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ABSTRACT

Empirical research plays a crucial role in the evolution of the field
of software engineering (SE), as it provides evidence-based insights
that help improve the software development life cycle (SDLC).
Recognizing its significance, this paper presents a systematic map-
ping study (SMS), analyzing 195 studies published between 2019
and 2024, selected from three highly reputable sources: IEEE,
ACM, and Wiley Digital Libraries. Understanding trends in the
different applications of empirical strategies and their associated
support mechanisms, as well as the challenges in this context, is
a necessary step toward advancing the field of empirical software
engineering. The findings of this SMS reveal that empirical tech-
niques are heavily employed in the testing and maintenance phases
of SE, which accounted for 42% of the analyzed studies, while
the management and deployment phases receive comparatively less
attention. Experimental methods emerged as the most commonly
used empirical strategies, followed by quantitative and qualitative
analyses. Tools and techniques were identified as the most fre-
quently employed support mechanisms, demonstrating their impor-
tance in empirical research. This study offers a comprehensive re-
source for researchers and practitioners, mapping empirical strate-
gies onto specific SDLC phases and illuminating the challenges
and possibilities of designing and executing empirical SE research.
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1. INTRODUCTION

Empirical research plays a pivotal role in the success of studies
across diverse fields and domains. This is particularly true for re-
search in the field of software engineering (SE), since most of this
research is supported by empirical strategies and the related mecha-
nisms. In fact, the significance of empirical methods for the success
and validity of software engineering research outcomes is reflected
by the emergence of an entire field under the name of empirical
software engineering (ESE). The field of ESE is concerned with
the application of empirical strategies throughout the software de-
velopment life cycle (SDLC). Adopting suitable empirical strate-
gies and supporting mechanisms is key to the development of suc-
cessful software, whether they are implemented during the phase of
analysis and requirement collection, design and architecture, devel-
opment, testing, deployment, maintenance and evolution, or man-
agement. ESE provides practitioners with the opportunity to gain
insights into user and application behavior, make evidence-based
decisions, and identify problems and areas for improvement. Fur-
thermore, by following the proper practices and guidelines during
empirical research and exploiting the proper tools, many threats can
be mitigated, and research efforts can be replicated. Multiple stud-
ies have recognized and emphasized the importance of carrying out
empirical studies correctly and systematically to increase validity,
enhance reliability, and allow for generalizability and replicability
[L0, (20, [3]. The SE community has witnessed increased interest
in the field of ESE due to the latter’s importance and diverse ap-
plications. It is expected that this interest will continue to grow as
technologies evolve and software products become more complex
and advanced. Following in the footsteps of previous research ef-
forts [1]], this paper addresses the reasons for conducting a system-
atic mapping study (SMS). The goal is to promote a comprehensive
understanding of the prevalence of empirical strategies and the use
of support mechanisms in SE. By searching the literature and ana-
lyzing selected journal studies published between 2019 and 2024,



this research offers a current and holistic view of the application
of empirical strategies within the different phases of the SDLC, as
well as the reported use of support mechanisms during the imple-
mentation of these strategies. Specifically, this study aims to do the
following:

(1) Identify and classify support mechanisms used in empirical
studies: This study seeks to identify the most commonly used
support mechanisms on which researchers rely for conducting
and supporting the activities of different empirical studies.

(2) Map empirical strategies onto their respective SDLC phases:
By identifying trends in the application of empirical strategies
during the different phases of the SDLC, this research aims to
determine which SDLC phases have received more empirical
attention and highlight potential gaps in the research accord-
ingly.

(3) Shed light on commonly reported challenges faced when con-
ducting empirical studies: By explicating the key challenges
and limitations that researchers encounter when conducting
empirical research, this study provides a tool to help future re-
searchers devise strategies to overcome them while identifying
areas in which support is required.

(4) Identify gaps in current research: Highlighting unexplored ar-
eas, or areas that are not supported by sufficient research,
makes a significant contribution to the research community.

(5) Provide guidance for future research: By identifying gaps,
highlighting challenges, and recognizing areas for improve-
ment, this research provides a roadmap for researchers that can
guide future research efforts.

Overall, with this SMS, the present research aims to provide a com-
prehensive classification of empirical strategies and support mech-
anisms, which are analyzed from an SE perspective, and to provide
insights into how effective applications of empirical strategies can
help overcome existing challenges.

2. RELATED WORK

Empirical SE methods have evolved over the years, and numerous
studies have explored ESE research in terms of the applications and
underlying methodologies [4]. For example, Wohlin and Aurum [3]]
introduced a research-decision-making structure for ESE scholar-
ship. The structure consists of eight decision points, each repre-
senting a specific part of ESE research, and is designed to serve as a
starting point for developing research designs. In addition, Stol and
Fitzgerald [6] introduced the ABC framework, a structured taxon-
omy for SE research strategies based on generalizability and obtru-
siveness. It defines eight research strategies, providing researchers
with a clear understanding of appropriate alternatives for achieving
diverse objectives. While these studies provide valuable guidance
on selecting research designs and strategies, others delve deeper
into examinations of the tools and mechanisms used to support the
application of these strategies. Table 1 offers an overview of such
studies, presenting details such as the publication year, focus of the
study, and number of primary papers covered. For example, Mel-
egati et al. [7] conducted an SMS of a set of studies to explore
the application of qualitative surveys in SE research. They found
that most of these studies were related to software maintenance and
software testing. Interestingly, although the study covers a broader
variety of empirical strategies, this finding is consistent with the re-
sults, which include the observation that most papers have focused
on aspects of software maintenance and testing. The authors of [7]
also analyzed the implementation of qualitative surveys, focusing
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on sampling, data collection, and analysis. Based on their investiga-
tion, they proposed a set of guidelines for method design—focusing
on standards for defining study goals, planning, sampling, and col-
lecting and analyzing data—to aid researchers in designing studies
and provide reviewers and readers with a framework for analyzing
and assessing these studies. This research focused on surveys, how-
ever, whereas the study extends its scope to include a broader range
of empirical methods. On the other hand, Borges et al. [1]] con-
ducted an SMS to aggregate and classify supporting mechanisms
used in ESE studies published in key scientific venues, including
International Conference on Evaluation and Assessment in Soft-
ware Engineering (EASE), Inernational Symposium on Empirical
Software Engineering and Measurement (ESEM), and Empirical
Software Engineering Journal (ESEJ). They categorized the empir-
ical strategies employed, and their analysis led to the identification
of 412 mechanisms across multiple studies, focusing on research
methods. Their results suggest that the most commonly used sup-
port mechanisms are related to experiments, which aligns with the
findings. They also determined that the most frequently reported
empirical strategies are experiments and case studies. In addition,
the authors created a list of support mechanisms that SE researchers
can employ to plan and conduct empirical studies. While the study
provides similar value to the SE community, the focus is on ex-
amining the application of empirical strategies specifically across
the SDLC. This approach allows us to understand how these meth-
ods support the different phases of software development, offer-
ing tailored insights that can aid both researchers and practitioners
in choosing the right strategies and most appropriate mechanisms
for specific phases of the SDLC. Similarly, Zhang et al. [8] con-
ducted an SMS to explore ESE and determined that the most fre-
quently used empirical methods are experiments, case studies, and
surveys. They also examined the use of empirical research meth-
ods across SE subfields. Their findings show that such methods are
mostly applied during the phases of software maintenance, quality,
and testing. Their findings offer insight into commonly used em-
pirical approaches, data sources, and processing tools, while also
revealing areas in which ESE methodologies can be improved. The
present study focuses exclusively on support mechanisms related to
data collection, processing, and analysis. Molléri et al. [2] offer a
rich catalogue of aggregated and organized guidelines, assessment
instruments, and knowledge organization systems that support em-
pirical research in SE. First, their study provides a comprehensive
list of research methods, highlighting interrelated methods and pro-
viding detailed references. Regarding research phases (i.e., plan-
ning, execution, analysis, and reporting), their findings suggest that
while most resources cover more than one phase, only 15% address
all phases fully, suggesting that researchers may need to combine
multiple resources to bridge methodological gaps. Finally, their cat-
alogue emphasizes the importance of evaluated instruments, though
only 10% of the resources studied had undergone evaluation for
accuracy and completeness. However, their study does not analyze
the application of empirical strategies across the SDLC. In addi-
tion, Guevara-Vega et al. [3] conducted an SMS on empirical SE
strategies, analyzing the studies and categorizing them based on the
types of empirical strategies employed, the nature of the hypothe-
ses addressed, and the key characteristics of the research inception.
Their findings point to a predominance of three main strategies:
controlled experiments, case studies, and surveys. The study em-
phasizes that the selection of an empirical strategy depends on the
nature of the research, its scope, and the available resources. More-
over, the authors identified a gap in the definition of the character-
istics of empirical methods in SE, noting that this presents a chal-
lenge for new researchers when selecting appropriate strategies.



This work advocates for the further standardization and automa-
tion of empirical methods; however, it does not review the support-
ing mechanisms used within different empirical strategies. Unlike
these studies, the review provides a comprehensive analysis of em-
pirical strategies and discusses a variety of support mechanisms,
considering their application across each phase of the SDLC, and
integrating sources from the past six years (2019-2024). the study
not only highlights current practices but also identifies the chal-
lenges that researchers face when conducting empirical studies, ad-
dresses existing gaps, and suggests directions for future research.

3. METHODOLOGY

To achieve the objectives of this research, an SMS was conducted
in accordance with the guidelines provided by Kitchenham and Pe-
tersen et al. [9], [10]. The data collected through this study were
later analyzed in a structured fashion designed to reduce bias. The
first step of conducting an SMS is the planning process. Figure 1
provides an overview of the mapping process followed in this study.

3.1 Planning Process

The planning process is an umbrella concept that encompasses mul-
tiple subprocesses, including the definition and evaluation of the
review protocol, and the formulation of the research questions.

3.1.1 Review Protocol. A review protocol was created to guide
the execution of the systematic mapping and reduce researcher bias.
The protocol outlined inclusion/exclusion criteria, search strategy,
and data extraction procedures to reduce researcher bias. Addition-
ally, independent verification and consensus meetings were con-
ducted to resolve disagreements during the study selection process.
The process of creating the review protocol is illustrated in Figure
1 and includes the following stages:

(1) Formulating research questions.

(2) Developing a search plan.

(3) Selecting the study criteria and procedures.

(4) Evaluating quality criteria for the collected studies.
(5) Extracting relevant data.

(6) Synthesizing and analyzing the extracted data.

3.1.2  Research Questions. The main objective of this mapping
study was to analyze information relevant to developing and con-
ducting ESE studies throughout the different phases of the SDLC in
order to gain a comprehensive overview of trends and challenges,
as well as gaps and opportunities. To achieve the objective, four re-
search questions were formulated (Table 2).

In addition to the formulation of the research questions, as Table
3 shows, the scope and objectives of this review are clarified by
employing the PICO (population, intervention, comparison, out-
comes) criteria as defined by Kitchenham and Charters [11].

3.2 Conducting the Study

Once the planning process has been completed, the process of con-
ducting the actual research unfolds through its subprocesses:

(1) Constructing a search query.

(2) Selecting relevant studies based on the defined questions and
exclusion and inclusion criteria.

(3) Conducting quality assessments of primary studies after a full-
text screening at the end of the process.
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3.2.1 The Search Query. The guidelines and instructions pro-
vided by Petersen et al. and Kitchenham and Charters were fol-
lowed to construct a search query that is relevant to and reflec-
tive of the research topic and its objectives.[10]], [11]]. Following
these guidelines, the process can be broken down into the follow-
ing steps:

(1) Deriving main terms from the research questions.

(2) Identifying abbreviations, spelling variants, alternative words,
and synonyms for the major terms.

(3) Checking for keywords in relevant research studies to verify
the prior steps.

(4) Using the Boolean operators "OR” and "AND” to construct
search strings. The "OR” operator connects synonyms, alter-
native words, and abbreviations, while ”AND” connects the
main terms.

(5) Merging the main terms to create the ultimate search term.

The final constructed query is as follows:

Empirical AND Software AND ((Analysis OR Support OR
Method OR Discipline OR Methodology OR Literature Review
OR Meta-analysis OR Experimental OR Experiment OR Qual-
itative OR Quantitative OR Statistical OR Study OR Survey
OR Archival Data OR Grounded Theory OR Simulation OR
Simulating OR Modeling OR Ethnography OR Phenomenology
OR Observation OR Historical OR Research OR Focus Group
OR Content Analysis OR Think Aloud) AND (Framework OR
Model OR Guideline OR Lessons OR Paradigm OR Process OR
technique OR Technical OR Template OR Checklist OR Tool OR
GQM OR Goal-question-metric OR Route-map OR Computing
OR Principle OR Handbook OR Instrument OR Mechanism)
AND (Planning OR Requirement OR Analysis OR Design OR
Architecture OR Implementation OR Development OR Testing
OR Deployment OR Maintenance OR SDLC))

3.2.2  Research Resources. To address the research questions, a
search was conducted by entering the predefined search term into
three well-known electronic databases: IEEE Xplore Digital Li-
brary, ACM Digital Library, and Wiley. These databases were se-
lected based on their reputation in SE research, coverage of high-
quality peer-reviewed studies, and frequent use in systematic map-
ping studies. They collectively provide a broad and reliable dataset
for answering the research questions.

3.2.3  Study Selection Criteria. The process of selecting primary
papers for analysis involved several iterations. Initially, all papers
containing the relevant search terms were retrieved from the elec-
tronic data sources. These papers then underwent an initial screen-
ing process that involved reviewing their titles and abstracts and
then excluding any irrelevant papers. Subsequently, any duplicate
studies were removed. The remaining papers underwent a full-text
screening, and after further exclusions based on this screening,
the final set of papers was selected. The data in this studies were
exracted and analyzed, and the mapping results were identified.

Prior to the initial screening step, all of the studies yielded by the
three databases were imported into Rayyan QCRI [12]]. Rayyan’s
duplication detection feature was used to ensure that no duplicate
studies were identified. As a result, a total of 336 studies remained.
Subsequently, the papers were filtered by the seven researchers
based on the titles and abstracts, and their relevance was evaluated
based on predefined exclusion and inclusion criteria. To minimize
the risk of bias, the ’blind mode” feature in Rayyan was activated.
When this blinding feature is on, the notes, labels, and decisions
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Table 1. Related Work.

Title Year Focus Review Period Primary Ref.
Method Paper
Qualitative  Surveys in 2015 Exploring the use of qual- SMS 1998- 66 171
Software Engineering Re- itative surveys in ESE, September
search: Definition, Critical identifying key challenges, 2021
Review, and Guidelines and proposing guidelines
to enhance study design.
Support Mechanisms to 2015 Identifying support mech- SMS 1996- 891 1]
Conduct Empirical Stud- anisms  (methodologies, 2013
ies in Software Engineer- tools, guidelines, pro-
ing: A Systematic Map- cesses, etc.) and analyzing
ping Study their applications.
Empirical Research in 2018 Identifying trends and SMS 2013- 538 181
Software Engineering — commonly used empirical 2017
A Literature Survey methods, data sources,
and tools, with the goal
of providing insights and
recommendations for
future research in ESE.
CERSE - Catalog for Em- 2018 Identifying guidelines, as- SLR 1991- 341 4]
pirical Research in Soft- sessment instruments, and 2014
ware Engineering: A Sys- knowledge organization
tematic Mapping Study systems for conducting
and evaluating ESE.
Empirical Strategies in 2021 Classifying  publications SMS Up to 80 131
Software Engineering that establish empirical 2019

Research: A Literature
Survey

strategies; providing an
overview of approaches,
types of research, types of
hypotheses, and character-
istics.

Mapping Process

-

A

Planning

I

1- Review Protocol

Conducting Reporting

I I

1- Source Selection
2- Search String

2- Research . oo 1-Reporting Result
Questions 3- Selection Criteria P &
4- Data Extraction
Fig. 1. The systematic mapping protocol process.

notes of each collaborator are not visible to the other collaborators. reached. Furthermore, 50 studies were unanimously selectied for
Each pair of researchers thoroughly examined the abstracts of 94 exclusion by the assigned researchers. Conversely, 153 studies were
studies. When blind mode was turned off, conflicts arose over 109 agreed upon by the researchers to be included, and a total of 29
studies, as unanimous decisions on inclusion or exclusion were not studies were categorized as “maybe.” Each pair of researchers held



International Journal of Computer Applications (0975 - 8887)
Volume * - No.*, February 2025

Table 2. Research Questions

No. Question

Motivation

RQ1 What support mechanisms are used when
conducting empirical studies?

To uncover the support mechanisms on which researchers rely to successfully
conduct empirical studies in SE. Understanding these mechanisms helps identify
best practices, technological advancements, and potential areas for improvement
to support research.

RQ2 What are the most commonly used empirical
strategies within each phase of the SDLC?

To identify which phases are the focus of empirical research. This helps illumi-
nate the extent to which the entire SDLC is being studied and whether certain
phases receive more research attention, thus revealing gaps and trends in the lit-
erature.

RQ3 What gaps are observed in research on ESE?

To reveal unexplored areas and opportunities for improving research practices in
the field.

RQ4 What key challenges do researchers face
when conducting empirical studies in soft-
ware engineering?

To uncover the main challenges researchers encounter during empirical studies.

Table 3. Using the PICO criteria to define the scope and goal of SMS

Population Articles about empirical studies in SE

Intervention Using support mechanisms to conduct empirical studies

Comparison Identifing the empirical strategies employed in each stage of the SDLC and the support mechanisms used
to conduct empirical studies.

Outcomes Classifying empirical strategies based on SDLC and support mechanisms, along with synthesized evidence,
to guide research and practice.

Table 4. Inclusion and exclusion criteria.
Inclusion Criteria
Studies based on empir-
ical research in software
engineering that describe
empirical strategies and
identify support mecha-
nisms for conducting em-
pirical studies throughout
the software development
life cycle (SDLC)
Studies published within | Papers published before
the last six years (between | 2019
2019 and 2024)
Peer-reviewed studies
Journal papers only

Exclusion Criteria
Studies not related to the
research objective

Non-English studies
Technical reports, gov-
ernment reports, letters
and editorials, short notes,
abstract-only studies
Duplicate studies were re-
moved

Primary studies only

sessions to resolve their conflicting opinions, and decisions were
made about whether to include or exclude the studies of concern.
Once the researchers reached an agreement, an immediate decision
was made, and the studies were moved to either the “included” or
“excluded” category.

3.2.4 Inclusion and Exclusion Criteria. Inclusion and exclusion
criteria were defined in order to narrow down the most relevant
studies. Table 4 provides an overview of the inclusion and exclusion
criteria.

3.2.5 Quality Assessment Criteria. To ensure the relevance of the
selected research articles and minimize selection bias, criteria for
quality assessment were established, and each study was evaluated
against them. Studies that met these criteria were chosen for further

Table 5. Quality Assessment Criteria.

Criteria Quality Criteria Score
No.
QC 1 Are the support mecha- | Y(1)-
nisms clearly defined? N(0)-
P(0.5)
QC2 Are the empirical strate- | Y(2)-
gies clearly defined? N(0)-
P(1)
QC3 Is the SDLC stage explic- | Y(1)-
itly defined? N(0)-
P(0.5)

data analysis; otherwise, the papers were excluded.In this system-
atic mapping, QC2 was identified as the most significant quality
assessment criterion, and a double weight of 2 was assigned to
it. QCI and QC3 were each assigned a weight of 1 point if fully
answered, 0.5 points if partially answered, and O points if not an-
swered. Meawhile, QC2 was assigned 2 points if fully answered,
1 point if partially answered, and O points if not answered. Each
study required a combined score of 3 out of 4 to be accepted. The
quality assessment criteria are presented in Table 5.

3.2.6 Data Extraction. A total of 336 studies was initially se-
lected. Following a detailed review of the full texts, the number
was narrowed down to 231 for further analysis. Quality assessment
criteria were then applied, resulting in the exclusion of 36 stud-
ies. In the end, 195 papers were considered suitable for data ex-
traction. Figure 2 illustrates the complete process of searching for
and selecting the primary studies. Forms were created to serve as
templates for extracting specific data items from the selected stud-
ies. After satisfying the inclusion/exclusion criteria and passing the
quality assessment process, the studies advanced to the phase at
which the defined data extraction items were gathered to map the
results. The data extraction process consisted of two steps. First,
all relevant data were extracted based on the procedure presented
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o«

Search String

IEEE
Xplore

118
Include
36
Exclude:
32

Level 1
Inclusion & Exclusion based
on title and abstract
336-105=231

Level 2
Inclusion & Exclusion based
on full text
231-1=230

Level 3
Final Selection of primary
studies included in the SMS
230-35=195

C Data Extraction & Syntesis )

Fig. 2. The systematic mapping protocol process.

Table 6. Data Extraction.

ID Data Description Relevant
Item RQ
D1 Title of | What is the arti- | Manuscript
paper cle’s title? informa-
tion
ID2 Year of | Year the study | Manuscript
publica- was published informa-
tion tion
ID3 Digital Name of reposi- | Manuscript
library tory (e.g, IEEE, | informa-

ACM...) tion

D4 Types Type of empiri- | RQI,
of em- | cal strategy (e.g. | RQ2
pirical experiment, sur-
strate- vey....)
gies

D5 Types of | Type of mech- | RQI
support anism (e.g.
mecha- framework,
nisms model, tool....)

ID6 SDLC SDLC phase(s)in | RQ2
stage which empirical

strategies ~ were
applied (e.g.,
testing, design)

ID7 Challengeq Challenges RQ3
identi- observed in
fied empirical studies

in Table 6. Two mapping forms, presented in Table 7 and Table 8,
were then used to help answer the research questions.

3.2.7 Data Synthesis. In the data synthesis process, extracted
data are transformed into valuable information that addresses the
research questions. To facilitate the analysis, a structured format

was created, and all extracted data were classified into three cat-
egories: one based on the SDLC stage, the second on the type of
empirical strategy employed, and the third on the support mecha-
nism used.

4. RESULTS

This section is focused on presenting the findings of the system-
atic mapping. General information about research trends over the
chosen six-year period is provided in Section A, including the dis-
tribution of studies across the selected sources and years (Figure
4). Section B addresses (RQ1) by detailing the findings regarding
the support mechanisms used in empirical SE studies. Section C
answers (RQ?2), focusing on the correlation between the empirical
studies and the phases of the SDLC. Section D responds to (RQ3)
by highlighting and addressing existing gaps in ESE research. Fi-
nally, Section E discusses the challenges commonly faced when
applying empirical strategies, thus addressing RQ4.

4.1 General Information

Figure 3 shows the distribution of 195 primary studies drawn from
three data sources: IEEE, ACM, and Wiley. IEEE leads with 86
studies (44%), highlighting its prominence in engineering and tech-
nology research. ACM follows with about 37% of the studies, em-
phasizing its importance in computer science and software engi-
neering. In contrast, Wiley contributed only 36 studies (19%), in-
dicating a more specialized focus on empirical research. IEEE and
ACM together account for 82% of the studies, reinforcing their sta-
tus as key sources for empirical research, while Wiley’s smaller
share suggests a less targeted role in this field. Figure 4 illustrates
the primary studies, which are grouped by publication date. From
2019 to 2020, the number of studies on this topic remained consis-
tent, with 28 published in both years, indicating a moderate level of
interest. In 2021, there was a slight increase to 30 studies, followed
by a decrease to 26 in 2022, which may reflect a temporary shift in
focus. However, in 2023, there was a significant rise to 47 studies,
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Fig. 3. No. of Studies per Resource.

the highest number recorded in this six-year period. This increase
suggests a growing interest, likely driven by advancements in tools
and techniques. In 2024, the number of studies decreased to 36,
remaining above the levels seen from 2019 to 2022, indicating sus-
tained interest but stabilization after the peak in 2023. Overall, the
data reveal an upward trend in research, particularly over the last
two years.

4.2 Mechanisms of Support for Empirical Studies in
SE

This subsection addresses the first research question, “What sup-
port mechanisms are used to conduct empirical studies?” First, the
types of empirical strategies employed in the studies and their fre-
quency of use are presented. The various support mechanisms em-
ployed to carry out successful empirical strategies are laid out and
discussed. Finally, the support mechanisms observed to be the most
beneficial for conducting each type of empirical research are ex-
plored. A total of 409 empirical strategies were extracted, and Fig-
ure 5 below shows the distribution of the elicited reports. After an-
alyzing the extracted data relative to the reported use frequency of
the various empirical strategies in research, it was observed (see
Figure 5) that the most commonly adopted empirical strategy is
the experiment, which comprised 28% of instances. The “experi-
ment” category includes experiments, controlled experiments, and
quasi-experiments, which Wholin et al. consider synonyms
denoting the same concept. The results indicate that the second-
most frequently used strategy is quantitative analysis, accounting
for almost 22% of the total reported strategies, which suggests a
strong emphasis on approaches that are controlled, objective, and
statistically valid. Qualitative analyses, surveys, and case studies
came next and were also widely employed, reflecting the impor-
tance of detailed and contextual exploration. Meanwhile, methods
such as modeling, simulation, observation, and interviews exhib-
ited moderate usage, suggesting their relevance and applicability
within specific contexts of research. The less frequently used strate-
gies include grounded theory, focus groups, action research, field
studies, meta-analyses, and ethnography. These strategies may rep-

resent specialized applications or underutilized opportunities for
exploration. The data demonstrate a balance between the use of
quantitative methods (such as experiments and quantitative anal-
yses) and qualitative methods (including qualitative analyses and
case studies). This illustrates these methods’ broad applicability to
empirical research while highlighting the potential for greater use
of less commonly employed strategies. Many studies combine two
or more methods to strengthen and support their findings. However,
the present research focuses on identifying the support mechanisms
used to conduct empirical studies rather than on methods for in-
tegrating or combining multiple strategies. As Figure 6 shows, a
wide use of practical support mechanisms are used in empirical re-
search. The results suggest that techniques and tools are the most
commonly used mechanisms, accounting for approximately 48% of
reported instances. This demonstrates their broad applicability and
effectiveness in supporting research activities. Following closely
behind are instruments, models, guidelines, and frameworks, which
together contribute to 42%. These mechanisms provide practical
methodologies for conducting data collection, analysis, and pro-
cessing. In contrast, less frequently used mechanisms—such as
the goal-question-metric (GQM) method, processes, principles, and
checklists—serve more specialized or supplementary needs. The
lower frequencies of occurrence for these mechanisms may indi-
cate that they have limited use or are applicable only in specific
contexts or scenarios. Another reason might be that many stud-
ies use certain support mechanisms but do not explicitly mention
them. Overall, the data emphasize a strong preference for methods
that deliver immediate practical value, while more abstract or spe-
cialized mechanisms are less preferred. Information on exploited
mechanisms was extracted individually, resulting in a total of 388
mechanisms and 409 empirical strategies. Following this, the re-
searchers held a meeting to negotiate the classification of these
mechanisms and came to the decision to recategorize them into
three general categories as follows:

(1) Methodological Frameworks and Models: This category en-
compasses comprehensive structures that provide theoretical
or methodological foundations for conducting empirical re-
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search. Items in this category include frameworks, models,
paradigms, GQM, route maps, processes, and principles.
Guidance and Best Practices: This category encompasses
items that offer practical advice, step-by-step instructions,
or best practices for researchers. It includes guidelines,
lessons, templates, checklists, handbooks, standards, bench-
marks, forms, and protocols.

Tools and Techniques: This category covers supporting soft-
ware, technical tools, techniques, mechanisms, instruments,
and computing tools.

(@3]

3

To achieve a more comprehensive classification and minimize sub-
jective decisions, various elements were excluded from the investi-
gation, including sampling techniques, statistical tests and meth-
ods, communication strategies, social media channels, machine
learning techniques, datasets, and subjects for case studies. To re-
duce ambiguity, the strategies were reclassified into categories such
as experiments, surveys, case studies, interviews, qualitative anal-

yses, and quantitative analyses. In the beginning, only the research
types explicitly mentioned in the repository were extracted. How-
ever, it was noticed that not all of them were mentioned. As a
result, each paper was revisited in depth to extract this informa-
tion. This led to a reduction in the number of papers in the repos-
itory to 354 and the number of techniques to 324. Figure 7 il-
lustrates the distribution of the empirical strategies used in the
primary studies. Experiments are the most frequently employed
method, accounting for 168 (47%) of the studies. This indicates
a strong preference for experimental approaches among all the re-
sults, likely due to their ability to provide controlled results. Fol-
lowing this, it was found that surveys make up 51 (14%) of the
methods used, highlighting their importance in gathering a diverse
range of data. Case studies, at 25 (7%), also play a significant role,
as they offer detailed insights into specific contexts. In contrast,
interviews were used less often, appearing in 17 (5%) of the in-
stances. This may suggest that interviews are either less applica-
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ble or are primarily employed to support findings reached using
other strategies. The use of qualitative analysis was reported in
15 (4%), while quantitative analysis appeared in 10 (3% of) in-
stances. Although it was originally expected that quantitative anal-
ysis would be reported more than qualitative analysis, given the
dominant use of experiments in empirical studies, it was later de-
termined that this outcome was probably the result of the lack of
explicit identification of quantitative and qualitative strategies by
researchers in the primary studies. Meanwhile, the prominence of
experiments underlines the focus on systematic empirical valida-
tion in primary studies. Meanwhile, the relatively lower frequency
of qualitative and quantitative analyses might suggest an opportu-
nity to further implement these methods to foster a more compre-
hensive understanding of research phenomena. The ”Others” cate-
gory includes meta-analysis, action research, think-aloud methods,

simulation, observation, grounded theory, focus groups, ethnogra-
phy, and modeling. The most frequent methods were observations,
simulations, and action research, respectively, while ethnography
was the least common approach. Figure 8 illustrates the frequency
of use of the various support mechanisms used in the primary stud-
ies, highlighting the varying degrees of reliance on methodolog-
ical frameworks, guidance practices, and tools. Among the three
aforementioned categories, tools and techniques were the most fre-
quently utilized support mechanisms, with a total of 173 (53%) of
the reported instances. This dominance underscores their critical
role in facilitating practical implementation and problem-solving in
research, likely due to their direct applicability across various do-
mains. Within this category, tools constituted (53%) of the total per-
centage, techniques accounted for (19%), and instruments made up
(22%), with most instruments being either questionnaires or Lik-
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ert scales. Software constituted (6%). In contrast, methodological
frameworks and models were employed in 91 (28%) of the studies,
highlighting their significance in providing structured and theoret-
ical foundations for research. These frameworks serve as essential
guides for shaping study designs and ensuring rigorous method-
ological standards, although they are less prominent than tools and
techniques. The most commonly used were frameworks and mod-
els, which accounted for (46%). In contrast, the least used were
GQM, principles, and metrics, making up about (24%). Moder-
ately used were methods and approaches, which constituted (30%).
The least frequently observed category was “Guidance and Best
Practices,” which appeared in 60 (19% of) cases. While this sup-
port mechanism offers valuable recommendations and standards,
its lower frequency suggests that it may be considered supple-
mentary or context-dependent compared to the other mechanisms.
This could also indicate a preference for more tangible and ac-
tionable support mechanisms, such as tools, over general guide-
lines. Notably, guidelines made up (65%) of this category, while
the least-used resources—benchmarks, templates, and recommen-
dations—occurred only two to three times each. Table 7 highlights
the clear preference for tools and techniques in the primary stud-
ies, emphasizing a focus on actionable and results-oriented support.
It further indicates that theoretical and guidance-oriented mecha-
nisms, while still important, serve a more complementary role in
aiding research efforts.

Table 7 provides a detailed breakdown of the support mechanisms
discovered alongside the relevant empirical strategies. Experiments
exhibited the most diverse and intensive use of support mecha-
nisms, with tools and techniques being the most prominent in this
strategy. This strategy is further enhanced by the use of method-
ological frameworks and models. The integration of guidance and
best practices is also evident. This variety highlights the complex
nature of experiments, which require robust frameworks and di-
verse tools to ensure precision and repeatability. In contrast, quan-
titative analyses exhibited minimal use of methodological frame-
works, with only one such framework reported. However, tools and
techniques are essential and serve as the primary support mech-
anisms. This dependency underscores the analytical and computa-

tional demands of quantitative studies. Qualitative analyses demon-
strated a balanced use of support mechanisms. The limited pres-
ence of methodological frameworks indicates a focus on practi-
cal applicability rather than on theoretical foundations. Surveys
depend heavily on the various tools and techniques used, partic-
ularly instruments. Guidelines are integrated, and a balanced use
of tools and techniques alongside guidance and best practices un-
derlines the necessity of both theoretical grounding and practical
tools. In summary, the data reveal a strong preference for tools and
techniques across most empirical strategies, particularly in experi-
ments and surveys. Methodological frameworks are prominent with
strategies such as experiments and case studies, where they provide
a solid theoretical foundation. While guidance and best practices
are less dominant, they offer critical support in surveys and exper-
iments. This distribution reflects the varying requirements of em-
pirical strategies and highlights the complementary roles of these
support mechanisms in primary studies.

4.3 Empirical strategies within SDLC phases

The distribution of empirical applications across different phases
of the SDLC reveals significant variation in both research focuses
and preferred methodologies. Figure 9 illustrates the number of in-
stances documented for each SDLC phase. The testing and mainte-
nance phases are particularly prominent, showcasing a strong em-
phasis on experimental and quantitative methodologies. In contrast,
the earlier phases, such as Planning/Analysis and Requirements,
along with the Management phase, receive minimal research atten-
tion, indicating critical gaps. The results highlight a clear research
focus on the later SDLC phases. For instance, testing accounts for
25.7% of the total results (157 instances), while maintenance com-
prises 21.3% (130 instances). In comparison, the early phases, such
as planning/analysis, with only 39 contributions (6.4%), and re-
quirements, with 50 contributions (8.2%), fall significantly behind,
as shown in Figure 9. These early phases primarily employ quali-
tative strategies, such as interviews and case studies, with a lack of
robust methodologies such as experiments. The management phase
is particularly underexplored, as represented by the shortest bar,
accounting for just 2% of the results (12 instances). Overall, the
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Table 7. Support Mechanism Mapping with Empirical Strategies.

Empirical Strategy Methodological Frequency Guidance and Frequency Tools and Tech- Frequency
Frameworks and Best Practices niques
Models
GQM 1 Template 4 Technique 2
. Guideline 2 Tool 3
Interview .
Practice 3 Instrument 1
Protocol 1
Model 14 Benchmark 2 Tool 60
Framework 17 Guideline 11 Software 9
GQM 5 Standard 2 Instrument 10
Experiment Metric 3 Checklist 1 Technique 13
Method 6 Recommendation 3
Approach 9 Technique 1
Lesson 2
Quantitative Framework 1 Tool 6
analysis Technique 3
Qualitative Approach 1 Guideline 4 Tool 1
analysis Method 1 Standard 1 Technique 7
Model 1 Template 1 Instrument 20
Principle 5 Guideline 16 Tool 2
Survey Method 3 Technique 1
Approach 1
Framework 1
Model 3 Standard 1 Software 1
GQM 1 Tool 10
Case Approach 2 Instrument
study Framework 2
Method 2
Guideline 1
Principle 1 Guideline 3 Software 2
GQM 2 Best Practice 1 Tool 11
Other Model 3 Model 1 Instrument 4
Approach 3 Technique 5
Framework 1
Method 1

results indicate a substantial focus on validation and maintenance
while highlighting gaps and opportunities for further exploration in
the early SDLC phases and in managerial aspects.

4.4 Gaps observed in ESE research

An analysis of the empirical strategies applied in the research re-
vealed significant methodological gaps. The experiment was the
most frequently used approach, with 168 occurrences, as shown in
both Table 8 and Figure 10. In contrast, qualitative methods, such as
case studies and interviews, were used much less frequently, with
only 25 and 17 occurrences, respectively. Additionally, with 10
and 51 occurrences, respectively, quantitative analyses and surveys
remained moderately utilized, indicating room for broader adop-
tion. Figure 10 illustrates the distribution of empirical strategies
across the three support mechanisms: methodological frameworks
and models, guidance and best practices, and tools and techniques.
The size of the bubbles in the chart reflects the frequency of usage.
The figure highlights the predominant role of tools and techniques,
particularly in experiments, which peaked at 93 occurrences. Sur-
veys and other strategies also demonstrated a significant reliance
on tools, with 23 and 22 occurrences, respectively. While mod-
erately common overall, methodological frameworks and models
were notably associated with experiments, accounting for 53 occur-
rences. They demonstrated consistent but lower usage in surveys,

case studies, and other strategies, each with 11 occurrences. Guid-
ance and best practices appeared to be secondary support mecha-
nisms, mainly used in experiments (22 occurrences) and surveys
(17 occurrences), while their application in qualitative strategies
remained minimal or nonexistent. Figure 10 further indicates that
specific empirical strategies, such as interviews and quantitative
analyses, were scarcely represented across all three support mech-
anisms, suggesting limited application or possibly unreported data
in these areas. Experiments emerged as the most resource-intensive
strategy, relying heavily on both tools and frameworks. In contrast,
surveys and other strategies exhibited a more balanced reliance on
the three support mechanisms, although tools still dominated. This
analysis underscores the central role of tools in empirical research,
especially experiments, while also highlighting the varied contri-
butions of frameworks and best practices, which vary according to
the empirical strategy used.

The SDLC phase trends exhibited a similar disparity, with testing
(157 contributions, 25.7%) and maintenance (130 contributions,
21.3%) receiving the most attention, again emphasizing the cen-
trality of the later stages. The early SDLC phases, such as plan-
ning/analysis (39 contributions, 6.4%) and requirements (50 con-
tributions, 8.2%), are significantly underrepresented, as is manage-
ment (12 contributions, 2%), indicating a lack of focus on founda-
tional and managerial aspects. The bubble chart further highlights

11
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the need for more guidance and best practices in empirical strate- theoretical models to guide research in underrepresented SDLC
gies, with most contributions concentrated in experiments and tech- phases. This uneven distribution presents opportunities to balance

nical tools, leaving gaps in the use of practical frameworks and
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Table 8. Mapping of Support Mechanisms with Empirical
Strategies.

Empirical Strat- | Methodological Guidance | Tools
egy Frameworks and | and Best | and
Models Prac- Tech-

tices niques

Interview 1 10 6

Experiment 53 22 93

Quantitative anal- | 1 0 9

ysis

Qualitative analy- | 2 5 8

sis

Survey 11 17 23

Case study 11 1 13

Others 11 5 22

the methodological and phase-wise focus, which could address crit-
ical gaps in qualitative strategies and earlier SDLC stages.

4.5 Key Challenges

In this section, the challenges faced by researchers in the primary
studies are presented. These challenges can impact the reliability,
validity, and generalizability of research findings. To address exist-
ing obstacles affecting ESE research and to highlight their impact
on future research directions, the challenges are categorized under
the following labels:

ey

@)

3

Generalizability: A frequent concern in ESE research is
the limited generalizability of findings reached using specific
datasets, contexts, or projects studied. This challenge arises
due to several factors:

—Small Sample Sizes: Many studies point out that having ac-
cess to a limited number of participants or software projects
makes it difficult to generalize conclusions to broader con-
texts.

—Focus on Specific Technologies: A focus on specific pro-
gramming languages, frameworks, or platforms is exhibited
in many research studies. Focusing research on specific con-
texts limits the application of findings to other technologies
or contexts.

—Reliance on Open-Source Data: Open-sourced projects are
considered valuable data sources; however, such projects do
not fully represent the characteristics of closed-source or
commercial software development. This difference affects
the applicability of research findings in real-life industrial
settings.

Data Quality and Noise: Several difficulties that affect the
identification of high-quality and relevant data for use as anal-
ysis subjects were identified.

—Data Acquisition Difficulties: Obtaining real-world data is
often difficult due to industry-specific confidentiality issues
and restrictions on sharing proprietary information.

—Incomplete and Inaccurate Data: Some datasets are found
to be incomplete, inconsistent, or erroneous, forcing re-
searchers to clean the data. Proper and thorough data clean-
ing requires devoted effort to facilitate meaningful analysis.

—Noise and Irrelevant Information: Irrelevant data points
can introduce noise, obscuring meaningful patterns and po-
tentially leading to skewed or inaccurate results.

Bias and Subjectivity: It is crucial to maintain the objectiv-
ity and impartiality of research findings. The reviewed studies
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highlight several potential sources of bias that should be care-

fully considered by researchers carrying out empirical studies:

—Human Assessment and Interpretation: The researcher’s
perspective and interpretations can affect many research ac-
tivities, such as manual data labeling, software artifact cate-
gorization, or qualitative analysis.

—Self-Reported Data: Potential biases in participant replies
must be considered in studies that use surveys, interviews,
or other strategies reliant upon self-reporting. This form of
bias is called respondent bias, and it occurs when partici-
pants respond inaccurately or falsely to proposed questions
or scenarios. Such bias can compromise the validity of self-
reported data.

—Selection Bias: When choosing research participants or
software projects, bias may be unintentionally introduced.
For instance, the results may not be applicable to developers
who are new to the industry if the research solely includes
highly experienced developers.

(4) Tool Usability and Limitations:Tools used in analyzing soft-

ware development data frequently have limitations that impact

the efficiency and accuracy of research findings:

—Manual Data Extraction and Processing: Due to the limits
of current tools or the absence of suitable solutions, several
studies exhibited a significant reliance on manual data ex-
traction and processing. This dependence on manual efforts
can significantly impede the scale and efficiency of research,
particularly when handling large datasets.

—Limited Tool Functionality: Studies mentioned a lack of
support and the limited functionality of existing tools for
specific tasks as an obstacle that can restrict the scope of
research.

(5) Participant-Related Challenges: Several studies addressed

the challenges caused by recruiting and managing participants

in software engineering research.

—Recruitment Difficulties: Finding and recruiting partici-
pants with the required experience can be a significant chal-
lenge. To overcome these difficulties, researchers may need
to employ creative recruitment strategies, collaborate with
industry partners, or consider alternative approaches, such
as student participants, when accessing experienced practi-
tioners is difficult.

—Participant Fatigue and Cognitive Load: Some studies
discussed the importance of managing participants’ fatigue
and cognitive load, particularly in studies involving long
tasks or complex experiments.

(1) Computational Costs and Complexity: The computational

demand of analyzing software development data is increasing,

especially as datasets grow in size and complexity.

—Data Processing and Analysis: Several studies acknowl-
edged the challenges of processing large-scale datasets. This
underscores the importance of scalable data management
systems and efficient algorithms for handling and analyzing
large datasets.

—Model Training Overhead: The research sheds light on
the computational costs of developing and training com-
plex models, such as machine learning models. Meeting
these computational demands requires the employment of
the proper computing infrastructure and smart strategies to
make the best use of the available resources.

(7) Methodological Limitations: There are certain inherent con-

straints or weaknesses in research designs or execution that fall
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under the label of methodological limitations and can impact

the validity and reliability of findings:

—Threats to Validity Most of the empirical studies reported
facing a range of validity threats, which can affect construct,
internal, and external validity. In the context of empirical re-
search, these threats can be mitigated by applying solid and
valid study designs, selecting appropriate data collection and
data analysis methods, and possessing a strong background
in methodological limitations.

—Reliance on Specific Metrics: Certain limitations may be
introduced by the measures chosen to assess study findings.

As Figure 11 shows, among the 195 studies reviewed, the most
commonly reported challenge was generalizability, followed by
methodological limitations and then data quality and noise. Bias
and subjectivity came after, followed by computational cost and
complexity, participant-related challenges, and finally, tool usabil-
ity and limitations. Figure 12 summarizes all the challenges. The
adduced research problems underscore the complexity of conduct-
ing empirical studies in the context of software engineering. In
order to overcome these obstacles and limit their effects, strong
methodologies, close attention to potential biases, and constant ef-
fort must be put toward improving support mechanisms and thus
allowing a wider application of study findings.

5. THREATS TO VALIDITY

To identify the threats to the validity of the SMS, the four basic
types of validity threats outlined by Wohlin et al. are drawn upon.
[[13]. Each of these threats is discussed in the following subsections.

—Conclusion validity refers to issues that may arise when draw-
ing conclusions and determines whether the SMS can be repli-
cated. According to Wohlin et al. [13]], the primary point of con-
clusion validity is to ensure that accurate conclusions are drawn
regarding the relationships between a study’s design and its out-
comes. In this SMS, the most prominent type of validity threats
was conclusion validity threats. Threats to conclusion validity
include subjective measures, such as the manual categorization
of empirical strategies and support mechanisms. To mitigate the
impact of these subjective measures, each paper in the resulting
set was classified by the researchers based on the classification
introduced by Borges et al. [1] with changes based on the re-
sults (Table 7). Additionally, a general classification scheme was
developed to accommodate all support mechanisms targeted by
this study. The classifications were discussed among the team
members, and any discrepancies that arose were carefully re-
viewed before the papers were reclassified. Furthermore, as in
many studies conducted by a team of multiple researchers, the
accuracy of the reported results can be influenced by the threat
of researcher bias, which stems from the impact of individual
perceptions or interpretations. This bias could also emerge from
ambiguous reporting, implicit identification, and varying clas-
sifications of mechanisms and their applications within the pri-
mary studies. To reduce this risk, frequent discussions were held
to pin down any areas of concern or confusion. However, even
with all these measures taking place to eliminate the effect of
conclusion validity threats, a margin of inaccuracy in the results
remains inevitable due to this threat.

—Internal Validity involves factors that can indicate a causal re-
lationship, including hidden variables, a phenomenon often re-
ferred to as spurious correlation. Thorough searches were con-
ducted to identify all relevant studies from the three digital li-
braries. However, it is possible that some important papers may
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have been missed. It is believed that if any studies are missing,
their number is likely minimal, and a variety of alternative key-
words were used in the search string to help retrieve all pertinent
research.

—Construct Validity According to Wohlin et al. [12], threats to
construct validity pertain to issues that may arise during the re-
search design phase. For instance, the research questions may
not be fully comprehensive and might not cover every aspect
of the empirical studies. To address this concern, brainstorming
sessions were carried out to help effectively identify a set of re-
search questions that appropriately reflect the current research
landscape in this study.

—External Validity refers to the ability to generalize study results
beyond the specific context of the research. In the SMS, com-
pleteness was aimed for within the defined scope, including key-
words and timeframes. However, it can be acknowledged that no
extensive literature review can claim to be entirely comprehen-
sive. The SMS focuses mainly on scientific research involving
empirical strategies and should not be generalized to closely re-
lated fields of research.

6. CONCLUSION

This study provides a comprehensive mapping of empirical strate-
gies and their associated support mechanisms across the different
phases of the SDLC, focusing on the analysis of data extracted from
195 studies published between 2019 and 2024. The findings reveal
a strong focus on the testing and maintenance phases, with exper-
iments emerging as the most widely employed empirical strategy.
On the other hand, earlier phases, such as planning and require-
ments, as well as software project management aspects, remain
underexplored. This reveals a notable and significant research gap
that needs to be addressed by future scholars. Additionally, qualita-
tive strategies, while essential in the initial phases of the SDLC,
proved to be underutilized. The results of this study further un-
derscore the significance of diversifying empirical methodologies
and shed light on their adaptability within different contexts of
research and in accordance with the unique challenges that result
from each SDLC phase. By identifying these gaps and trends, the
study lays a foundation and acts as a road map for future research
efforts. It is strongly believed that this contribution enhances em-
pirical approaches and facilitates their correct application across
broader contexts within software engineering. Furthermore, this
work serves as a valuable resource for researchers and practitioners
seeking to improve the methodological consistency, accuracy, and
relevance of empirical studies in software engineering.
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