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ABSTRACT 

The aim of the study is to solve the problem of noise in audio 

recordings and improve sound quality using existing machine 

learning methods; compare different existing methods. In order 

to test, analyze and compare methods of machine learning 

based on sound processing problem, it is proposed to use 

several different approaches. The work will use both classical 

methods of audio signal processing, such as the wiener filter 

and spectral subtraction, and more modern ones, namely 

convolutional neural networks. Each of these methods has its 

own pros and cons that will be analyzed during experiments, in 

order to determine in which case which method will be useful.  

Using these methods will allow for in-depth analysis and 

comprehensive results for audio processing. Based on the 

research, it was determined that Spectral subtraction performs 

slightly better than the Wiener filter. This is evidenced by both 

the PESQ scores for the two methods and the audiovisual 

analysis. Among all the selected methods, convolutional neural 

networks perform the best, and based on the metrics, 

conclusion was made that the best results for CNN’s can be 

achieved using L1/L2 regularization and Dropout. Further 

research may include investigating new CNN architectures for 

audio de-noising, exploring the possibilities of using other 

types of neural networks such as Recurrent Neural Networks, 

Generative Adversarial Networks for audio de-noising. 

General Terms 

Convolutional Neural Networks, Mean Square Error, Mean 

Absolute Error, Structural Similarity Index, Peak Signal-To-

Noise Ratio, Perceptual Evaluation of Speech Quality. 

Keywords 
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1. INTRODUCTION 

The work is dedicated to sound processing, namely, de-noising 

of individual audio materials. In the modern world, sound is an 

integral part of our lives. It accompanies us everywhere: music, 

voice messages in various social networks, videos, etc. Sound 

is not just air vibrations perceived by our ears; it is one of the 

key aspects of information transfer between people. The use of 

sound covers a large number of areas of our lives. First of all, 

communication, because sound is one of the main components 

of communication; medicine, because sound is used to 

diagnose diseases (ultrasound); technology - sound signals are 

used in many technical devices, from cars to computers, and 

help us navigate in space, receive information about the 

operation of devices, and control them. Art, media, education, 

entertainment, etc. - the list goes on. Sound is an integral part 

of most people's lives [3, 7]. 

The work is dedicated to sound processing, namely, de-noising 

of individual audio materials. In the modern world, sound is an 

integral part of our lives. It accompanies us everywhere: music, 

voice messages in various social networks, videos, etc. Sound 

is not just air vibrations perceived by our ears, it is one of the 

key aspects of information transfer between people. The use of 

sound covers a large number of areas of our lives. First of all, 

communication, because sound is one of the main components 

of communication; medicine, because sound is used to 

diagnose diseases (ultrasound); technology - sound signals are 

used in many technical devices, from cars to computers, and 

help us navigate in space, receive information about the 

operation of devices, and control them. Art, media, education, 

entertainment, etc. - the list goes on. Sound is an integral part 

of most people's lives [1, 5]. 

Modern technology makes it possible to record and transmit 

sound. However, due to various reasons, such as a poor-quality 

recording device, poor recording conditions, etc., the quality of 

the audio often deteriorates and noise - unwanted sound signals 

– occurs [13]. 

The aim of this study is to solve the problem of noise in audio 

recordings and improve the sound quality using existing 

machine learning methods. The conclusions obtained during 

the development process can be useful in various areas of our 

lives [9].  

Objectives of the research: 

− To study and summarize the theoretical foundations of 

audio de-noising: using related scientific works and 

research, to study the methods of audio de-noising. 

− Analyze existing de-noising methods: investigate different 

algorithms for de-noising audio recordings. 

− Collect data and prepare it for analysis. 

− Using the analyzed and studied machine learning methods, 

develop various models for de-noising audio recordings. 

− Evaluate and compare the effectiveness of different 

algorithms: using standard evaluation metrics, determine 

the effectiveness of the developed models, compare and 

determine the best model. 

The resulting trained models and their comparative analysis can 

be used by a wide range of people: the final results can be useful 

[10]: 

− In the media and entertainment industry, as sound 

engineers and producers will be able to use the ready-made 

models to improve sound quality. 

− In telecommunications, as the results can be used to 

improve the quality of voice messages, calls, or video 

conferences. 

− In the military sphere: de-noising audio recordings can help 

in the investigation of criminal cases. The models can also 
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be used in the military, as during war, radio signals are 

intercepted, which can be noisy or distorted due to 

obstacles, poor conditions, or enemy defenses. These 

methods could help reduce noise and recover important 

audio signals to facilitate analysis.  

Relevance: In today's world, audio recordings are used in many 

fields, such as music, speech, sound recording, 

cinematography, and others. However, the quality of audio 

recordings can often be degraded by noise, which can be caused 

by various factors, such as background sounds, electronics 

noise, wind noise, etc. De-noising audio recordings is an 

important task that allows to improve the sound quality and 

make it clearer and more pleasant to listen to. 

When discussing the relevance of the chosen topic, the 

following points can be highlighted: 

Growing use of audio: Audio content is becoming more and 

more popular as people listen to it at home, at work, on the road, 

and in the gym. 

Noisy environment: Life takes place in a noisy world filled with 

various sources of noise, such as traffic, construction, and 

human activity. 

Sound quality requirements: People expect clear, noise-free 

sound, making noise reduction an important consideration for 

many applications. 

Accessibility: People with hearing loss may have difficulty 

understanding speech in noisy environments. Noise reduction 

can improve the accessibility of audio content for the hearing 

impaired. 

2. RELATED WORKS 

In the process of researching the topic of audio de noising, 

many publications were found that offer innovative or existing 

methods to solve this problem. Here are some of them with a 

brief analysis and additions: 

Navneet Upadhyaya, and Abhijit Karmakarb in their paper 

“Speech Enhancement using Spectral Subtraction-type 

Algorithms: A Comparison and Simulation Study” [1] (2015) 

write that spectral subtraction is historically one of the first 

algorithms proposed to improve single-channel speech. In this 

method, the noise spectrum is estimated during speech pauses 

and subtracted from the spectrum of the noisy speech to 

estimate the clean speech. This is also achieved by multiplying 

the spectrum of the noisy speech by a gain function and then 

combining it with the phase of the noisy speech. The 

disadvantage of this method is the presence of processing 

distortions called residual noise. In recent years, a number of 

variations of the method have been developed to eliminate this 

disadvantage. These variations form a family of spectral 

subtraction algorithms. Their results have shown that modified 

forms of the spectral subtraction method significantly reduce 

residual noise, and the improved speech contains minimal 

speech distortion. 

Researchers Jonathan Le Roux and Emmanuel Vincent in their 

paper «Consistent Wiener Filtering for Audio Source 

Separation» [2] (2013) write that the Wiener filter is one of the 

most common tools in signal processing, in particular for signal 

de-noising and audio source separation. In the context of audio, 

it is usually applied in the frequency-time domain using the 

Short-Time Fourier Transform (STFT). Such processing 

usually does not take into account the relationship between 

STFT coefficients in different time-frequency bands due to 

STFT redundancy, which they call coherence. The authors 

propose to take this relationship into account when designing a 

Wiener filter, either as a hard constraint or as a soft penalty. 

They derive two conjugate gradient algorithms to compute the 

filter coefficients and show improved separation performance 

of sound sources compared to the classical Wiener filter. 

Thanh Tran Sebastian Bader, Jan Lundgren in their paper “De-

noising Induction Motor Sounds Using an Autoencoder” [3] 

(2022) describe the problems of conventional de-noising 

methods and point out that deep learning can solve such 

problems. The authors write that although traditional de-

noising methods have achieved good results in reducing noise 

in images, sound, and speech, they still have some drawbacks. 

These traditional methods are only effective at low noise levels. 

In addition, noise estimation and assumptions about aggregate 

statistical models are fundamental to these traditional methods. 

Consequently, these algorithms often underestimate or 

overestimate the noise, resulting in insufficient noise removal 

(noise is audible in the filtered result) or in sound distortion 

caused by excessive noise removal. In addition, determining 

the gain of a Wiener filter requires knowledge of the power 

spectral densities (PSDs) of the noise and the desired signals at 

a particular frequency. The calculation of SVD is slow and has 

a high computational complexity. Choosing the right wavelet 

of the right wavelets when an audio signal is noisy, for 

example, using a wavelet transform, can be time-consuming. 

By using deep neural networks (DNNs) for de-noising, these 

problems can be solved. DNN-based methods use paired data 

of noisy sounds and their corresponding clean sounds to train a 

noise reduction model. They outperform conventional filters 

for noisy images and signals [12]. 

J.S. Ashwin, N. Manoharan in «Audio De-noising Based on 

Short Time Fourier Transform» [4] (2017) propose a solution 

to the problem of sound de-noising using STFT. The proposed 

system uses the block thresholding method of STFT. It is used 

to effectively de-noise the audio signal for efficient noise 

removal. The proposed architecture uses a novel approach to 

estimate the adaptive estimation of ambient noise from speech. 

In this architecture, the original speech signals are given as an 

input signal. Using AWGN, noise is added to the signal. Then, 

the noisy signals are cleaned of noise using STFT techniques. 

Finally, the signal-to-noise ratio (SNR), peak-to-peak signal-

to-noise ratio (PSNR) for the noisy and clear signals [10]. 

The Table 1 below provides an analysis of research on the 

topic. 

Table 1. Review of related papers 

Title of the 

work 

(author) 

Method 
Pros of 

methodology 

Cons of 

methodology 

Navneet 

Upadhyaya, 

Abhijit 

Karmakarb 

Spectral 

subtraction 

One of the first 

and simplest 

methods 

The effectiveness of 

the method is 

highly dependent on 

accurate noise 

estimation, which is 

quite a challenge; In 

case of 

insufficiently good 

noise estimation, 

residual noise and 

sound distortion 

occur 
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Title of the 

work 

(author) 

Method 
Pros of 

methodology 

Cons of 

methodology 

Jonathan Le 

Roux, 

Emmanuel 

Vincent 

Wiener 

Filter 

Reliably removes 

noise due to its 

statistical 

optimality and 

adaptability to 

different 

conditions, 

making it 

effective in a 

wide range of 

applications 

Does not take into 

account the 

relationship 

between STFT 

coefficients, which 

can lead to 

inaccuracy 

Thanh Tran 

Sebastian 

Bader, Jan 

Lundgren 

Deep 

learning 

(DNN) 

Outperform 

traditional de-

noising methods 

by effectively 

removing noise 

and minimizing 

distortion 

More difficult to 

develop, requires 

large amounts of 

data, can be 

difficult to transfer 

to new data 

J.S. Ashwin, 

N. 

Manoharan 

STFT with 

block 

threshold 

Includes a new 

approach to 

estimating 

adaptive ambient 

noise that 

improves signal-

to-noise ratio 

(SNR) and peak-

to-peak signal-

to-noise ratio 

(PSNR) 

STFT can have 

limited time and 

frequency 

resolution, 

especially when 

using short analysis 

windows. This can 

lead to a loss of 

information about 

the exact timing of 

events in the signal 

or the accuracy of 

determining the 

frequencies of 

signal components. 

The above methods can be briefly described: 

Spectral subtraction: This method, one of the first, estimates the 

noise spectrum during speech pauses and subtracts it from the 

spectrum of the noisy speech. The disadvantage is the presence 

of residual noise. Modified forms of the method significantly 

reduce it, but can lead to speech distortion. 

Wiener filter: This common method uses the Short-Term 

Fourier Transform (STFT) to de-noise and separate sound 

sources. The classic Wiener filter does not take into account the 

relationship between STFT coefficients, which can lead to 

inaccuracy. Advanced algorithms take this consistency into 

account, improving results [14]. 

Deep learning: Methods based on deep neural networks 

(DNNs) are trained on pairs of noisy and clean sounds. They 

outperform traditional de-noising methods by effectively 

removing noise and minimizing distortion. 

STFT with block threshold: This method uses STFT to 

effectively de-noise an audio signal. It incorporates a new 

approach to estimating adaptive ambient noise, which improves 

the signal-to-noise ratio (SNR) and peak-to-peak signal-to-

noise ratio (PSNR) [15]. 

To summarize, there are quite a few machine learning methods 

for audio de-noising, which can be divided into two categories: 

Traditional methods: Filtering, equalization, compression, 

spectral subtraction, Wiener filter. 

Machine learning methods: Convolutional neural networks 

(CNN), recurrent neural networks (RNN), spectral analysis 

methods, hybrid methods, deep learning. 

Advantages of machine learning methods: Efficiency; 

Flexibility; Continuous improvement [9]. 

It is important to note that there is no universal de-noising 

method that is suitable for all cases. The choice of method 

depends on the type of noise, the complexity of the audio 

recording, and the desired sound quality. Throughout the study, 

there will be comparison of the existing methods and 

determination under what circumstances which method is more 

effective. 

3. RESEARCH METHODOLOGY 

In order to train a machine learning model well, a good dataset 

is required. In this work, there were used two different datasets.  

LibriSpeech [5] is a large English speech dataset consisting of 

thousands of hours of spoken audio. It is divided into training, 

validation, and test sets, which provide a wide range of speech 

data for model training. The dataset includes a variety of 

speakers, genders, and accents, which can help the model 

generalize well across different types of audios. In addition, the 

dataset contains different types of noise added to the audio 

signals to create a de-noising task, making it an ideal dataset 

for audio de-noising. 

ESC-50 [6] is a dataset of environmental sound samples. The 

dataset contains a total of 2000 sound samples grouped into 5 

classes: animal, nature, human, interior/household, and 

outdoor. The dataset is labeled with 50 classes and is also 

available with noise added to the audio signals, making it ideal 

for de-noising tasks. 

Subsequently, these two datasets will be randomly combined to 

create two datasets: a dataset with clean sound and a noisy 

dataset, which will allow for better model training. This will 

happen as follows: random sounds from the ESC-50 dataset 

will be superimposed on the LibreSpeech dataset. Thus, the 

result is a dataset with clean audio recordings and a noisy 

dataset. By using these two datasets, the model will have a 

diverse range of audio data to train on, including both speech 

and environmental sounds. This will help the model to 

generalize well to different types of audios and noise, which 

will lead to better performance in the de-noising task [11]. 

In addition, using these datasets will allow us to evaluate the 

model's performance on a diverse set of audio signals and 

noise, which will help us to assess the model's performance 

under different conditions. 

 

Fig 1: Process of datasets overlay and usage 

Now, let's consider the methods of audio data de-noising shown 

in Table 1 in more detail. Start with the spectral subtraction 

algorithm. 



International Journal of Computer Applications (0975 – 8887)  

Volume 186 – No.69, February 2025 

34 

First of all, it is worth understanding the algorithm of the 

spectral subtraction method after which the mathematical basis 

of this algorithm will be discussed. 

The following 6 stages can be distinguished in the spectral 

subtraction algorithm: 

Frame splitting: the noisy audio signal is divided into short time 

intervals (frames), during which the noise characteristics are 

considered stationary [14]. 

Calculating the spectrum: For each frame, the amplitude-

frequency response (spectrum) is calculated using the Fourier 

transform. This enables the representation of the signal in the 

frequency domain, where the energy distribution between the 

audio signal and noise becomes clearly visible. 

1. Noise estimation: The noise spectrum is estimated using 

techniques such as low-resolution frame analysis or the 

use of an a priori noise model. 

2. Noise subtraction: The noise spectrum is subtracted from 

the spectrum of the noisy signal. This step leads to the 

suppression of noise components and the enhancement of 

the audio signal spectrum. 

3. Signal recovery: Based on the modified spectrum obtained 

in the previous step, the signal is reconstructed using the 

inverse Fourier transform. This process transforms the 

signal from the frequency domain back to the time 

domain. 

4. Overlay and addition: The cleaned signal fragments 

obtained from the previous steps are overlapped and added 

to obtain the resulting filtered audio signal. 

Spectral subtraction method has a number of advantages that 

make it a popular choice for audio signal noise reduction [13]. 

The advantages of this method are as follows: 

− Simplicity of implementation: The algorithm is based on 

simple mathematical operations and does not require 

complex calculations;  

− High efficiency in removing stationary noise, such as 

background noise or engine noise; 

− Relatively low computing resource requirements, which 

makes the algorithm suitable for implementation in real-

time systems. 

The disadvantages of this method are as follows: 

− With non-stationary noise, such as impulse noise, Spectral 

subtraction can lead to distortion of the audio signal; also, 

in complex acoustic environments, SV may not always 

clearly separate speech from noise, which can lead to 

residual noise artifacts. 

After a superficial look at the spectral subtraction algorithm, it 

is now time to examine the algorithm from a mathematical and 

theoretical perspective [15].  

In their paper “Speech Enhancement using Spectral 

Subtraction-type Algorithms: A Comparison and Simulation 

Study” [1], Navneet Upadhyaya and Abhijit Karmakarb 

describe the spectral subtraction algorithm as one of the first 

and easiest audio de-noising algorithms, but one that has 

disadvantages in the form of residual noise and sound distortion 

due to insufficiently good noise estimation.  

From a mathematical point of view, the spectral subtraction 

algorithm works as follows: 

First of all, a noisy audio signal is received as input using the 

following Equation (1): 

𝑦[𝑛] = 𝑠[𝑛] + 𝑑[𝑛], (1) 

where: 𝑦[𝑛] is a noisy audio signal; 

𝑠[𝑛] is a clear sound signal; 

𝑑[𝑛] - additional noise. 

The article states that the additional noise has a zero mean value 

and does not correlate with the pure sound signal. It is 

important to understand that the sound signal is non-stationary 

and changes in time, and therefore it is worth considering not 

the entire input sound signal but individual frames. Frame by 

frame - just as the text is broken into words, the algorithm 

breaks the noisy audio signal into short fragments. This will be 

the first stage of the algorithm's work: splitting into frames. The 

representation in the short-term Fourier transform looks like 

this (Equation (2)) [10]: 

𝑦(𝑤, 𝑘) = 𝑠(𝑤, 𝑘) + 𝑑(𝑤, 𝑘), (2) 

where: 𝑘 is a number of frames. 

Next step – specter calculation. 

The sound signal is uncorrelated with the background noise, 

and therefore the short-term power spectrum 𝑦[𝑛] has no cross 

terms. Hence (Equation (3)) [10, 12]: 

|𝑦(𝑤, 𝑘)|2 = |𝑠(𝑤, 𝑘)|2 + |𝑑(𝑤, 𝑘)|2. (3) 

The audio signal can be determined by subtracting the 

estimated noise from the received signal (Equation (4)): 

|𝑠̂(𝑤, 𝑘)|2 = |𝑦(𝑤, 𝑘)|2 + |𝑑̂(𝑤, 𝑘)|
2

. (4) 

The next step is step 3: noise estimation. To determine the 

estimated noise |𝑑̂(𝑤, 𝑘)|
2
, the last frames of the sound pauses 

need to be averaged (Equation (5)): 

|𝑑̂(𝑤, 𝑘)|
2

=
1

𝑀
∑ 𝑦𝑠𝑝𝑗

|(𝑤, 𝑘)|2

𝑀−1

𝑗=0

, (5) 

where 𝑀 is the number of consecutive frames of sound pauses 

(SP). 

If the background noise is stationary, it converges to the 

optimal estimate of the noise power spectrum, since it takes the 

longer average value. 

Spectral subtraction can also be thought of as a filter. This 

requires that it can be expressed as the product of the noisy 

sound spectrum and the spectral subtraction filter (SSF) as 

follows (Equation (6)): 

where 𝐻(𝑤) is a gain function and a well-known spectral 

subtraction filter (SSF). 

𝐻(𝑤) is a zero-phase filter with a value in the range 0 <
𝐻(𝑤) ≤ 1. 

To restore the received audio signal, it is also necessary to 

estimate the phases of the sound. To achieve this, the phase of 

the noisy audio signal can be taken as the phase of the estimated 

clean speech signal, assuming that the short-term phase is 

relatively unimportant. Therefore, the audio signal in the frame 

will be calculated as (Equation (7)): 

𝑠̂(𝑤) = |𝑠̂(𝑤)|𝑒𝑗<𝑦(𝑤) = 𝐻(𝑤)𝑦(𝑤). (7) 

|𝑠̂(𝑤)|2 = (1 −
|𝑑(𝑤, 𝑘)|2

|𝑦(𝑤, 𝑘)|2) |𝑦(𝑤)|2 = 𝐻2(𝑤)|𝑦(𝑤)|2, (6) 
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The estimated speech signal shape is recovered in the time 

domain using the inverse Fourier transform 𝑆(𝜔) using overlay 

and addition approaches. 

An example of the algorithm's performance on the input noisy 

audio recording: 

 

 
Fig 2: Results of audio de-noising, using example of 

people’s speech with stationary background noise 

 

 
Fig 3: Results of audio de-noising, using example of 

people’s speech with stationary background noise 

The images illustrate how the algorithm removes noise by 

calculating its spectrum and subtracting it from the noisy audio 

recording, resulting in a de-noised signal. In particular, Figure 

2 shows that the frequency range around zero is much larger 

compared to the figures of the de-noised audio recordings. 

3.1. Wiener Filter and its modifications 

The classic Wiener algorithm, developed by Norbert Wiener in 

the 1940s, is one of the most powerful traditional methods for 

separating audio sources. It is based on the spectral 

characteristics of both the audio signal and noise, allowing for 

the estimation of individual sound sources from a mixture [9, 

7]. The Wiener filter is an optimal linear filter used to remove 

noise or distortion from a signal caused by a known function. 

It finds wide application in various fields including image 

processing, signal processing, and telecommunications. 

The Wiener filter method is based on minimizing the root mean 

square error between the estimated and original signals. It uses 

the spectral information of both the useful signal and the noise 

to obtain the optimal filter for noise removal. 

It is important to note that the Wiener filter gives optimal 

results only when the distortion function is known exactly, i.e., 

the filter is dependent on a known distortion function. 

The distortion function in the Wiener filter can be specified in 

several ways: 

1. Measurement of noise characteristics: 

− Acoustic measurements: Measure the acoustic 

characteristics of a room, such as reverberation time and 

noise spectral distribution. This data can be used to create 

a noise model that will serve as a distortion function. 

− Analyze recording data: Analyze the recording made in 

the room to extract the characteristics of the noise. This 

analysis can include spectral analysis, statistical analysis, 

and machine learning techniques. 

2. Using off-the-shelf models: 

− Existing room noise models: There are a number of off-

the-shelf room noise models that can be used. These 

models are usually based on statistical data or physical 

models of room acoustics. 

− Audio processing software: Some audio processing 

software has built-in room noise models that can be used 

in the Wiener filter. 

3. Approximation: 

− Simple approximation: A simple approximation can be 

used, such as adding white noise to the recording. This 

may not be accurate, but it can be useful for some 

applications. 

− Frequency-dependent approximation: frequency-

dependent approximation can be used, where the noise 

level depends on the frequency. This is more accurate 

than the simple approximation, but it may require more 

information about the noise characteristics. 

The choice of method depends on the specific application and 

available data. 

It is important to note that the accuracy of the room noise 

distortion function will affect the results of the Wiener filter. A 

more accurate distortion function will result in better noise 

removal and improved audio quality [13]. 

The Wiener filter can work even when the distortion function 

is not known exactly, however, the accuracy and efficiency of 

the filter will be significantly lower compared to the case when 

the distortion function is known, for the following reasons: 

− If the distortion function is unknown, it will need to be 

estimated. This estimate is likely to be inaccurate, leading 

to filtering errors. 

− The Wiener filter can amplify noise if it does not know how 

to remove it properly. This can lead to a deterioration in 

signal quality. 

− The Wiener filter will not be able to give optimal results if 

it does not know which distortion function is affecting the 

signal. 

Now let’s move on to the wiener filter algorithm description 

[11]. 

Description of the Wiener filter algorithm: 

1. Recording an audio signal: The first step involves 

recording an audio signal that contains a mixture of sound 

sources that need to be separated. It can be a recording of 

a conversation in a noisy environment, a recording of a 
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music concert, or any other audio signal containing 

several sources. 

2. Conversion to the frequency domain: Next, the audio signal 

is transformed from the time domain to the frequency 

domain using the Discrete Fourier Transform (DFT) 

(Equation (8)). This gives us a spectral representation of the 

signal that shows the amplitude and phase of the signal at 

each frequency. 

𝑋[𝑘] =  ∑ 𝑥[𝑛] ∗ e−j2πnm/N

𝑁−1

𝑛=0

, (8) 

where: 

𝑋[𝑘] – spectral coefficients of the signal; 

𝑥[𝑛] – discrete values of the signal; 

𝑁 – signal length; 

𝑗 – imaginary unit. 

3. Assessment of the noise spectrum: In order to accurately 

separate sound sources, it is important to correctly estimate 

the spectral characteristics of the noise present in the 

recording. This can be done using various methods, such as 

analyzing the signal during moments of silence or using 

ready-made room noise models. 

4. Calculating the spectrum of the estimated signal: The heart 

of the Wiener algorithm is a formula that allows to calculate 

the spectrum of the estimated signal for each frequency. 

This formula is based on the audio signal, noise, and signal-

to-noise ratio (SNR) spectra. 

The Equation (9) of the Wiener algorithm: 

X̂[k]  =  X[k] / (|X[k]|2/ σn
2   +  1), (9) 

where: 

𝑋̂[𝑘] is the spectrum of the estimated signal; 

σn
2  - noise power spectral density. 

5. Conversion back to the time domain: After calculating the 

spectrum of the estimated signal, it must be transformed 

back to the time domain using the inverse DFT (Equation 

(10)). This gives us an estimated audio signal that contains 

only one of the sound sources that were present in the 

original recording. 

x[n] =
1

N
 ∗ ∑ X[k] ∗ exp (

2πjkn

N
)

𝑁−1

𝑛=0

. (10) 

Wiener's algorithm is based on simple mathematical formulas, 

which makes it easy to understand and implement. The 

algorithm can be implemented using efficient algorithms such 

as the Fast Fourier Transform (FFT), making it practical for 

real-time audio signal processing. The Wiener algorithm gives 

optimal results for separating audio sources if the SNR is 

known accurately. 

The classical Wiener filter, although a powerful tool for 

separating audio sources, has certain limitations. It does not 

take into account the relationship between the coefficients of 

the spectral representation of the signal at different frequencies 

and in different time intervals. This can lead to inaccuracies 

when the filtered sound sources are converted back to the time 

domain. 

This is exactly what Jonathan Le Roux and Emmanuel Vincent 

describe in their paper “Consistent Wiener Filtering for Audio 

Source Separation”. They propose a Consistent Wiener Filter. 

The Consistent Wiener Filter is an improved version of the 

classic filter that takes this consistency into account. It ensures 

that separated audio sources are free of artifacts and consistent 

with each other after being converted back to the time domain. 

This filter works by minimizing a certain cost function, 

provided that the estimated sound sources in the frequency 

domain must match the Short-Time Fourier Transform (STFT) 

of their reconstructed versions in the time domain. In other 

words, the filter ensures that the information in the frequency 

domain corresponds to a signal that can be reconstructed in the 

time domain. 

The paper proposes an iterative algorithm based on the 

conjugate gradient method (Fig. 4). This algorithm seeks the 

minimum of the cost function subject to a consistency 

constraint. It uses a special preconditioner method to speed up 

convergence and exploits the properties of the forward and 

inverse short-time Fourier transform (STFT and iSTFT). 

 
Fig 4: Schematic representation of the Wiener filter 

Advantages of the coherence-constrained Wiener filter: 

− By taking coherence into account, this filter provides a 

more accurate separation of audio sources than the classical 

Wiener filter. 

− The resulting audio sources have fewer artifacts and 

distortions because their frequency domain information 

matches their time domain information. 

The coherence constraint makes the algorithm a more powerful 

tool for separating sound sources than the classical Wiener 

filter. It provides better quality and consistency of the separated 

signals. 

So, summing up, the advantages and disadvantages of the 

Wiener Filter: 

Advantages: 

− Simplicity and accessibility; 

− Efficiency; 

− Optimality (with accurate SNR); 

− Wide application. 

Disadvantages: 

− Dependence on SNR (accuracy); 

− Does not take into account nonlinear noise; 

− Does not take into account the relationship between 

spectral components; 

− Possible artifacts. 

The Wiener filter is a powerful tool for separating audio 

sources that has a number of advantages, such as simplicity, 

efficiency, and optimality. However, it is important to take into 
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account its limitations, such as its dependence on SNR, 

inability to account for nonlinear noise, and the relationship 

between spectral components. In some cases, these limitations 

can lead to inaccuracies or artifacts in the obtained sound 

sources. 

3.2. Using neural networks to de-noise 

audio 

One of the most powerful methods of audio de-noising 

nowadays is the use of neural networks. In particular, 

Convolutional Neural Networks provide an opportunity to 

quite accurately identify and eliminate noise in audio 

recordings. 

Let's consider the advantages of using neural networks to solve 

the problem [12]. 

Neural networks, in particular CNNs, offer a number of 

significant advantages for audio de-noising compared to 

various traditional methods: 

− CNNs are capable of recognizing and removing various 

types of noise with high accuracy, including background 

noise, wind noise, machine noise, hum, and other acoustic 

artifacts. Their ability to learn from large amounts of data 

allows them to analyze audio signals in depth and clearly 

separate speech or other important sounds from noise 

components. 

− CNNs can be customized to de-noise audio recordings with 

different noise characteristics and acoustic environments. 

This makes them a versatile tool that can be used to process 

audio from a variety of sources, such as telephone 

conversations, microphone recordings in noisy 

environments, music recordings, etc. 

− CNNs can be continuously improved and trained on new 

data, allowing them to adapt to new types of noise and 

acoustic conditions. This ensures that their performance 

does not deteriorate over time, but rather improves 

continuously. 

− CNNs can be trained to recognize and remove certain 

specific types of noise, such as wind noise, machine noise, 

or engine hum. This makes them a valuable tool for 

applications where it is important to detect certain non-

stationary noises. 

However, despite their advantages, neural networks have their 

drawbacks. These include the following points: 

− Writing neural networks is a more difficult task than using 

traditional audio de-noising methods.  

− Training and using CNNs can be computationally 

intensive, especially for processing large amounts of audio 

data. 

− In some cases, CNNs can remove not only noise, but also 

some important sounds from an audio signal, especially if 

these sounds have similar acoustic characteristics to the 

noise.  

− CNNs require large amounts of data for training to achieve 

high accuracy and efficiency. 

− CNNs are highly dependent on the quality of the data they 

are trained on. Noise or other artifacts in the training data 

can negatively affect their ability to remove noise from new 

audio recordings. 

The use of CNNs has its own advantages and disadvantages. 

Let's take a deeper look at the method of using neural networks. 

In the experimental part will be used model of encoder-decoder 

type. The encoder-decoder model in CNNs (convolutional 

neural networks) is a special architecture consisting of two 

interconnected subnets: encoders and decoders (Fig. 5). 

 
Fig 5: Encoder-Decoder model architecture 

The encoder is the first part that takes the audio signal as input 

and compresses it into a lower dimensional hidden space. The 

hidden space contains the main functions and characteristics of 

the input audio signal. 

The decoder is the second part that takes this hidden space as 

input and tries to restore or generate the original audio signal 

based on the information received. In other words, the decoder 

decodes the hidden space, returning to the original size or even 

generating a new audio signal based on these encoded features. 

2 architectures of the coder-encoder model can be distinguished 

(Fig. 6): 

 
Fig 6: CNN model training approaches 

Both approaches are worth analyzing. 

The first approach is that the model gives us a noise-free audio 

signal as an output. This approach is simpler because the model 

only needs to clean the audio signal. The model will learn to 

directly output the clean signal, which can be more efficient 

and give better results than trying to estimate the noise and 

subtract it. Disadvantages - The model will not be able to learn 

about the characteristics of the noise, which can be useful for 

other tasks (for example, to identify and remove certain types 

of noise). Also, if the noise is very different from one training 

example to another, it may be difficult for the model to learn a 

universal noise removal function. 

In the case of the second approach, the model outputs noise and 

a clean signal. This approach is more complex because the 

model needs to output both noise and clean signal, but it allows 

the model to learn about the characteristics of the noise, which 

can be useful for identifying and removing certain types of 



International Journal of Computer Applications (0975 – 8887)  

Volume 186 – No.69, February 2025 

38 

noise. This model is more versatile by estimating noise 

separately from the clean signal (Fig. 7). 

An example of using convolutional neural networks for de-

noising audio data: 

 
Fig 7: Block diagram of the audio de-noising algorithm 

using CNN 

To summarize, neural networks are one of the most popular 

data de-noising methods because, despite all its drawbacks, it 

is the most versatile and allows processing audio recordings 

with both stationary and non-stationary noise. This is the 

method, that will be used in the experiments described below. 

4. EXPERIMENTAL DATA SETUP 

This section will explore various data de-noising methods, such 

as spectral subtraction, convolutional neural networks (CNNs), 

and the Wiener filter. 

4.1. Experiments using the spectral 

subtraction algorithm 

Initially, the spectral subtraction algorithm was investigated. 

As mentioned in Section 2, this algorithm has the following 

advantages and disadvantages: 

The advantages of this method are as follows: 

− Relatively low computing resource requirements, which 

makes the algorithm suitable for implementation in real-

time systems. 

− Simplicity of implementation: The algorithm is based on 

simple mathematical operations and does not require 

complex computations; High efficiency in removing 

stationary noise such as background noise or engine noise. 

The disadvantages of this method are as follows: 

− With non-stationary noise, such as impulse noise, SV can 

lead to distortion of the audio signal; also, in complex 

acoustic environments, SV may not always clearly separate 

speech from noise, which can lead to residual noise 

artifacts. 

The audio recordings were taken from LibriSpeech [5]. These 

are random audios with different types of noise. 

To evaluate the results, first of all, a visual and comparative 

evaluation of the sound was performed. 

Visual evaluation was performed by displaying two images of 

the signal. 

Example 1: 

 

 
Fig 8: Visualization of the signal of noisy (a) and unnoisy 

(b) audio recordings using spectral subtraction 

(example 1) 

Figure 8 (a) shows the original audio signal containing a 

significant amount of noise, as the signal amplitude fluctuates 

over a fairly wide range of values. Figure 8 (b) shows that the 

amplitude has become smoother and more stable compared to 

the original noisy audio. Listening to the 2 audio recordings, 

one could feel that there was less noise after the algorithm was 

applied, but the sound quality was also partially degraded. 

Perceptual Evaluation of Speech Quality (PESQ) is a family of 

standards that provides a test methodology for automated 

evaluation of speech quality as experienced by a telephony 

system user. It was standardized as ITU-T Recommendation 

P.862[1] in 2001. PESQ is used for objective voice quality 

testing by handset manufacturers, network equipment vendors, 

and telecommunications operators. This industry standard for 

voice quality is objective and internationally recognized. It 

takes into account various critical characteristics, including: 

sound clarity; call volume; background noise; variable delay; 

sound delay; clipping; interference. 
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This test compares two audio recordings. This comparison 

provides a completely unbiased and objective measure of the 

actual sound that people hear. This is much more accurate than 

other methods of measuring sound quality, which often rely on 

predictions or even subjective assessments. The PESQ score 

ranges from 1 to 4.5. The higher the score, the better the sound 

quality level. 

Experiments were conducted on different audio recordings 

with different types of noise in the background. The results are 

as follows Table 2. 

Table 2. Spectral subtraction results 

№ 
№ of audio in 

dataset: 
Type and description of noise PESQ: 

1 730-358-0061 
Non-stationary (inhalation 

/exhalation noise) 
2.06 

2 
2182-181173-

0033 

Stationary (regularly repeated 

barking of a dog) 
2.4 

3 
4406-16883-

0021 
Stationary (keyboard sound) 2.3 

4 
5808-54425-

0016 
Non-stationary (engine sound) 1.1 

5 
7059-88364-

0015 
Stationary (loud noise) 1.2 

6 
8063-274115-

0002 
Stationary (engine sound) 1.5 

7 
8747-293952-

0005 
Stationary (knocking sound) 2.2 

Signal graphs for the experiments: 

Experiment 1: Non-stationary noise (inhalation /exhalation): 

 

 
Fig 9: Signal visualization of noisy (a) and de-noised (b) 

audio recordings using spectral subtraction for 

experiment 1 

Experiment 2: Stationary noise (regularly repeated dog 

barking) 

 

 
Fig 10: Signal visualization of noisy (a) and unnoisy (b) 

audio recordings using spectral subtraction for 

experiment 2 

Experiment 3: Stationary noise (keyboard sound) 

 

 
Fig 11: Signal visualization of noisy (a) and unnoisy (b) 

audio recordings using spectral subtraction for 

experiment 3 

Experiment 4: Non-stationary noise (engine sound) 

 

 
Fig 12: Signal visualization of the noisy and de-noised 

audio recordings using spectral subtraction for 

experiment 4 

Experiment 5: Stationary noise (loud noise) 
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Fig 13: Signal visualization of the noisy and de-noised 

audio recordings using spectral subtraction for 

experiment 5 

Experiment 6: Stationary noise (engine sound) 

 

 
Fig 14: Signal visualization of the noisy and de-noised 

audio recordings using spectral subtraction for 

experiment 6 

Experiment 7: Stationary noise (knocking sound) 

 

 
Fig 15: Signal visualization of noisy and unnoisy audio 

recordings using spectral subtraction for experiment 6 

Analyzing the results, it can be distinguished, that the algorithm 

copes best with stationary noise, and it is important to note that 

if the noise is loud, the PESQ score is lower, and therefore the 

result can be considered worse. In general, the advantages of 

using the spectral subtraction method include the following 

points: 

1) The method is very fast: for example, it takes 1.5373 

seconds to de-noise a 20-second audio recording; 

2) The method copes well with stationary noise, but the result 

is worse when the noise volume is high. 

3) The algorithm does not require a large amount of data: only 

one audio recording is enough. 

Disadvantage of the method: The method performs rather 

mediocrely in the presence of non-stationary noise: many 

artifacts remain in the audio recording. In general, the method 

does not give the best results in de-noising. 

4.2. Experiments using the Wiener filter 

algorithm 

The Wiener filter is a statistical signal de-noising method 

widely used in audio signal processing. It belongs to the group 

of linear filters based on minimizing the mean square error 

(MSE) between the original and filtered signals. 

The Wiener filter is based on the assumption that the useful 

signal and noise are statistically independent. This means that 

their spectral characteristics do not overlap. 

The filter uses the spectral information about the signal and 

noise to separate them and remove the noise. 

Table 3. Wiener Filter results 

№ 
Type and 

description of noise 
PESQ: 

Impressions from 

listening 

1 
Non-stationary 

(engine sound) 
1.4 

It did a good job, the noise 

has become quieter, but 

not gone 

2 
Stationary (wind 

noise) 
1.2 The noise is quite loud 

3 
Stationary 

(environment sound) 
1.5 

Partially muffled, but not 

completely eliminated 

4 
Non-stationary 

(engine sound) 
1.2 

Among all the examples, it 

did the worst job, only 

increased the noise 

5 
Stationary (loud 

noise) 
1.4 

The noise is quite loud in 

the background 

 

 
Fig 16: Signal visualization of the clean, noisy and de-

noised audio recordings using Wiener filter for 

experiment 1 
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Fig 17: Signal visualization of the clean, noisy and de-

noised audio recordings using Wiener filter for 

experiment 2 

 
Fig 18: Signal visualization of the clean, noisy and de-

noised audio recordings using Wiener filter for 

experiment 3 

 
Fig 19: Signal visualization of the clean, noisy and de-

noised audio recordings using Wiener filter for 

experiment 4 

 
Fig 20: Signal visualization of the clean, noisy and de-

noised audio recordings using Wiener filter for 

experiment 5 

Discussing the results obtained after applying the Wiener filter, 

a conclusion can be made that the advantages are: 

− Ease of implementation of the Wiener filter. 

Disadvantages: 

− The Wiener filter can lead to signal distortion if the 

assumptions about the statistical independence of the signal 

and noise are not met. 

− It can be sensitive to inaccurate estimates of the spectral 

characteristics of the signal and noise. 

4.3. Experiments using the Convolutional 

Neural Networks 

Convolutional neural networks are now one of the most 

powerful tools for de-noising audio recordings. 

In this study, there was used U-Net Network. 

U-Net is based on the so-called “Fully Connected Networks” 

proposed by Long, Shelhamer, and Darrell in 2014. The main 

difference is that U-Net replaces pooling operations with 

upsampling operations in the output layers of the contracting 

path of the network. This allows increasing the resolution of the 

original image. The next convolutional layer can then be 

trained to collect the exact output based on this information. 

An important modification in the U-Net is the large number of 

feature channels in the resolution part. This allows the network 

to transmit contextual information to layers with higher 

resolution. As a result, the expanding path is more or less 

symmetrical to the contracting path, which gives the network a 

U-shape. The network uses only the useful part of each 

convolutional layer without fully connected layers. To predict 

pixels in the border region of the image, the missing context is 

extrapolated by mirroring the input image. This fragmentation 

strategy is essential for applying the network to large images, 

as otherwise the resolution would be limited by GPU memory. 

MAE (Mean Absolute Error) [8]: the average absolute error 

used to estimate the differences between the pixels of the 

original and restored images. It is calculated as the average 

absolute difference in pixel values between two images. The 

smaller the MAE value, the better the de-noising model 

reproduces the original image (Equation (11)). 

𝑀𝐴𝐸 = ∑ |𝑦𝑖 − 𝑦𝑖|

𝑛

𝑖=1

. (11) 

The ratio of peak signal to noise [9], which is used to assess the 

quality of images after compression or processing. PSNR is 

measured in decibels (dB) and characterizes the dynamic range 

of an image. The higher the PSNR value, the better the image 

quality (Equation (12)). 

𝑃𝑆𝑁𝑅 =  10 ∗  𝑙𝑜𝑔(𝑀𝐴𝑋2/𝑀𝑆𝐸). (12) 

A structural similarity index [10] used to evaluate the similarity 

of structural details between two images. SSIM takes into 

account the brightness, contrast, and structural details of the 

images. The higher the SSIM value, the higher the structural 

similarity between the images (Equation (13)). 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
, (13) 

where: 

− 𝜇𝑥 and 𝜇𝑦 are the mean values of images 𝑥 and 𝑦; 

− 𝜎𝑥
2 and 𝜎𝑦

2 are the variances of images 𝑥, 𝑦; 

− 𝜎𝑥𝑦 is the covariance between 𝑥 and 𝑦; 
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− 𝐶1 and 𝐶2 are small constants to avoid division by zero. 

MAE, PSNR, and SSIM are three important metrics used to 

evaluate the quality of images after processing. Each of these 

metrics has its own advantages and disadvantages, so it is 

important to use a combination of these metrics to obtain a 

comprehensive assessment of image quality. 

The results of CNN's training see in the Table 4. 

Table 4. Comparative table of Unet performance with 

different parameters (test data) 

Parameters Metrics and measurements 

N, 

data 

Epochs 

number 

Batch 

size 
Loss MAE PSNR SSIM Runtime 

500 25 32 0.0216 0.1069 18.2159 0.2263 105.88616 

500 50 32 0.0209 0.0950 18.9880 0.3112 91.37419 

500 100 32 0.0244 0.1067 17.7399 0.2833 167.82782 

500 25 64 0.0197 0.1051 18.2654 0.1699 52.683226 

500 50 64 0.0198 0.1093 17.9111 0.1087 92.025675 

500 100 64 0.0321 0.1281 16.4224 0.2880 211.297902 

1000 25 32 0.0335 0.1452 15.5555 0.1197 90.386527 

1000 50 32 0.0232 0.1073 17.2842 0.3022 211.815254 

1000 100 32 0.0164 0.0858 19.4960 0.3777 311.73863 

1000 25 64 0.0205 0.1042 18.4482 0.1556 89.6746056 

1000 50 64 0.0253 0.0885 17.6580 0.2627 213.68908429 

1000 100 64 0.0496 0.1743 13.7136 0.1426 333.563862 

5000 25 32 0.0258 0.1120 17.0949 0.2897 459.9007775 

5000 50 32 0.0216 0.1060 17.6949 0.2840 817.169139 

5000 25 64 0.0407 0.1586 14.6541 0.1255 455.5682692 

5000 50 64 0.0251 0.1105 17.2120 0.3104 816.09427595 

The main problem with the trained network was that it 

performed poorly on the test data. To fix this, L2 regularization 

was applied to the model and Dropout was added. 

L1/L2 regularization: methods to prevent overfitting in 

machine learning. 

− L1: adds a penalty to the loss proportional to the sum of the 

absolute values of the model's weights (can lead to zero 

weights). 

− L2: adds a penalty to the loss proportional to the square of 

the norm of the model weights (does not lead to zero 

weights). 

Dropout: a method to prevent overfitting in neural networks. 

− Randomly removes some neurons from the network during 

training. 

− Forces the model to learn representations independent of 

individual neurons. 

The results were as follows in the Table 5. 

Table 5. Comparative table of Unet performance results 

with different parameters (with L1&L2 regularization and 

Dropout) 

Parameters Metrics and measurements 

N, 

data 

Epochs 

number 

Batch 

size 
Loss MAE PSNR SSIM Runtime 

5000 25 32 0.0241 0.0241 0.0241 0.0241 0.0241 

5000 50 32 0.0925 0.0925 0.0925 0.0925 0.0925 

 
Let's look at the results in Table 5. It is worth considering them 

from different perspectives. 

First of all, let's consider the effect of the number of epochs: 

Increasing the number of epochs from 25 to 50 results in 

improved MAE and PSNR for most dataset sizes and batch 

sizes, however, further increasing the number of epochs to 100 

may result in worse PSNR and longer runtimes for some 

configurations. 

The effect of the batch size: Using a larger batch size (64) may 

result in improved Loss and MAE for some configurations, but 

may negatively impact PSNR and runtime. 

Effect of dataset size: Increasing the dataset size from 500 to 

1000 results in improved PSNR and SSIM for most 

configurations, but increases the runtime. 

The best performing model is the one with the parameters 

(1000 data, 100 epochs, 32 batch size) (Fig. 21): 

 
Fig 21: The best model obtained with parameters (1000 

data, 100 epochs, 32 batch size) 

The loss and MAE on both training and testing data gradually 

decrease. Similarly, the PSNR for the model grows quite 

smoothly, which is not the case with SSIM, but this value 

eventually reaches its maximum value compared to other 

models with other parameters. 

Increasing the dataset size to 5000 can lead to a degradation in 

PSNR and a significant increase in runtime. 

The worst model is the model with the parameters (1000 data, 

100 epochs, 64 -batch-size) (Fig. 22). 

 
Fig 22: The worst model obtained with parameters (1000 

data, 100 epochs, 64 batch size) 

The graphs show that the model is not trained, as evidenced by 

the metrics. loss, MAE do not decrease, but rather increase, 

PSNR decreases, and SSIM does not increase, which indicates 

a clear overtraining. 

Analysis of the obtained results for CNNs with L1/L2 

regularization and Dropout. Initially, the application of 

regularization and Dropout resulted in a significant 

improvement in PSNR on the test data. 

Dropout also led to a slight improvement in SSIM for the 25 

epoch configuration. 

From the graphs, it can be observed that in general, the metrics 

results for the test data became more normalized and less 

unpredictable. 

 
Fig 23: Results of model training with parameters (5000 

data, 25 epochs, 32 batch-size) 

The graphs show that the loss drops off to zero rather slowly 

and smoothly; the PSNR and SSIM values increase more 

steadily upward compared to the model above, eventually 

reaching a maximum value of about 19.5 for PSNR and 0.3 for 

SSIM, which is the best result among all models. 

5. CONCLUSIONS 

Having selected 3 de-noising algorithms, a software 

implementation was developed, after which the experiments 

conducted were described in Section 3. As expected, due to 
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their simplicity, the spectral subtraction and Wiener filter 

algorithms did not cope very well with the task, however, using 

convolutional neural networks CNN, it was possible to achieve 

a fairly good result. In Section 3, all the metrics used to assess 

the accuracy of the models were described, and a comparative 

analysis of the three methods was also carried out. Based on the 

study, it can be concluded that using convolutional neural 

networks is currently the best way to de-noise audio recordings. 

An analysis of the results obtained from the metrics leads to the 

following conclusion: Spectral subtraction performs slightly 

better than the Wiener filter, as evidenced by both PESQ 

estimates and audiovisual analysis. Among all methods, 

convolutional neural networks demonstrate the best 

performance. The best results are achieved using L1/L2 

regularization and Dropout. 

The choice of an audio de-noising algorithm depends on the 

type of noise, signal characteristics, and available resources. 

Wiener filter: Recommended for simple types of noise when 

available computing resources are limited; Spectral 

subtraction: Can be used as a quick and easy method to remove 

some types of noise; CNN: Recommended for complex types 

of noise when significant computing resources are available. 

Further research may include researching new CNN 

architectures for audio de-noising and exploring the 

possibilities of using other types of neural networks. 
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