance to the system until the end of

job processing). The flowtime metric differs from the waiting

time metric in that the former refers only to the processing time.

Figure 7 shows that, despite the queue lengths, the flowtime

was comparably short, an outcome that is due to the

reallocation of resources to the queues with high job

occupancies. Moreover, the graph in Fig. 7 also indicates that

the system managed to reduce the flowtime after the peak in

incoming jobs.

4. CONCLUSIONS
In this work, we addressed a scheduling problem in a cluster of

computers, each with two cores, with a total shared memory of

4 GB. Highly realistic and robust, this model makes no

assumptions about job arrivals or job processing times. In

addition, the resources were represented as designated pools of

computing resources with pre-assigned memory capacities of

1, 2 or 3 GB, thus facilitating core provisioning and allowing

us to focus on the scheduling strategy. We showed that the

model is adaptive and adequately robust.

This model can serve as a framework for the development of

more complex scenarios. Though the model in this work

assumed only three types of jobs with respect to memory

requirements, in reality, memory requirements are typically of

a continuous nature. Future works should therefore explore

more sophisticated representations of the core and memory

allocation “duo”. To that end, future research should address

provision strategies, especially the method that is used to

determine changes in provisioning. For example, perhaps the

use of a dynamic threshold that changes in conjunction with

system statistics could enable more advanced and adequate

switching between system states.

In addition, this work did not consider the preemption of

processes, i.e., halting jobs during processing and switching

computing resources to another job in the queue. Moreover, it

did not address cases such as the simultaneous scheduling of

multiple jobs on the same core, which could be managed by

switching between jobs, thus allocating resources not only at

the computing core level, but explicitly assigning a computing

time slot for a job. Both of these scenarios can be integrated in

this model.

This study, to the best of our knowledge, is the first to drop any

assumptions on process stochastic nature of job arrivals and job

processing times and to consider the constraints imposed by

shared memory in multicore machines assembled in a cluster.

5. REFERENCES
[1] D. Karger, C. Stein and J. Wein, 2009, "Scheduling

Algorithms," in Scheduling Algorithms. Algorithms and

Theory of Computation Handbook: special topics and

techniques, vol. 2, Chapman and Hall/CRC.

[2] J. Sgall, 1998,"On-line Scheduling," in Online

Algorithms, Springer, Berlin, Heidelberg, pp. 196-231.

[3] M. S. Qureshi, M. B. Qureshi, M. Fayaz, W. K. Mashwani,

S. B. Belhaouari, S. Hassan and A. Shah, 2020, "A

comparative analysis of resource allocation schemes for

real-time services in high-performance computing

systems," Journal of Distributed Sensor Networks, vol. 16,

no. no. 8.

[4] O. Arndt, B. Freisleben, T. Kielmann and F. Thilo, 2000,

"A comparative study of online scheduling algorithms for

networks of workstations," Cluster computing, vol. 3, no.

2, pp. 95-112.

[5] J. Li, C. Pu, Y. Chen, V. Talwar and D. Milojicic, 2015,

"Improving Preemptive Scheduling with Application-

Transparent Checkpointing in Shared Clusters," in

Middleware '15 Proceedings of the 16th Annual

Middleware Conference, Vancouver, BC, Canada.

[6] M. Holenderski, R. J. Bril and J. J. Lukkien, 2012,

"Parallel-Task Scheduling on Multiple Resources," in

Real-Time Systems (ECRTS), 2012 24th Euromicro

Conference on Real-Time Systems.

[7] I. M. Ibrahim, S. R. M. Zeebaree, M. A. M.Sadeeq, A. H.

Radie, H. M. Shukur, H. M. Yasin, K. Jacksi and Z. N.

Rashid, 2021, "Task scheduling algorithms in cloud

computing: A review," Turkish Journal of Computer and

Mathematics Education, vol. 12, no. 4.

[8] J. Berlińska and M. Drozdowski, 2011, "Scheduling

divisible MapReduce computations Author links open

overlay panel," Journal of Parallel and Distributed

Computing, vol. 71, no. 3, pp. 450-459.

[9] B. Jennings and R. Stadler, 2015, "Resource Management

in Clouds: Survey and Research Challenges," Journal of

Network and Systems Management, vol. 23, no. 3, p. 567–

619.

[10] Z. Niu, S. Tang and B. He, 2015, "Gemini: An Adaptive

Performance-Fairness Scheduler for Data-Intensive

Cluster Computing," in 2015 IEEE 7th International

0 5 10 15 20 25 30

Simulation time (sec)

0

200

400

600

800

1000

J
o

b
s

in

q
u

e
u
e

1GB

2GB

3GB

0 5 10 15 20 25 30

Simulation time (sec)

0

1

2

3

4

5

F
lo

w
t
im

e

(
s
e

c
)

1GB

2GB

3GB

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.69, February 2025

74

Conference on Cloud Computing Technology and Science

(CloudCom), Vancouver, BC, Canada.

[11] M. Kalra and S. Singh, 2015, "A review of metaheuristic

scheduling techniques in cloud computing," Egyptian

informatics journal, vol. 16, no. 3, pp. 275-295.

[12] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz and M.

A. Kozuch, 2012, "Heterogeneity and Dynamicity of

Clouds at Scale: Google Trace Analysis," in SoCC '12

Proceedings of the Third ACM Symposium on Cloud

Computing, New York.

[13] G. Andreadis, F. Mastenbroek, V. v. Beek and A. Iosup,

2021, "Capelin: Data-Driven Compute Capacity

Procurement for Cloud Datacenters using Portfolios of

Scenarios," IEEE Transactions on Parallel and Distributed

Systems.

[14] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,

M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,

B. Saha, C. Curino, O. O'Malley, S. Radia, B. Reed and

Baldeschwiele, 2013, "Apache Hadoop YARN: yet

another resource negotiator," in SOCC '13 Proceedings of

the 4th annual Symposium on Cloud Computing, Santa

Clara, California.

[15] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E.

Tune and J. Wilkes, 2015, "Large-scale cluster

management at Google with Borg," in EuroSys '15

Proceedings of the Tenth European Conference on

Computer Systems, Bordeaux, France.

[16] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M.

Vojnovic and S. Rao, 2016, "Efficient Queue

Management for Cluster Scheduling," in EuroSys '16

Proceedings of the Eleventh European Conference on

Computer Systems, ondon, United Kingdom.

[17] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin,

S. Hand, M. Harchol-Balter and J. Wilkes, 2020, "Borg:

the next generation," in Proceedings of the Fifteenth

European Conference on Computer Systems.

[18] C. Delimitrou and C. Kozyrakis, 2014, "Quasar:

Resource-Efficient and QoS-Aware Cluster

Management," in ASPLOS '14 Proceedings of the 19th

international conference on Architectural support for

programming languages and operating systems.

[19] A. K. Singh, P. Dziurzanski, H. R. Mendis and L. S.

Indrusiak, 2017, "A Survey and Comparative Study of

Hard and Soft Real-Time Dynamic Resource Allocation

Strategies for Multi-/Many-Core Systems," ACM

Computing Surveys (CSUR), vol. 50, no. 2.

[20] H. Singh, A. Bhasin, P. R. Kaveri and V. Chavan,

2020,"Cloud Resource Management: Comparative

Analysis and Research Issues.," INTERNATIONAL

JOURNAL OF SCIENTIFIC & TECHNOLOGY

RESEARCH, vol. 9, no. 06, pp. 96-113.

[21] R. Ramírez-Velarde, A. Tchernykh, C. Barba-Jimenez, A.

Hirales-Carbajal and J. Nolazco-Flores, 2017, "Adaptive

Resource Allocation with Job Runtime Uncertainty,"

Journal of Grid Computing, vol. 15, no. 4, pp. 415-434.

[22] R. Grandl, G. Ananthanarayanan1, S. Kandula, S. Rao and

A. Akella, 2014, "Multi-Resource Packing for Cluster

Schedulers," in SIGCOMM '14 Proceedings of the 2014

ACM conference on SIGCOMM, New York.

[23] M. Soualhia, F. Khomh and S. Tahar, 2017, "Task

Scheduling in Big Data Platforms: A Systematic

Literature Review," The Journal of Systems and Software,

vol. 134, pp. 170-189.

[24] B. Dave, S. Yadav and M. Mathuria, 2017, "Customary

Methods for CPU Scheduling : A Review," International

Journal of Scientific Research in Science and Technology,

vol. 3, no. 8.

[25] J. M. Ramírez-Alcaraz, A. Tchernykh, R. Yahyapour, U.

Schwiegelshohn, A. Quezada-Pina, J. L. González-García

and A. Hirales-Carbajal, 2011, "Job Allocation Strategies

with User Run Time Estimates for Online Scheduling in

Hierarchical Grids," Journal of Grid Computing, vol. 9,

no. 1, pp. 95-116.

[26] A. Hirales-Carbajal, Tchernykh, A., Yahyapour, R.,

González-García, J. L., Röblitz, T. and Ramírez-Alcaraz,

J. M., 2012, "Multiple workflow scheduling strategies

with user run time estimates on a grid," Journal of Grid

Computing, 10(2), pp. 325-346.

[27] R. Kumar and S. Vadhiyar, 2014, "Prediction of queue

waiting times for metascheduling on parallel batch

systems," in Workshop on Job Scheduling Strategies for

Parallel Processing.

[28] S. Kianpisheh, S. Jalili and N. M. Charkari, 2012,

"Predicting Job Wait Time in Grid Environment by

Applying Machine Learning Methods on Historical

Information," International Journal of Grid and

Distributed Computing, vol. 5, no. 3, pp. 11-22.

[29] S. Albers, 1999, "Better Bounds for Online Scheduling,"

SIAM Journal on Computing, vol. 29, no. 2, pp. 459-473.

[30] D. Grosu and A. T. Chronopoulos, 2004, "Algorithmic

mechanism design for load balancing in distributed

systems," IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 34, no. 1, pp. 77-

84.

[31] R. Ramirez-Velarde, C. Vargas, G. Castañon and L.

Martinez-Elizalde, 2008, "Self-similarity and

Multidimensionality: Tools for Performance Modelling of

Distributed Infrastructure," in On the Move to Meaningful

Internet Systems: OTM 2008.

[32] H. Herodotou, Y. Chen and J. Lu, 2020, "A survey on

automatic parameter tuning for big data processing

systems," ACM Computing Surveys (CSUR), vol. 53, no.

no. 2, pp. 1-37.

IJCATM : www.ijcaonline.org

